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Abstract. In this work, we develop an operator method for solving
first order fuzzy linear differential equations, which was introduced by T.
Allahviranloo et all in [2], it was limited to solve only fuzzy linear differ-
ential equations with crisp constant coefficients, and its main result was
formal and lacks proof. We extend this method for some equations with
variable coefficients and we give the general formula’s solution with neces-
sary proofs.
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1. Introduction

A natural way to model dynamic systems under uncertainty is to use fuzzy dif-
ferential equations (FDEs). So, the topic of FDEs has been rapidly growing in recent
years. The theory of FDEs was treated by several authors (see [9], [10], [11] and [12]
) and others researchers (see [1], [2], [3], [4] and [5]) studied numerical algorithms
for solving this kind of equations.
In [2] Allahviranloo et al. proposed a novel method for solving fuzzy linear dif-
ferential equations which its construction based on the equivalent integral forms
of original problems under the assumption of strongly generalized differentiability.
By using the lower and upper functions of obtained integral equations, the lower
and upper functions of solutions are determined. More precisely, they studied the
following FIVPs{

y′(x) = y(x)
y(0) = y0 ∈ E

and

{
y′(x) = −y(x) + x+ 1
y(0) = y0 ∈ E

,
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using the operator J defined by

Jy(x, α) =
∫ x

0

y(t, α)dt; Jy(x, α) =
∫ x

0

y(t, α)dt.

They solved the first equation only under the condition of (1)-differentiability of the
solution y and the second problem only under the assumption of (2)-differentiability.
They used the bijectivity of the operators I − J, I + J and they claimed that{

(I − J)−1 = I + J + J2 + J3 + J4 + · · ·
(I + J)−1 = I − J + J2 − J3 + J4 − · · ·

But these results which represent the basis of their algorithm, were not proved.
The aim of this paper, is to modify and develop their method using new opera-
tors denoted by J and K to solve the following first order fuzzy linear differential
equations, with variable coefficients in both cases: under (1) or (2)-differentiability{

y′(x) = f(x)y(x)
ay(0) = y0 ∈ E

and

{
y′(x) = −f(x)y(x)
y(0) = y0 ∈ E

where f is a crisp function verifying some assumptions to be determined later.
Moreover, we prove that each of the operators I−J , I+J , I−K, I+K are bijective
and we give the inverse operator’s formulas.
The remainder of this work is organized as follows:
Section 2 is reserved for some preliminaries. Section 3 is devoted to notations and
terminology. Then in section 4, we present our operator method to solve first order
fuzzy linear differential equations. Section 5 deals with some numerical examples.
In the last section, we present conclusion and a further research topic.

2. Preliminaries

By PK(R) we denote the family of all nonempty compact convex subsets of R and
define the addition and scalar multiplication in PK(R) as usual. Denote

E =
{
u : R −→ [0, 1] | u satisfies (i) – (iv) below

}
where

(i) u is normal, i.e. ∃x0 ∈ R for which u(x0) = 1,
(ii) u is fuzzy convex, i.e.

u(λx+ (1− λy)) ≥ min(u(x), u(y)) for anyx, y ∈ R, and λ ∈ [0, 1],

(iii) u is upper semi-continuous,
(iv) suppu = {x ∈ R|u(x) > 0} is the support of the u, and its closure cl (supp

u) is compact.
For 0 < α ≤ 1, denote

[u]α = {x ∈ R | u(x) ≥ α}
Then, from (i)-(iv), it follows that the α-level set [u]α ∈ PK(R) for all 0 ≤ α ≤ 1.
According to Zadeh’s extension principle, we have addition and scalar multiplication
in fuzzy number space E as usual.

308



S. Melliani et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 2, 307–323

Let D : E × E −→ [0,∞) be a function which is defined by the equation

D(u, v) = sup
0≤α≤1

d
(
[u]α , [v]α

)
where d is the Hausdorff metric defined in PK(R). Then, it is easy to see that D is
a metric in E and has the following properties [13]:

(1) (E,D) is a complete metric space;
(2) D(u+ w, v + w) = D(u, v) for all u, v, w ∈ E;
(3) D(k u, k v) = |k| D(u, v) for all u, v ∈ E and k ∈ R;
(4) D(u+ w, v + t) ≤ D(u, v) +D(w, t) for all u, v, w, t ∈ E.

We recall some measurability, integrability properties for fuzzy set-valued map-
pings (see [9]). Let T = [c, d] ⊂ R be a compact interval.

Definition 2.1. A mapping F : T → E is strongly measurable if for all α ∈ [0, 1]
the set-valued function Fα : T → PK(R) defined by Fα(t) = [F (t)]α is Lebesgue
measurable.
A mapping F : T → E is called integrably bounded if there exists an integrable
function k such that ‖x‖ ≤ k(t) for all x ∈ F0(t).

