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1. Introduction and preliminaries

The purpose of this paper is to generalize a fuzzy Banach contraction mapping
principle to coincidence point and common fixed point results in a fuzzy metric space
with a partial order. In the sequel we prove a weak contraction mapping theorem
by way of weakening the contraction. Fuzzy metric space has been defined in a
number of ways. It is the inherent flexibility of fuzzy concepts that makes possible
the fuzzification of the notion of metric spaces in more than one inequivalent ways.
The Banach’s contraction mapping principle is also extended to fuzzy metric spaces
in different ways for the same reason. References [12, 19, 22] are examples of that.

In particular, a notion of a fuzzy metric space was introduced by Kramosil and
Michalek [20], which was later modified by George and Veeramani for topological
reasons [10]. They proved that the topology induced by a fuzzy metric space, in
their sense, is a Hausdorff topology. There are several fixed point results established
over the years in this fuzzy metric space. Some instances of these works are in [2, 5,
25, 31, 33]. Fuzzy metric spaces have their own issues different from ordinary metric
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spaces, some of these issues appear in [13]. Attempts for generalizing the Banach’s
contraction mapping principle had been there for a long period of time. Still today it
remains an active branch of fixed point theory. One such generalization is the weak
contraction principle which was first introduced by Alber et al [1] in Hilbert spaces
and later adopted to complete metric spaces by Rhoades [26]. A weak contraction
mapping is intermediate to a contraction mapping and a nonexpansive mapping.
Later on, several authors created a number of results using weak inequalities, that is,
the inequalities of the type used in [8, 9, 23]. These results are fixed and coincidence
point results, some of which further generalize the weak contraction while others
are independent results. Fixed point theory in partially ordered metric spaces is of
relatively recent origin. An early result in this direction is due to Turinici [29] in
which fixed point problems were studied in partially ordered uniform spaces. More
recently Ran et al [24] worked out some fixed point theorems in partially ordered
metric spaces and made applications for solving matrix equations.

Later, this branch of fixed point theory has developed through a number of works.
Weak contraction in partially ordered metric spaces was studied by Harjani et al [15]
and later by Choudhury et al [4, 6, 7].

In this paper we prove certain coincidence point results in partially ordered fuzzy
metric spaces for functions which satisfy a contraction inequality involving three
control functions. Two of the control functions are discontinuous. Some illustrative
examples are given. Fixed point problems in partially ordered fuzzy metric spaces
have been studied recently as, for instance, in [5].
Below we describe a mathematical background for the discussion of the topics pre-
sented in this paper.

In 1965, the concept of fuzzy sets was initiated by Zadeh [32]. Zadeh provides a
precise natural framework for mathematical modeling of those real world situations
that are coupled with vagueness and uncertainty due to non-probabilistic reasons.

Definition 1.1 ([32]). A fuzzy set A in X is a function with domain X and values
in [0, 1].

After its introduction the fuzzy concepts were quickly adopted in different branches
of pure and applied mathematics. In particular, Kramosil et al introduced the fol-
lowing definition of fuzzy metric spaces.

Definition 1.2 ([14]). A t-norm is a binary operation T on [0, 1] satisfying the
following conditions:

(i) T is commutative and associative;
(ii) T (a, 1) = a ∀ a ∈ [0, 1];
(iii) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, ∀ a, b, c, d ∈ [0, 1].

Examples of t-norms are a ∗ b = ab, a ∗ b = min{a, b}, etc.

Definition 1.3 ([20]). A fuzzy metric space (in sense of Kramosil and Michalek) is
a triplet (X,M, ∗), where X is a nonempty set, ∗ is a t-norm and M is a fuzzy set
on X2 × [0,∞) such that the following axioms hold:
(FM-1) M(x, y, 0) = 0 ∀ x, y ∈ X
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(FM-2) M(x, y, t) = 1 ∀ t > 0 iff x = y;
(FM-3) M(x, y, t) = M(y, x, t) ∀ x, y ∈ X, t > 0;
(FM-4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) ∀ x, y, z ∈ X and s, t > 0;
(FM-5) M(x, y, .) : [0,∞) → [0, 1] is left- continuous ∀ x, y ∈ X.

George and Veeramoni [10] modified the above definition for topological reasons.
The modified definition is the following.

Definition 1.4 ([10]). A fuzzy metric space (in sense of George and Veeramani) is
a triplet (X,M, ∗), where X is a nonempty set, ∗ is a continuous t-norm and M is
a fuzzy set on X2 × (0,∞) such that the following axioms hold :
(GV-1) M(x, y, t) > 0 ∀ x, y ∈ X, t > 0;
(GV-2) M(x, y, t) = 1 iff x = y;
(GV-3) M(x, y, t) = M(y, x, t) ∀ x, y ∈ X, t > 0;
(GV-4) M(x, y, ·) : (0,∞) → (0, 1] is continuous ∀ x, y ∈ X;
(GV-5) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) ∀ x, y, z ∈ X and s, t > 0.
Notice that condition (GV-5) is a fuzzy version of triangular inequality. The in-
terpretation of M(x, y, t) is that its value can be thought of as degree of nearness
between x and y with respect to t. A special feature of the above space is that its
topology is a Hausdorff topology. We will work only with this space and henceforth
refer it simply as fuzzy metric space. All the notions described in this paper refer
to this definition.