Definition 2.2. Let F : T → E, then the integral of F over T denoted by
∫

T

F (t)dt

or
∫ d

c

F (t)dt, is defined by the equation[∫
T

F (t)dt
]α

=
∫

T

Fα(t)dt

=
{∫

T

f(t)dt/f : T → R is a measurable selection for Fα

}
α ∈]0, 1].
Also, a strongly measurable and integrably bounded mapping F : T → E is said to

be integrable over T if
∫

T

F (t)dt ∈ E.

Proposition 2.3. (Aumann [6]). If F : T → E is strongly measurable and integrably
bounded, then F is intergrable.

The following definitions and theorems are given in [9] , [2] and [7].

Proposition 2.4. Let F,G : T → E be integrable and λ ∈ R. Then

(i)
∫

T

(F (t) +G(t))dt =
∫

T

F (t)dt+
∫

T

G(t)dt ,

(ii)
∫

T

λF (t)dt = λ

∫
T

F (t)dt,

(iii) D(F,G) is integrable,

(iv) D
(∫

T

F (t)dt,
∫

T

G(t)dt
)
≤

∫
T

D(F,G)(t)dt.

For u, v ∈ E, if there exists w ∈ E such that u = v + w, then w is the Hukuhara
difference of u and v denoted by u	 v.

309



S. Melliani et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 2, 307–323

Definition 2.5. We say that a mapping f : (a, b) → E is strongly generalized
differentiable at x0 ∈ (a, b); if there exists an element f ′(x0) ∈ E; such that

(i) for all h > 0 sufficiently small, there exist f(x0+h)	f(x0); f(x0)	f(x0−h)
and the limits

lim
h→0+

f(x0 + h)	 f(x0)
h

= lim
h→0+

f(x0)	 f(x0 − h)
h

= f ′(x0)

or
(ii) for all h > 0 sufficiently small, there exist f(x0)	f(x0+h); f(x0−h)	f(x0)

and the limits

lim
h→0+

f(x0)	 f(x0 + h)
(−h)

= lim
h→0+

f(x0 − h)	 f(x0)
(−h)

= f ′(x0)

or
(iii) for all h > 0 sufficiently small, there exist f(x0+h)	f(x0); f(x0−h)	f(x0)

and the limits

lim
h→0+

f(x0 + h)	 f(x0)
h

= lim
h→0+

f(x0 − h)	 f(x0)
(−h)

= f ′(x0)

or
(iv) for all h > 0 sufficiently small, there exist f(x0)	f(x0+h); f(x0)	f(x0−h)

and the limits

lim
h→0+

f(x0)	 f(x0 + h)
(−h)

= lim
h→0+

f(x0)	 f(x0 − h)
h

= f ′(x0)

Here the limits are taken in the metric space (E , D) at the end points of (a, b) we
consider only one-sided derivatives.

The following theorem (see [8]) allows us to consider case (i) or (ii) of the previous
definition almost everywhere in the domain of the functions under discussion.

Theorem 2.6. Let f : (a, b) → E be strongly generalized differentiable on each
point x ∈ (a, b) in the sense of Definition 2.3, (iii) or (iv). Then f ′(x) ∈ R for all
x ∈ (a, b).

Another result concerned the derivation of a fuzzy constant multiplied by a crisp
function (see [8]):

Theorem 2.7. If g : (a, b) → R is differentiable on (a, b) such that g′ has at most a
finite number of roots in (a, b) and c ∈ E, then f(x) = g(x).c is strongly generalized
differentiable on (a, b) and f ′(x) = g′(x).c, for all x ∈ (a, b).

3. Definition and properties of operators J and K

Let f : R+ → R+ be a fixed continuous nonnegative crisp function defined on
R+.
We consider F : R+ → R the unique primitive of f which vanishing at t = 0 i.e
F (0) = 0.
It is well known that F is nondecreasing and is nonnegative on R+.
Denote C1(R+) the (vectorial) space of all functions of C1 class on R+ into R and
C1
0(R+) its subspace defined by

C1
0(R+) = {g : R+ → R/g is of C1 class and g(0) = 0}
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We define two operators J and K as follows
J , K : C1(R+)× C1(R+) → C1(R+)× C1(R+),

J (g, h) (x) = (J1g(x), J1h(x)) =
(∫ x

0

f(t)g(t)dt,
∫ x

0

f(t)h(t)dt
)
,

and

K (g, h) (x) = (J1h(x), J1g(x)) =
(∫ x

0

f(t)h(t)dt,
∫ x

0

f(t)g(t)dt
)
,

where J1g(x) =
∫ x

0

f(t)g(t)dt denote the operator J used in [2], for all x ∈ R. For

short, we can write J (g(x), h(x)) instead of J (g, h) (x) and K (g(x), h(x)) instead
of K (g, h) (x).
We recall that, if ϕ : R+ → R is a continuous function, then its primitive

φ : x 7→
∫ x

0

ϕ(t)dt is the unique element of C1
0(R+) verifying φ′ = ϕ.

Lemma 3.1. (a) The linear operator I − J : C1(R+) × C1(R+) → R(I − J),
with
R(I − J) = C1

0(R+)× C1
0(R+), is bijective and its inverse is given by

(I − J)−1(g, h) = (g, h) + J(g, h) + J2(g, h) + · · ·+ Jn(g, h) +Rn(g, h)

where I is the identity operator, J2 = J ◦ J , Jn = J ◦ Jn−1, for n ≥ 2 and
the remainder term Rn(g, h) is defined by

Rn(g, h)(x) = eF (x)

(∫ x

0

f(t)(Jn
1 g)(t)e

−F (t)dt,

∫ x

0

f(t)(Jn
1 h)(t)e

−F (t)dt

)
,

for x ≥ 0. Moreover, the sequence Rn(g, h) converges to 0 uniformly with
respect to x in each compact subset [0, a] of R+. Therefore, we have

(I − J)−1 = I + J + J2 + J3 + J4 + · · · =
+∞∑
n=0

Jn.

(b) The linear operator I + J : C1(R+)× C1(R+) → R(I + J) is bijective, with
R(I + J) = C1

0(R+)× C1
0(R+), and its inverse is given by

(I +J)−1(g, h) = (g, h)−J(g, h)+J2(g, h)+ · · ·+(−1)nJn(g, h)+ (−1)n+1Rn(g, h)

Moreover, the sequence Rn(g, h) converges to 0 uniformly with respect to x
in each compact subset [0, a] of R+. Therefore, we have

(I + J)−1 = I − J + J2 − J3 + J4 + · · · =
+∞∑
n=0

(−1)nJn.

Proof. (a) Step 1 : It is clear that J is linear, then let (y, z) ∈ ker(I − J) i.e
(I − J)(y, z) = (0, 0). Thus {

y(x) =
∫ x

0
f(t)y(t)dt

z(x) =
∫ x

0
f(t)z(t)dt
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Since y and z are of C1 class, then by derivation{
y′(x)− f(x)y(x) = 0; y(0) = 0
z′(x)− f(x)z(x) = 0; z(0) = 0

So, y and z are solutions of the same Cauchy problem, which has as unique solution
y = z = 0. Then, I − J is injective.

Step 2: Let (g, h) ∈ C1
0(R+)× C1

0(R+), we prove that the following equation, has at
least one solution (y, z) ∈ C1(R+)× C1(R+) : (I − J)(y, z) = (g, h) i.e.,

(3.1)

{
y(x) =

∫ x

0
f(t)y(t)dt+ g(x)

z(x) =
∫ x

0
f(t)z(t)dt+ h(x)

y and z are of C1 class, then we deduce by derivation

(3.2)

{
y′(x)− f(x)y(x) = g′(x); y(0) = g(0) = 0
z′(x)− f(x)z(x) = h′(x); z(0) = h(0) = 0

Using the variation of constants formula for differential equations, we get

(3.3)

{
y(x) = eF (x)

∫ x

0
g′(t)eF (t)dt

z(x) = eF (x)
∫ x

0
h′(t)eF (t)dt

Conversely, we suppose that equations (3.3) hold. Since F ′(t) = f(t), then
(I − J)(y(x), z(x)) has as components (ϕ(x), ψ(x)) given by

(3.4)

{
ϕ(x) = eF (x)

∫ x

0
g′(t)e−F (t)dt−

∫ x

0
F ′(t)eF (t)

∫ t

0
g′(s)e−F (s)dsdt

ψ(x) = eF (x)
∫ x

0
h′(t)e−F (t)dt−

∫ x

0
F ′(t)eF (t)

∫ t

0
h′(s)e−F (s)dsdt

Using integration by parts, we obtain{
ϕ(x) =

∫ x

0
eF (t)g′(t)e−F (t)dt =

∫ x

0
g′(t)dt = g(x)

ψ(x) =
∫ x

0
eF (t)h′(t)e−F (t)dt =

∫ x

0
h′(t)dt = h(x)

Therefore (I − J)(y(x), z(x)) = (g(x), h(x)).
Consequently, the operator (I − J) is bijective and we have

(I − J)−1(g(x), h(x)) =
(
eF (x)

∫ x

0

g′(t)e−F (t)dt, eF (x)

∫ x

0

h′(t)e−F (t)dt

)
Step 3 : Note that (J1g)′(x) = f(x)g(x) and by induction, we have

(Jn
1 g)

′(x) = f(x)Jn−1
1 g(x); n ≥ 1;x ≥ 0.