Theorem 1.5 ([21]). The function M is continuous in all its three variables.

Theorem 1.6 ([11]). M(x, y, .) is monotone increasing function for fixed x, y ∈ X.

A sequence {xn} in (X,M, ∗) is said to converge to a point x ∈ X if
limn→∞M(xn, x, t) = 1 for all t > 0.

A sequence {xn} in (X,M, ∗) is said to be a Cauchy sequence if given ε > 0,
1 > λ > 0 there exists N such that M(xm, xn, ε) > 1− λ for all m,n > N.
A fuzzy metric space (X,M, ∗) is said to complete if every Cauchy sequence is con-
vergent.

Several examples of fuzzy metric spaces can be found in [10]. In the last section
of the present work we also describe some examples.
Let X be any nonempty set. A point x ∈ X is said to be a fixed point of f : X → X
if fx = x. A point x ∈ X is said to be a coincidence point of f, g : X → X if
fx = gx. A point x ∈ X is said to be a common fixed point of f, g : X → X if
x = fx = gx. Compatibility between two mappings was defined by Jungck [17, 18].
It is a generalization of commuting mappings in that it can be described as a com-
muting condition in the limit.

Several years later, Singh and Chouhan [27] introduced the concept of compatible
mappings in the fuzzy metric spaces and proved two common fixed point theorems.

Definition 1.7 ([27]). Two self maps f and g on a fuzzy metric space M(x, y, ∗)
are said to be compatible if for all t > 0, limn→∞ M(fgxn, gfxn, t) = 1, whenever
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{xn} is a sequence in X such that limn→∞fxn = limn→∞gxn = z for some z ∈ X.
In particular it follows that whenever z is a coincidence point of f and g, if (f, g) is
a compatible pair, then fgz = gfz.
A pair of mappings (f, g) with the above property, that is, fgz = gfz whenever
fz = gz, is said to be a weakly compatible pair [28]. This notion was studied in a
number of papers.
Another notion is compatible pairs of type -A which was introduced by Jungck et
al. [18]. In fuzzy metric space the definition was given by Cho et al. [2] which is the
following.

Two self maps f and g on a fuzzy metric space (X,M, ∗) are said to be compatible
of type-A if M(fgxn, ggxn, t) → 1 and M(gfxn, ffxn, t) → 1 for all t > 0, whenever
{xn} is a sequence in X such that gxn, fxn → p for some p in X, as n→∞.
Both the concepts of weak compatibility and compatibility of type-A are weaker
than compatibility [16].
A partial order is a binary relation ” � ” over a nonempty set which is reflexive,
antisymmetric, and transitive. A set with a partial order is called partially ordered
set.

Definition 1.8 ([3]). (g-non-decreasing Mapping [3]) Suppose (X,�) is partially
ordered set and f, g : X → X are mappings of X to itself, f is said to be g-non-
decreasing if for x, y ∈ X, gx � gy implies fx � fy.
Particularly when g = I, we have a non-decreasing function, that is, f : X −→ X is
non-decreasing whenever x � y implies fx � fy.
In our results in the following sections, we use the following classes of functions.
We denote by Ψ the set of all functions ψ : [0,∞) → [0,∞) satisfying

(iψ) ψ is continuous and monotone non-decreasing,
(iiψ) ψ(t) = 0 if and only if t = 0;

and by Θ we denote the set of all functions α : [0,∞) → [0,∞) such that

(iα) α is bounded on any bounded interval in [0,∞),
(iiα) α is continuous at 0 and α(0) = 0

2. Major section

Theorem 2.1. Let (X,�) be a partially ordered set and (X,M, ∗) is a complete fuzzy
metric space. Let f, g : X → X be two self mappings on X such that f(X) ⊆ g(X),
f is g-non-decreasing, g is continuous and g(X) is closed, and that the following
inequality

ψ( 1
M(fx,fy,t) − 1) ≤ α( 1

M(gx,gy,t) − 1)− β( 1
M(gx,gy,t) − 1) (2.1)

holds for all t > 0 and for all x, y ∈ X such that gx � gy, where ψ, α, β : [0,∞)→
[0, ∞) are such that
ψ ∈ Ψ and α, β ∈ Θ. Further that for all s, t ≥ 0

ψ(s) ≤ α(t) ⇒ s ≤ t (2.2)
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and for any sequence {tn} in [0,∞) with tn → t > 0,
ψ(t)− lim

n→∞
α(tn) + lim

n→∞
β(tn) > 0 (2.3)

Also assume if any non-decreasing sequence {xn} in X converges to z, then
xn � z for alln ≥ 0. (2.4)

If there is a point x0 ∈ X such that gx0 � fx0, then f and g have a coincidence
point.

Proof. Using the assumptions of our theorem, there exists x0 ∈ X such that gx0 �
fx0 and as f(X) ⊆ g(X), we can find x1 ∈ X such that gx1 = fx0. Then
gx0 � fx0 = gx1. Since f is g-nondecreasing, we have fx0 � fx1. Following
this way we can construct the sequence {xn} as

fxn = gxn+1for all n ≥ 0 (2.5)
for which

gx0 � fx0 = gx1 � fx1 = gx2 � fx2

= gx3 � fx3 . . . � fxn−1 = gxn � fxn = gxn+1 � ... (2.6)
If any two consecutive terms in the sequence {xn} are equal then there is a coinci-
dence point of f and g. So we assume that xn−1 6= xn for all n ≥ 1, which implies
that

M(fxn−1, fxn, t) 6= 1for all n ≥ 1, for all t > 0. (2.7)
Taking x = xn, and y = xn+1 in (2.1), using (2.5) and (2.6), for all n ≥ 1, t > 0, we
have
ψ( 1

M(fxn,fxn+1,t)
− 1) ≤ α( 1

M(gxn,gxn+1,t)
− 1)− β( 1

M(gxn,gxn+1,t)
− 1)

= α( 1
M(fxn−1,fxn,t)

− 1)− β( 1
M(fxn−1,fxn,t)

− 1) (2.8)
Inequality (2.8) further implies that for all n ≥ 1, and t > 0,

ψ(
1

M(fxn, fxn+1, t)
− 1) ≤ α(

1
M(fxn−1, fxn, t)

− 1)

which, by (2.2), implies that for all n ≥ 1, and t > 0,

1
M(fxn, fxn+1, t)

− 1 ≤ 1
M(fxn−1, fxn, t)

− 1.

We write
an(t) =

1
M(fxn, fxn+1, t)

− 1

Then {an(t)}, for all t > 0, is a monotonic decreasing sequence of non-negative real
numbers and, consequently, there exists r(t) ≥ 0 such that

lim
n→∞

an(t) = lim
n→∞

( 1
M(fxn,fxn+1,t)

− 1) = r(t) (2.9)

Taking limit supremum on both sides of (2.8), for all t > 0, we obtain

ψ(r(t)) ≤ lim
n→∞

α(an(t)) + lim
n→∞

(−β(an(t))) = lim
n→∞

α(an(t))− lim
n→∞

(β(an(t)))

(since lim
n→∞

(−β(an(t))) = − lim
n→∞

(β(an(t)), β(an(t)), being non− negative.)

The above inequality along with (2.3) and (2.9) implies that r(t) = 0 for all t > 0.
Then, from (2.9), we conclude that

lim
n→∞

M(fxn, fxn+1, t) = 1 for all t > 0. (2.10)

From (2.10) it follows that for any λ with 0 < λ < 1, we can find N = N(λ) such
329
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that for all n ≥ N(λ),
M(fxn−1, fxn, λ) > (1− λ). (2.11)

Now we prove that {fxn} is a Cauchy sequence. If not, then there exist some s > 0,
and some ε with 0 < ε < 1, for which we can find two sequences, {fxm(k)} and
{fxn(k)} of {fxn} such that for all k > 0,

n(k) > m(k) > k (2.12)
and

M(fxm(k), fxn(k), s) ≤ (1− ε) (2.13)
By taking n(k) to be the smallest integer corresponding to m(k) for which (2.13) is
satisfied, we have that for all k > 0,

M(fxm(k), fxn(k)−1, s) > (1− ε), (2.14)
With any choice of 0 < λ < s, from (2.11), (2.12) and (2.13), it follows that for all
k > N(λ), (1− ε) ≥M(fxm(k), fxn(k), s)

≥M(fxm(k), fxn(k)−1, s− λ) ∗M(fxn(k)−1, fxn(k), λ)
≥M(fxm(k), fxn(k)−1, s− λ) ∗ (1− λ), (by (2.11) and (2.12))

that is,(1− ε) ≥ inf
k≥1

M(fxm(k), fxn(k)−1, s− λ) ∗ (1− λ) (2.15)

We construct the function h(t) = inf
k≥1

M(fxm(k), fxn(k), t).

Since, by (2.14), h(s) = inf
k≥1

M(fxm(k), fxn(k)−1, s) ≥ (1 − ε) and that M(x, y, .)

is continuous and monotone increasing in the third variable, it follows that h(t) is
continuous and monotone increasing. Then,

h(s− λ) = inf
k≥1

M(fxm(k), fxn(k)−1, s− λ) ≥ 1− ε− g(λ) (2.16)

where g(λ) → 0, as λ→ 0. (2.17)
Combining (2.15) and (2.16), we obtain

(1− ε) ≥ M(fxm(k), fxn(k), s) ≥ h(s− λ) ∗ (1− λ)
≥ (1− ε− g(λ)) ∗ (1− λ).