We denote (I − J)−1(g(x), h(x)) = (ϕ(x), ψ(x)). Since all the functions g, J1g, . . . ,
Jn

1 g are in C1
0(R+), then g(0) = J1g(0) = . . . = Jn

1 g(0) = 0.
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We conclude using successive integrations by parts that

ϕ(x) = eF (x)

∫ x

0

g′(t)e−F (t)dt

= g(x) + eF (x)

∫ x

0

g(t)f(t)e−F (t)dt

= g(x) + eF (x)

∫ x

0

(J1g)′(t)e−F (t)dt

= g(x) + J1g(x) + eF (x)

∫ x

0

J1g(t)f(t)e−F (t)dt

= g(x) + J1g(x) + eF (x)

∫ x

0

(J2
1 g)

′(t)e−F (t)dt

= g(x) + J1g(x) + J2
1 g(x) + eF (x)

∫ x

0

J2
1 g(t)f(t)e−F (t)dt

And by induction, we deduce that

ϕ(x) = g(x) + J1g(x) + J2
1 g(x) + · · ·+ Jn

1 g(x) + eF (x)

∫ x

0

Jn
1 g(t)f(t)e−F (t)dt

Similarly, we can prove that

ψ(x) = eF (x)

∫ x

0

h′(t)e−F (t)dt

ψ(x) = h(x) + J1h(x) + J2
1h(x) + · · ·+ Jn

1 h(x) + eF (x)

∫ x

0

Jn
1 h(t)f(t)e−F (t)dt

Hence

(I − J)−1(g, h)(x) = (g(x) + J1g(x) + · · ·+ Jn
1 g(x), h(x) + J1h(x) + · · ·+ Jn

1 h(x))

+ eF (x)

(∫ x

0

Jn
1 g(t)f(t)e−F (t)dt,

∫ x

0

Jn
1 h(t)f(t)e−F (t)dt

)
= (g, h)(x) + J(g, h)(x) + J2(g, h)(x) + · · ·

+ Jn(g, h)(x) +Rn(g, h)(x)

(I − J)−1(g, h) = (g, h) + J(g, h) + J2(g, h) + · · ·+ Jn(g, h) +Rn(g, h)

and the remainder term Rn(g, h) is given for x ≥ 0 by

Rn(g, h)(x) =
(
eF (x)

∫ x

0

f(t)(Jn
1 g)(t)e

−F (t)dt, eF (x)

∫ x

0

f(t)(Jn
1 h)(t)e

−F (t)dt

)
Let a > 0 and denote M = sup

t∈[0,a]

|g(t)|. Therefore

|J1g(x)| =
∣∣∣∣∫ x

0

f(t)g(t)dt
∣∣∣∣ ≤M

∫ x

0

f(t)dt = MF (x)

Similarly, we have∣∣J2
1 g(x)

∣∣ =
∣∣∣∣∫ x

0

f(t)J1g(t)dt
∣∣∣∣ ≤M

∫ x

0

f(t)F (t)dt = M
(F (x))2

2!
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Suppose that for n ≥ 1, we have∣∣Jn−1
1 g(x)

∣∣ ≤M
(F (x))n−1

(n− 1)!

Then by induction, we get

|Jn
1 g(x)| =

∣∣∣∣∫ x

0

f(t)Jn−1
1 g(t)dt

∣∣∣∣ ≤M

∫ x

0

f(t)
(F (t))n−1

(n− 1)!
dt = M

(F (x))n

n!

Since the function F is nondecreasing, then for all x ∈ [0, a]

eF (x)

∣∣∣∣∫ x

0

Jn
1 g(t)f(t)e−F (t)dt

∣∣∣∣ ≤ MeF (a)

∫ x

0

f(t)
(F (t))n

n!
e−F (t)dt

≤ MeF (a) (F (a))n

n!

∫ a

0

f(t)e−F (t)dt

= MeF (a) (F (a))n

n!

[
1− e−F (a)

]
Then

eF (x)

∣∣∣∣∫ x

0

Jn
1 g(t)f(t)e−F (t)dt

∣∣∣∣ ≤MeF (a) (F (a))n

n!