Taking λ→ 0 in the above inequality, using (2.17) and the continuity of ∗, we obtain
lim
k→∞

M(fxm(k), fxn(k), s) = 1− ε. (2.18)

Again with any choice of λ with 0 < λ < s
2 , for all k ≥ N(λ),

(1− ε) ≥M(fxm(k), fxn(k), s) (by (2.13))
≥M(fxm(k), fxm(k)−1, λ) ∗M(fxm(k)−1, fxn(k)−1, s− 2λ)
∗M(fxn(k)−1, fxn(k), λ)
≥M(fxm(k)−1, fxn(k)−1, s− 2λ) ∗ (1− λ) ∗ (1− λ) (2.19)

(by (2.11) and (2.12))

Let h1(t) = lim
k→∞

M(fxm(k)−1, fxn(k)−1, t), t > 0.

Then, by the continuity property of M,h1(t) is a continuous function. Then, from
(2.19),
(1−λ) ∗ (1−λ) ∗ h1(s− 2λ) = (1−λ) ∗ (1−λ) ∗ lim

k→∞
M(fxm(k)−1, fxn(k)−1, s− 2λ)

≤ (1− ε). (2.20)
Letting λ→ 0 in the above inequality, and using the continuity of h1, we obtain

lim
k→∞

M(fxm(k)−1, fxn(k)−1, s) ≤ (1− ε). (2.21)

Let
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h2(t) = lim
k→∞

M(fxm(k)−1, fxn(k)−1, t), t > 0 (2.22)

Then, for the same reason, that is, by the continuity of M , we conclude that h2(t)
is a continuous function.
Again, for all k ≥ N(λ)
M(fxm(k)−1, fxn(k)−1, s+ λ) ≥M(fxm(k)−1, fxm(k), λ) ∗M(fxm(k), fxn(k)−1, s)

≥ (1− λ) ∗ (1− ε). (2.23)
(by (2.11), (2.12) and (2.14))

Then

h2(s+ λ) = lim
k→∞

M(fxm(k)−1, fxn(k)−1, s+ λ) ≥ (1− λ) ∗ (1− ε)

Taking λ → 0 in the above inequality, and using the continuities of h2 and ∗, we
obtain

lim
k→∞

M(fxm(k)−1, fxn(k)−1, s) ≥ (1− ε). (2.24)

The inequalities (2.21) and (2.24) jointly imply that
lim
k→∞

M(fxm(k)−1, fxn(k)−1, s) = (1− ε). (2.25)

Let
sk = 1

M(fxm(k)−1,fxn(k)−1,s)
− 1 (2.26)

Then, from (2.25),
lim
k→∞

sk = ε
1−ε (2.27)

Again, by (2.6) and (2.12), we have that gxm(k) � gxn(k). Putting x = xm(k),
y = xn(k), in (2.1), for all k ≥ 1, we have
ψ( 1

M(fxm(k),fxn(k),s)
− 1)

≤ α(
1

M(gxm(k), gxn(k), s)
− 1)− β(

1
M(gxm(k), gxn(k), s)

− 1)

= α(
1

M(fxm(k)−1, fxn(k)−1, s)
− 1)− β(

1
M(fxm(k)−1, fxn(k)−1, s)

− 1)

= α(sk)− β(sk) (by (2.26)) (2.28)

Taking limit supremum as k →∞ in (2.28), by the continuity of ψ, and using (2.18),
we obtain

ψ(
ε

1− ε
) ≤ lim

k→∞
α(sk) + lim

k→∞
(−β(sk))

= lim
k→∞

α(sk)− lim
k→∞

(β(sk)) [since β(sk)’s are positive] (2.29)

Combining (2.3), (2.27) and (2.29) we conclude that ε = 0, which is a contradiction.
It then follows that {fxn} is Cauchy sequence and hence {fxn} is convergent in
the complete fuzzy metric space (X,M, ∗). Since g(X) is closed and, by (2.5),
fxn = gxn+1 for all n ≥ 0, we have that there exists z ∈ X for which

lim
n→∞

gxn = lim
n→∞

fxn = gz. (2.30)

Finally, we prove that z is a coincidence point of f and g. From (2.6), we have
{gxn} is a non-decreasing sequence in X. From (2.4), and (2.30), for all n ≥ 0, we
get
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gxn � gz. (2.31)
Putting x = xn and y = z in (2.1), by virtue of (2.5) and (2.31), we get

ψ(
1

M(gxn+1, fz, t)
− 1) = ψ(

1
M(fxn, fz, t)

− 1)

≤ α(
1

M(gxn, gz, t)
− 1)− β(

1
M(gxn, gz, t)

− 1).

Taking n → ∞ in the above inequality, using (2.30), the continuities of ψ and M,
continuities of α, β at zero, and the fact that α(0) = 0 = β(0), for all t > 0, we
obtain

ψ(
1

M(gz, fz, t)
− 1) = α(0)− β(0) = 0,

which in turn implies that
1

M(gz, fz, t)
− 1 = 0, for all t > 0,

that is,

M(gz, fz, t) = 1, for all t > 0,

that is,
fz = gz (2.32)

Hence z is the coincidence point of f and g. This completes the proof. �

Theorem 2.2. If in the Theorem 2.1 it is additionally assumed that
gz � ggz, (2.33)

whenever z is a coincidence point of f and g and (f, g) is a compatible pair, then f
and g have a common fixed point in X.

Proof. From the condition of the theorem, we have gz � ggz where z is obtained in
(2.32). Since f and g are compatible, we have that fgz = gfz.
Now, we set

w = gz = fz (2.34)
Therefore, by (2.33),

gz � ggz = gw (2.35)
Then, by (2.34), since (f, g) is a compatible pair,

fw = fgz = gfz = gw. (2.36)
If z = w, then, by (2.34), z is a common fixed point. If z 6= w then, by (2.1), (2.34),
(2.35) and (2.36) we have

ψ( 1
M(gz,gw,t) − 1) = ψ( 1

M(fz,fw,t) − 1)
≤ α( 1

M(gz,gw,t) − 1)− β( 1
M(gz,gw,t) − 1). (2.37)

For given t > 0 we consider the constant sequence {tn} with
tn = 1

M(gz,gw,t) − 1, for all n ≥ 1, (2.38)
Then ,

tn → ( 1
M(gz,gw,t) − 1), as n→∞ (2.39)

Then
lim
n→∞

α(tn) = α( 1
M(gz,gw,t) − 1) (2.40)

and
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lim
n→∞

β(tn) = β( 1
M(gz,gw,t) − 1). (2.41)

Then, from (2.3), (2.37), (2.40) and (2.41) we obtain a contradiction unless
1

M(gz,gw,t) − 1 = 0. (2.42)
Thus we conclude, for all t > 0,

M(gz, gw, t) = 1,

that is ,
gz = gw (2.43)

From (2.34), (2.36) and (2.43) we conclude that
w = gw = fw (2.44)

This completes the proof. �

Remark 2.3. The condition in theorem 2.2, that is, given through (2.33) has been
used in many papers as, for example in [5] in problems of fixed point theory.

Remark 2.4. The compatibility condition in theorem 2.2 can be replaced by the
assumption of weak compatibility or compatibility of type-A between the pair (f, g),
as discussed in the lines following definition 1.7. The proof essentially remains the
same.

In our next theorem we omit the order condition (2.4) of theorem 2.1 in whose
place the continuity of f and the compatibility of the pair (f, g) are assumed.

Theorem 2.5. Let (X,�) be a partially ordered set and (X,M, ∗) is a complete fuzzy
metric space. Let f, g : X → X be two self mappings on X such that f(X) ⊆ g(X),
f is g-non-decreasing and continuous, g is continuous and g(X) is closed, (f, g) is
a compatible pair of mappings and that the inequality (2.1) holds for all t > 0 and
for all x, y ∈ X such that gx � gy, where ψ, α, β : [0,∞)→ [0, ∞) are such that
ψ ∈ Ψ and α, β ∈ Θ. Let further that for all s, t ≥ 0

ψ(s) ≤ α(t) ⇒ s ≤ t (2.45)
and for any sequence {tn} in [0,∞) with tn → t > 0.

ψ(t)− limα(tn) + limβ(tn) > 0. (2.46)
If there is a point x0 ∈ X such that gx0 � fx0, then f and g have a coincidence
point.

Proof. Proceeding as in theorem 2.1 we arrive at (2.30), that is, we have
lim
n→∞

gxn = lim
n→∞

fxn = gz = z (say) (2.47)
Then for t > 0,

M(gz, fgxn, t) ≥M(gz, gfxn,
t

2
) ∗M(gfxn, fgxn,

t

2
)

Then from (2.47), by compatibility of the pair (f, g), and the continuities of f, g,M
and ∗, we have, for all t > 0

M(gz, fz, t) ≥ 1 ∗ 1 = 1,

that is,
gz = fz, (2.48)

that is, z is a coincidence point of f and g. This completes the proof of the theorem.
�
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Remark 2.6. If in the theorem 2.5 it is additionally assumed that
gz � ggz, (2.49)

whenever z is a coincidence point of f and g, then f and g have a common fixed
point in X.
The proof is identical with that of theorem 2.2 except that we have now the com-
patibility of the pair (f, g) from the assumption of the theorem 2.5.
Combining theorems 2.1, 2.2, 2.5 and remark 2.6 we obtain the following theorem.
The purpose is to study the case where the control functions α and β are continuous.