The convergence of the series
∑
n≥0

(F (a))n

n! implies that (F (a))n

n! → 0 as n→∞. So

eF (x)

(∫ x

0

Jn
1 g(t)f(t)e−F (t)dt

)
→ 0 asn→∞,uniformly with respect tox

in [0, a]. And analogously, we obtain

eF (x)

(∫ x

0

Jn
1 h(t)f(t)e−F (t)dt

)
→ 0 asn→∞,uniformly with respect tox

in [0, a]. Therefore Rn(g, h) converges to 0 uniformly with respect to x in each
compact subset [0, a] of R+. Consequently

(I − J)−1 = I + J + J2 + J3 + J4 + . . . =
+∞∑
n=0

Jn

(b) The second part of the lemma can be proved similarly. �

Analogously, we can prove the following result:

Lemma 3.2. (a) The linear operator I − K : C1(R+) × C1(R+) → R(I − K) is
bijective, with R(I −K) = C1

0(R+)× C1
0(R+), and its inverse is given by

(I −K)−1(g, h) = (g, h) +K(g, h) +K2(g, h) + · · ·+Kn(g, h) +R′n(g, h)

where the remainder term R′n(g, h) is defined by

R′n(g, h)(x) = eF (x)

(∫ x

0

f(t)(Jn
1 h)(t)e

−F (t)dt,

∫ x

0

f(t)(Jn
1 g)(t)e

−F (t)dt

)
,
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for x ≥ 0. Moreover, the sequence R′n(g, h) converges to 0 uniformly with respect to
x in each compact subset [0, a] of R+. Therefore, we have

(I −K)−1 = I +K +K2 +K3 +K4 + · · · =
+∞∑
n=0

Kn.

(b) The linear operator I +K : C1(R+)× C1(R+) → R(I +K) is bijective, with
R(I +K) = C1

0(R+)× C1
0(R+), and its inverse is given by

(I+K)−1(g, h) = (g, h)−K(g, h)+K2(g, h)+· · ·+(−1)nKn(g, h)+(−1)n+1R′n(g, h)

Moreover, the sequence R′n(g, h) converges to 0 uniformly with respect to x in each
compact subset [0, a] of R+. Therefore, we have

(I +K)−1 = I −K +K2 −K3 +K4 + · · · =
+∞∑
n=0

(−1)nKn.

4. Method for first order fuzzy linear differential equations

Our aim is to present an operator method to solve the following first order fuzzy
homogeneous linear differential equations, under strongly generalized differentiabil-
ity:

(P1)

{
y′(x) = f(x)y(x)
y(0) = y0 ∈ E

and

(P ′1)

{
y′(x) = −f(x)y(x)
y(0) = y0 ∈ E

where f : R+ → R+ is a continuous nonnegative crisp function defined on R+.
We need to use the operators J and K defined above.
Let F : R+ → R the unique primitive of f which vanishes at t = 0 i.e F (0) = 0.

4.1. Resolution of equation (P1). (a) If y(x) is (i)-strongly generalized differen-
tiable : then (P1) is equivalent to its following integral form{

y(x, α) = y(0, α) +
∫ x

0
f(t)y(t, α)dt

y(x, α) = y(0, α) +
∫ x

0
f(t)y(t, α)dt

which can be written as follows(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
+

(∫ x

0

f(t)y(t, α)dt,
∫ x

0

f(t)y(t, α)dt
)

Hence, (P1) is equivalent to(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
+ J

(
y(x, α), y(x, α)

)
This identity can be expressed in the following form

(I − J)
(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
Since I − J is bijective, then(

y(x, α), y(x, α)
)

= (I − J)−1
(
y(0, α), y(0, α)

)
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Consequently (P1) is equivalent to(
y(x, α), y(x, α)

)
= (I + J + J2 + J3 + · · ·+ Jn + . . .)

(
y(0, α), y(0, α)

)
In the other hand, we have

J
(
y(0, α), y(0, α)

)
=

(∫ x

0

f(t)y(0, α)dt,
∫ x

0

f(t)y(0, α)dt
)

=
(
F (x)y(0, α), F (x)y(0, α)

)
= F (x)

(
y(0, α), y(0, α)

)
Hence

J2
(
y(0, α), y(0, α)

)
=

(∫ x

0

f(t)F (t)y(0, α)dt,
∫ x

0

f(t)F (t)y(0, α)dt
)

=
(∫ x

0

F ′(t)F (t)y(0, α)dt,
∫ x

0

F ′(t)F (t)y(0, α)dt
)

=
(

(F (x))2

2
y(0, α),

(F (x))2

2
y(0, α)

)
Then, by induction we can establish that for all n ∈ N, we have

Jn
(
y(0, α), y(0, α)

)
=

(
(F (x))n

n!
y(0, α),

(F (x))n

n!
y(0, α)

)
=

(F (x))n

n!
(
y(0, α), y(0, α)

)
.

Therefore (
y(x, α), y(x, α)

)
=

+∞∑
n=0

(F (x))n

n!
(
y(0, α), y(0, α)

)
= exp(F (x))

(
y(0, α), y(0, α)

)
.