Theorem 2.7. Let (X,�) be a partially ordered set and (X,M, ∗) is a complete
fuzzy metric space. Let f, g be two self maps on X such that f(X) ⊆ g(X), f is
g-non-decreasing, (f, g) is a compatible pair, g is continuous and g(X) is closed, and
that the inequality (2.1) holds for all t > 0 and for all x, y ∈ X such that gx � gy,
where ψ, α, β : [0,∞)→ [0, ∞) are such that
ψ ∈ Ψ and α, β are continuous with α(0) = 0 = β(0). Let further that for all s, t ≥ 0

ψ(s) ≤ α(t) ⇒ s ≤ t, (2.50)
and for all t > 0,

ψ(t)− α(t) + β(t) > 0 (2.51)
Also assume either
(i) f is continuous, or
(ii) X has the property that if any non-decreasing sequence {xn} in X converges to
z,
then

xn � z for all n ≥ 0. (2.52)
If there is a point x0 ∈ X such that gx0 � fx0, then f and g have a coincidence
point. If it is additionally assumed that

gz � ggz

where z is a coincidence point of f and g, then f and g have a common fixed point
in X.

Proof. Since α, β are continuous with α(0) = 0 = β(0), they belong to class Θ. Also
the inequality (2.3) is reduced to (2.46) in the case where α, β are continuous. The
theorem then follows by applications of theorem 2.5 and remark 2.6 in the case of
condition (i) and by applications of the theorems 2.1 and 2.2 in the case of condition
(ii). �

Remark 2.8. The compatibility condition in theorem 2.2, theorem 2.5, or theorem
2.7 can be replaced by the assumption of weak compatibility or compatibility of
type-A of the pair (f, g), which are discussed in the lines following definition1.7. The
proof essentially remains the same.

Next we deal with the uniqueness of the fixed point. The common fixed point in
theorem 2.2 and remark 2.6 are not in general unique. In the next theorem we put
some additional assumptions in theorems 2.1 and 2.5 which ensure the existence of
a unique fixed point.

Theorem 2.9. In addition to the hypothesis of theorem 2.1 it is assumed that for
every x, y ∈ X there exists u ∈ X such that fu � fx and fu � fy, then there exists
a unique common fixed point.
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Proof. From theorem 2.1, the set of coincidence points of f and g is non-empty.
Suppose x and y are coincidence points of f and g, that is, fx = gx and fy = gy.
By the assumption, there exists u ∈ X such that fu � fx = gx and fu � fy = gy.
Put u0 = u and choose u1 ∈ X so that gu1 = fu0. Then, as in the proof of the
theorem 2.1, we can inductively define the sequence {gun} by gun+1 = fun for all
n ≥ 0. Here fx(= gx) and fu(= fu0 = gu1) are comparable by our assumption.
From our assumption we have that gu1 � gx (the proof is similar to that in the
other case).
We claim that gun � gx for each n ∈ N.
In fact, we will use mathematical induction. Since gu1 � gx, our claim is true for
n = 1.
We presume that gun � gx holds for some n > 1. Since f is g− non-decreasing with
respect to �, we get fun � fx. Then gun+1 = fun � fx = gx.
Thus gun � gx for all n ≥ 1.
Let, for t > 0, Rn(t) = 1

M(gx,gun,t)
− 1.

Since gun � gx, using the contractive condition (2.1), for all n ≥ 1, t ≥ 0, we have
ψ( 1

M(gx,gun+1,t)
− 1) = ψ( 1

M(fx,fun,t)
− 1)

≤ α( 1
M(gx,gun,t)

− 1)− β( 1
M(gx,gun,t)

− 1),
that is,

ψ(Rn+1(t)) ≤ α(Rn+1(t))− β(Rn+1(t)), (2.53)
which, in view of the fact that β ≥ 0, yields ψ(Rn+1(t)) ≤ α(Rn(t)), which by (2.2)
implies that Rn+1(t) ≤ Rn(t) for all positive integer n, and t > 0, that is, {Rn(t)}
is a monotone decreasing sequence for each t > 0. Hence lim

n→∞
Rn(t) = R(t) ≥ 0 .

Again, taking limit supremum as n −→∞ in (2.53), for all t > 0, we obtain
ψ(R(t)) ≤ lim

n→∞
α(Rn(t)) + lim

n→∞
(−β(Rn(t))

= lim
n→∞

α(Rn(t))− lim
n→∞

(β(Rn(t)).

Then (2.3) implies that R(t) = 0, that is,

lim
n→∞

(
1

M(gx, gun, t)
− 1) = 0,

that is,

lim
n→∞

(M(gx, gun, t)) = 1.