Then finally , we deduce that{
y(x, α) = y(0, α) exp(F (x))
y(x, α) = y(0, α) exp(F (x))

(b) If y(x) is (ii)-strongly generalized differentiable : then (P1) is equivalent to its
following integral form{

y(x, α) = y(0, α) +
∫ x

0
f(t)y(t, α)dt

y(x, α) = y(0, α) +
∫ x

0
f(t)y(t, α)dt

which can be written as follows(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
+

(∫ x

0

f(t)y(t, α)dt,
∫ x

0

f(t)y(t, α)dt
)

Hence, (P1) is equivalent to(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
+K

(
y(x, α), y(x, α)

)
This identity can be expressed in the following form

(I −K)
(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
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Since I −K is bijective, then(
y(x, α), y(x, α)

)
= (I −K)−1

(
y(0, α), y(0, α)

)
Consequently (P1) is equivalent to following equation(

y(x, α), y(x, α)
)

= (I +K +K2 +K3 +K4 + . . .)
(
y(0, α), y(0, α)

)
which we can write(

y(x, α), y(x, α)
)

= (I +K2 +K4 + . . .)
(
y(0, α), y(0, α)

)
+ (K +K3 +K5 + . . .)

(
y(0, α), y(0, α)

)
In the other hand, we have

K
(
y(0, α), y(0, α)

)
=

(∫ x

0

f(t)y(0, α)dt,
∫ x

0

f(t)y(0, α)dt
)

=
(
F (x)y(0, α), F (x)y(0, α)

)
Hence

K2
(
y(0, α), y(0, α)

)
=

(∫ x

0

f(t)F (t)y(0, α)dt,
∫ x

0

f(t)F (t)y(0, α)dt
)

=
(∫ x

0

F ′(t)F (t)y(0, α)dt,
∫ x

0

F ′(t)F (t)y(0, α)dt
)

=
(F (x))2

2
(
y(0, α), y(0, α)

)
Then, by induction, we have

K2n
(
y(0, α), y(0, α)

)
=

(F (x))2n

(2n)!
(
y(0, α), y(0, α)

)
and

K2n+1
(
y(0, α), y(0, α)

)
=

(F (x))2n+1

(2n+ 1)!
(
y(0, α), y(0, α)

)
Therefore(

y(x, α), y(x, α)
)

=
+∞∑
n=0

(F (x))2n

(2n)!
(
y(0, α), y(0, α)

)
+

+∞∑
n=0

(F (x))2n+1

(2n+ 1)!
(
y(0, α), y(0, α)

)
Thus(

y(x, α), y(x, α)
)

= cosh (F (x))
(
y(0, α), y(0, α)

)
+ sinh (F (x))

(
y(0, α), y(0, α)

)
Then, we deduce that{

y(x, α) = y(0, α) cosh (F (x)) + y(0, α) sinh (F (x))
y(x, α) = y(0, α) cosh (F (x)) + y(0, α) sinh (F (x))

So, we can resume the results above in the following proposition.
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Proposition 4.1. (a) If y(x) is (i)-strongly generalized differentiable, then the
solution of (P1) is given by{

y(x, α) = y(0, α) exp(F (x))
y(x, α) = y(0, α) exp(F (x))

(b) If y(x) is (ii)-strongly generalized differentiable, then the solution of (P1) is
given by {

y(x, α) = y(0, α) cosh(F (x)) + y(0, α) sinh(F (x))
y(x, α) = y(0, α) cosh(F (x)) + y(0, α) sinh(F (x))

Remark 4.2. We recall that the length of the solution y(x, α) is given by

len (y(x, α)) = y(x, α)− y(x, α)

Assume that lim
x→∞

F (x) = ∞ and len (y(0, α)) > 0 i.e y0 ∈ E \ R.

(1) Under (i)-strong generalized differentiability, then

len (y(x, α)) = eF (x)
[
y(0, α)− y(0, α)

]
= eF (x)len (y(0, α))

Therefore
len (y(x, α)) →∞ as x→∞.

So, this solution is asymptotically unstable.
(2) Under (ii)-strong generalized differentiability, then

len (y(x, α)) = e−F (x)
[
y(0, α)− y(0, α)

]
= e−F (x)len (y(0, α))

Therefore
len (y(x, α)) → 0 as x→∞.

So, this solution is asymptotically stable.
If f is negative and lim

x→∞
F (x) = −∞ then, the solution became asymptotically

stable in the first case, and asymptotically unstable in the second case.
To solve (eq.1) under the conditions lim

x→∞
F (x) = ∞ (respectively lim

x→∞
F (x) =

−∞)and len (y(0, α)) > 0 , we can choose the (ii)-differentiability (respectively (i)-
differentiability )as the appropriate kind of differentiability, because in this case the
behavior of the fuzzy solution is the same as the deterministic solution (for more
details see [2] and [8]).