Similarly, we show that

lim
n→∞

(
1

M(gy, gun, t)
− 1) = 0,

that is,

lim
n→∞

(M(gy, gun, t)) = 1.

Then, for t > 0, using the continuity of ∗, we have

M(gx, gy, t) ≥M(gx, gun,
t

2
) ∗M(gun, gy,

t

2
) → 1 ∗ 1 = 1 as n → ∞.

The above inequality implies that for any two coincidence points x and y,
gx = gy. (2.54)
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Since gx = fx, by compatibility of g and f, we have
ggx = gfx = fgx. (2.55)

Denote
gx = z. (2.56)

Then, from (2.55), we have

gz = fz.

Thus z is a coincidence point of g and f. Then form (2.54), since y is any coincidence
point of f and g, with y = z it follows that

gx = gz

By (2.56), it follows that
z = gz (2.57)

From (2.56) and (2.57), we get z = gz = fz.
Therefore, z is common fixed point of g and f.
To prove the uniqueness, assume that r is another common fixed point of g and f.
Then by (2.54) we have r = gr = gz = z. Hence the common fixed point of g and f
is unique. �

Remark 2.10. If in addition to the hypothesis of theorem 2.5 it is assumed that
for every x, y ∈ X, there exists u ∈ X such that fu � fx and fu � fy, and that
(f, g) is a pair of compatible mappings, then f and g have a unique common fixed
point.
Also if in the above or in theorem 2.9 the condition of the compatibility between f
and g is replaced by the commuting condition between f and g, then the conclusions
of either of the theorems are valid.
The proofs of the above statements follow from the observation that commuting
condition implies compatibility condition between two mappings.

3. Weak fuzzy contraction mapping principle

In this section we apply the results of the previous section to establish in par-
tially ordered fuzzy metric spaces a weak version of the fuzzy contraction mapping
principle established originally by Gregori et al. [12].

Theorem 3.1. Let (X,�) be a partially ordered set and (X,M, ∗) is a complete fuzzy
metric space. Let f : X → X be a self mapping such that the following inequality

ψ( 1
M(fx,fy,t) − 1) ≤ α( 1

M(x,y,t) − 1)− β( 1
M(x,y,t) − 1) (3.1)

holds for all t > 0 and for all x, y ∈ X such that x � y, where ψ, α, β : [0,∞) →
[0,∞) are such that ψ ∈ Ψ and α, β ∈ Θ. Further that for all s, t ≥ 0

ψ(s) ≤ α(t) ⇒ s ≤ t, (3.2)
and for any sequence {tn} in [0,∞) with tn → t > 0,

ψ(t)− lim
n→∞

α(tn) + lim
n→∞

β(tn) > 0. (3.3)

Also assume either
(i) f is continuous, or
(ii) if any non-decreasing sequence {xn} in X converges to z,
then

xn � z for all n ≥ 0. (3.4)
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Then f has a fixed point.
If further it is assumed that for every x, y ∈ X there exists u ∈ X such that fu � fx
and fu � fy, then the fixed point is unique.

Proof. Taking g = I, we see that (f, g) is a compatible pair. The existence of a fixed
point then follows from theorem 2.2 and remark 2.6 respectively for the cases i) and
ii). The uniqueness part follows from a joint application of theorem 2.9 and remak
2.10. �

For the unordered case we have the following result.

Theorem 3.2. Let (X,M, ∗) be a complete metric space. Let f : X → X be a
selfmapping such that the inequality (3.1) is satisfied for all t > 0 and x, y ∈ X
where ψ, α, β : [0,∞) → [0,∞) are such that ψ ∈ Ψ and α, β ∈ Θ. Further that for
all s, t ≥ 0

ψ(s) ≤ α(t) ⇒ s ≤ t,

and for any sequence {tn} in [0,∞) with tn → t > 0,

ψ(t)− lim
n→∞

α(tn) + lim
n→∞

β(tn) > 0.

Then f has a unique fixed point.

Proof. Inequality (3.1) is now valid for any pair of points x, y ∈ X. It then follows
from (3.1) that for all x, y ∈ X, t > 0,

ψ( 1
M(fx,fy,t) − 1) ≤ α( 1

M(x,y,t) − 1) (3.5)
which, by (3.2), implies that

M(fx, fy, t) ≥M(x, y, t),

which in turn implies continuity of f.
To prove the uniqueness , let us assume that x and y are two fixed points of f , that
is, fx = x and fy = y. Then from (3.1), for t > 0,

ψ(
1

M(fx, fy, t)
− 1) ≤ α(

1
M(x, y, t)

− 1)− β(
1

M(x, y, t)
− 1)

which, by (3.3), implies that
1

M(fx,fy,t) − 1 = 0 (3.6)
that is, M(fx, fy, t) = 1, that is, x = y. This proves the theorem. �

Remark 3.3. Theorem 3.2 contains as a special case a result of [30 ] which is
obtained by putting ψ = α = I and β to be positive continuous and monotone
increasing in G− complete fuzzy metric spaces. Since complete fuzzy metric spaces
are more general that G- complete fuzzy metric spaces, theorem (3.2) contains the
main result of [30] as a special case.
The result of theorem 3.2 is a generalization of the fuzzy contraction principle es-
tablished by Gregori et al [12] which is obtained by putting ψ(t) = α(t) = t, for all
t > 0, and β(t) = (1− k)t where 0 < k < 1, for all t > 0.
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4. Examples

In this section we present two examples to illustrate the results obtained in this
paper.

Example 4.1. Let X = [0,∞). Then (X,�) is a partially ordered set with the
partial ordering defined by, x � y if and only if x ≥ y. Let a ∗ b = min{a, b} and
M(x, y, t) = e−

|x−y|
t for all x, y ∈ X and t > 0. Then (X,M, ∗) is a complete fuzzy

metric space.
Let f, g : X → X be given respectively by the formulae fx = 1

3x
2 and gx = x2 for

all x ∈ X.
Let ψ, α, β : [0,∞) → [0,∞) be given respectively by the formulas

ψ(s) = s, for all s ≥ 0, α(s) =
{

(s+ 1)
1
3 − 1, if 0 ≤ s < 1,

s2 + 1, if s ≥ 1,

}
,

β(s) =
{

0, if 0 ≤ s < 1,
1, if s ≥ 1.

}
.

Then ψ ∈ Ψ and α, β ∈ Θ. Then (f, g) is a compatible pair of mappings.
Without loss of generality we assume that x > y. The inequality (2.1) in this case
reduces to

ψ(e
(x2−y2)

3t − 1) ≤ α(e
(x2−y2)

t − 1)− β(e
(x2−y2)

t − 1)

for all x, y ∈ [0,∞) and t > 0

For fixed x, y and t, putting e
(x2−y2)

t = c, we write the above inequality as

ψ(c
1
3 − 1) ≤ α(c− 1)− β(c− 1)

It can be verified that the above inequality is satisfied with the aforesaid choices of
ψ, α and β.
Also f is a continuous function. The function f is g- non-decreasing and for x0 ∈
(0, 1), gx0 � fx0. Then all the conditions of theorem 2.2 and remark 2.6 are satisfied.
Then f and g have a common fixed point by applications of either theorem 2.2 or
remark 2.6. Also the assumption of theorem 2.9 and remark 2.10 are satisfied. Thus
the common fixed point is also unique by application of any of the two theorems.
Here ’0’ is the unique fixed point.

Example 4.2. Let X = [0, 1]. We define a partial order ′ �′ on X as x � y if and
only if x ≥ y for all x, y ∈ X. We take the usual metric d(x, y) = |x−y| for x, y ∈ X
and a fuzzy metric defined by M(x, y, t) = t

t+d(x,y) . Let a ∗ b = min {a, b}. Then
(X,M, ∗) is a complete metric space.
Let f, g : X → X be defined as fx = 5

6x−
1
3x

2 and gx = x− 1
3x

2 for all x ∈ [0, 1].
Let ψ, α, β :[0, ∞)→ [0,∞) be defined as ψ(s) = s for s ∈ [0, 1],
α(s) = s for s ∈ [0, 1] and β(s) = s

6 for s ∈ [0, 1].
Without loss of generality, we assume that x > y and verify the inequality (2.1). For
all x, y ∈ [0, 1] with x > y, d(fx, fy) = 5

6 (x− y) - 1
3 (x2 − y2) and

d(gx, gy) = (x - y) - 1
3 (x2 − y2)

Now, α( 1
M(gx,gy,t) − 1)− β( 1

M(gx,gy,t) − 1) = α(d(gx,gy)t )− β(d(gx,gy)t )

= [ (x−y)−
1
3 (x2−y2)

t ] - 1
6 [ (x−y)−

1
3 (x2−y2)

t ].
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therefore, α( 1
M(gx,gy,t) − 1)−β( 1

M(gx,gy,t) − 1) ≥ 1
t [(x− y)]−

1
3t (x

2− y2)− 1
6t (x− y)

≥ 5
6t (x− y)− 1

3t (x
2 − y2) = ψ( 1

M(fx,fy,t) − 1).
Therefore, the inequality (2.1) is satisfied. Then, with any choice of x0 in (0, 1),
gx0 � fx0 the conditions of theorem 2.1 are satisfied. It also follows that all the
conditions of theorem 2.7 are satisfied in this case. Then, by an application of
theorem 2.7, there exists a common fixed point of f and g. Here ′0′ is a common
fixed point. Also both the theorem 2.9 and the fixed point of remark 2.10 are
applicable in the case of this example. The common fixed point is thus proved to be
unique.

Remark 4.3. In the above example (f, g) is not a compatible pair. Hence the first
part of remark 2.10 cannot be applied to the case of the example 4.2.
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