4.2. Resolution of equation (P ′1). (a) If y(x) is (i)-strongly generalized differen-
tiable : then (P ′1) is equivalent to its following integral form{

y(x, α) = y(0, α)−
∫ x

0
f(t)y(t, α)dt

y(x, α) = y(0, α)−
∫ x

0
f(t)y(t, α)dt

Hence, (P ′1) is equivalent to(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
−K

(
y(x, α), y(x, α)

)
This identity can be written in the following form

(I +K)
(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
Therefore (

y(x, α), y(x, α)
)

= (I +K)−1
(
y(0, α), y(0, α)

)
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Consequently (P ′1) is equivalent to following equation(
y(x, α), y(x, α)

)
= (I −K +K2 −K3 +K4 − . . .)

(
y(0, α), y(0, α)

)
which we can write(

y(x, α), y(x, α)
)

= (I +K2 +K4 + . . .)
(
y(0, α), y(0, α)

)
− (K +K3 +K5 + . . .)

(
y(0, α), y(0, α)

)
Therefore(
y(x, α), y(x, α)

)
=

+∞∑
n=0

(F (x))2n

(2n)!
(
y(0, α), y(0, α)

)
−

+∞∑
n=0

(F (x))2n+1

(2n+ 1)!
(
y(0, α), y(0, α)

)
Thus(

y(x, α), y(x, α)
)

= cosh (F (x))
(
y(0, α), y(0, α)

)
− sinh (F (x))

(
y(0, α), y(0, α)

)
Then, we deduce that{

y(x, α) = y(0, α) cosh (F (x))− y(0, α) sinh (F (x))
y(x, α) = y(0, α) cosh (F (x))− y(0, α) sinh (F (x))

(b) If y(x) is (ii)-strongly generalized differentiable : then (P ′1) is equivalent to
its following integral form{

y(x, α) = y(0, α)−
∫ x

0
f(t)y(t, α)dt

y(x, α) = y(0, α)−
∫ x

0
f(t)y(t, α)dt

which can be written as follows(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
− J

(
y(x, α), y(x, α)

)
which can be expressed in the following form

(I + J)
(
y(x, α), y(x, α)

)
=

(
y(0, α), y(0, α)

)
Therefore (

y(x, α), y(x, α)
)

= (I + J)−1
(
y(0, α), y(0, α)

)
Consequently (P ′1) is equivalent to(

y(x, α), y(x, α)
)

= (I − J + J2 − J3 + J4 − . . .)
(
y(0, α), y(0, α)

)
Therefore (

y(x, α), y(x, α)
)

=
+∞∑
n=0

(−F (x))n

n!
(
y(0, α), y(0, α)

)
= exp(−F (x))

(
y(0, α), y(0, α)

)
Then finally, we have {

y(x, α) = y(0, α) exp(−F (x))
y(x, α) = y(0, α) exp(−F (x))

So, we can resume the results above in the following proposition.

Proposition 4.3.
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(a) If y(x) is (i)-strongly generalized differentiable, then the solution of (P ′1) is
given by{

y(x, α) = y(0, α) cosh(F (x))− y(0, α) sinh(F (x))
y(x, α) = y(0, α) cosh(F (x))− y(0, α) sinh(F (x))

(b) If y(x) is (ii)-strongly generalized differentiable, then the solution of (P ′1) is
given by {

y(x, α) = y(0, α) exp(−F (x))
y(x, α) = y(0, α) exp(−F (x))

Remark 4.4. Assume that lim
x→∞

F (x) = ∞ and len (y(0, α)) > 0 i.e y0 ∈ E \ R.

(1) Under (i)-strong generalized differentiability, then

len (y(x, α)) = eF (x)len (y(0, α))

Therefore
len (y(x, α)) →∞ as x→∞.

So, this solution is asymptotically unstable.
(2) Under (ii)-strong generalized differentiability, then

len (y(x, α)) = e−F (x)len (y(0, α))

Therefore
len (y(x, α)) → 0 as x→∞.

So, this solution is asymptotically stable.
If f is negative and lim

x→∞
F (x) = −∞, the solution became asymptotically stable in

the first case, and asymptotically unstable in the second case.
To solve (P ′1) under the condition lim

x→∞
F (x) = ∞ (respectively lim

x→∞
F (x) = −∞)

and len (y(0, α)) > 0 , we can choose the (ii)-differentiability (respectively (i)-
differentiability )as the appropriate kind of differentiability, because in this case
the behavior of the fuzzy solution is the same as the deterministic solution (for more
details see [2] and [?]).

4.3. Inhomogeneous first order fuzzy linear differential equations.
We consider the following first order fuzzy inhomogeneous linear differential equa-
tions:

(P2)

{
y′(x) = f(x)y(x) + P (x)
y(0) = y0 ∈ E

and

(P ′2)

{
y′(x) = −f(x)y(x) + P (x)
y(0) = y0 ∈ E

where f : R+ → R+ is a continuous nonnegative crisp function defined on R+ and
P is a (crisp) continuous function.
Using the variation of constants formula and the calculs above, we deduce easily the
following results.

Proposition 4.5.
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(a) If y(x) is (i)-strongly generalized differentiable, then the solution of (P2) is
given by {

y(x, α) = y(0, α)eF (x) + eF (x)
∫ x

0
P (t)e−F (t)dt

y(x, α) = y(0, α)eF (x) + eF (x)
∫ x

0
P (t)e−F (t)dt

(b) If y(x) is (ii)-strongly generalized differentiable, then the solution of (P2) is{
y(x, α) = y(0, α) cosh(F (x)) + y(0, α) sinh(F (x)) + eF (x)

∫ x

0
P (t)e−F (t)dt

y(x, α) = y(0, α) cosh(F (x)) + y(0, α) sinh(F (x)) + eF (x)
∫ x

0
P (t)e−F (t)dt

Proposition 4.6.
(a) If y(x) is (i)-strongly generalized differentiable, then the solution of (P ′2) is

given by{
y(x, α) = y(0, α) cosh(F (x))− y(0, α) sinh(F (x)) + e−F (x)

∫ x

0
P (t)eF (t)dt

y(x, α) = y(0, α) cosh(F (x))− y(0, α) sinh(F (x)) + e−F (x)
∫ x

0
P (t)eF (t)dt

(b) If y(x) is (ii)-strongly generalized differentiable, then the solution of (P ′2) is{
y(x, α) = y(0, α)e−F (x) + e−F (x)

∫ x

0
P (t)eF (t)dt

y(x, α) = y(0, α)e−F (x) + e−F (x)
∫ x

0
P (t)eF (t)dt

5. Numeric examples

The following examples 5.1 and 5.2 were studied in [2], under one type of differ-
entiability.

Example 5.1.

(P3)

{
y′(x) = y(x)
y(0) = y0 ∈ E

Here f(x) = 1, then F (x) = x.
(a) If y(x) is (i)-strongly generalized differentiable, then the solution of (P3) is{

y(x, α) = y(0, α)ex

y(x, α) = y(0, α)ex

this is the solution given in [2] for the same example, but it is asymptotically
unstable.

(b) If y(x) is (ii)-strongly generalized differentiable, then the solution of (P3) is{
y(x, α) = y(0, α) cosh(x) + y(0, α) sinh(x)
y(x, α) = y(0, α) cosh(x) + y(0, α) sinh(x)

this solution (not given in [2]) is asymptotically stable.

Example 5.2.

(P ′3)

{
y′(x) = −y(x) + x+ 1
y(0) = y0 ∈ E

Taking P (x) = x+ 1 in (P ′3), we get
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(a) If y(x) is (i)-strongly generalized differentiable, then the solution of (P ′3) is{
y(x, α) = y(0, α)e−x + x
y(x, α) = y(0, α)e−x + x

this is the solution given in [2], which is asymptotically stable.
(b) If y(x) is (ii)-strongly generalized differentiable, then the solution of (P ′3) is{

y(x, α) = y(0, α) cosh(x)− y(0, α) sinh(x) + x
y(x, α) = y(0, α) cosh(x)− y(0, α) sinh(x) + x

,

this solution (not given in [2]) is asymptotically unstable.

Example 5.3. We consider the equation with variable coefficient f(x) = xn:

(P4)

{
y′(x) = xny(x)
y(0) = y0 ∈ E

(a) If y(x) is (i)-strongly generalized differentiable, then the solution of (P4) is y(x, α) = y(0, α) exp
(

xn+1

n+1

)
y(x, α) = y(0, α) exp

(
xn+1

n+1

)
this solution is asymptotically unstable.

(b) If y(x) is (ii)-strongly generalized differentiable, then the solution of (P4) is y(x, α) = y(0, α) cosh
(

xn+1

n+1

)
+ y(0, α) sinh

(
xn+1

n+1

)
y(x, α) = y(0, α) cosh

(
xn+1

n+1

)
+ y(0, α) sinh

(
xn+1

n+1

)
this solution is asymptotically stable.

6. Conclusion

Using operator method, a general form of the solution for linear first order dif-
ferential equation y′ = f(x)y + P (x) is given, where f is continuous nonnegative
(respectively nonpositive) function. For future research, one can apply this method
whenever f changes sign on R.
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