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In this paper, it is shown that every regular fuzzy cone is normal but not
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1. Introduction

Different types of generalized metric spaces and Banach spaces and fixed point
results in such spaces are introduced by different authors, for references please see
[1, 4, 3, 6, 9, 12, 13, 14, 15]. Cone metric space is one such generalized metric space
introduced by H.Long-Guang et al. [8]. In this generalized metric space, authors
replaced the real numbers by an ordering Banach space as the range set of the cone
metric. They established some fixed point theorems in such space assuming nor-
mality condition. Sh. Rezapour et al. [11] established some important basic results
in cone metric space. They proved that every regular cone is normal but not con-
versely. There are no normal cones with normal constant M < 1. They established
some fixed point results by omitting the assumption of normality in some results in
[8].
Following the concept of cone metric space introduced by H.Long-Guang et al [8],
the idea of fuzzy cone metric space is introduced by the present author in [2] and
proved some fixed point theorems in such space. In this paper, following the results
of Sh. Rezapour et al.[11], it is shown that every regular fuzzy cone is normal fuzzy
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cone but not conversely and there are no fuzzy normal cone with normal constant
M < 1. Finally some fixed point theorems are established by omitting the assump-
tion of normality condition in some fixed point results in [2].

The organization of the paper is as follows:
Section 1, comprises some preliminary results which are used in this paper.
Some basic results of fuzzy cone metric spaces are studied in Section 2. In section
3, some fixed point theorems for contractive mappings are established.

2. Preliminaries

A fuzzy real number is a mapping x : R → [0 , 1] over the set R of all reals.
A fuzzy real number x is convex if x(t) ≥ min (x(s) , x(r)) where s ≤ t ≤ r.
α-level set of a fuzzy real number x is defined by {t ∈ R : x(t) ≥ α} where α ∈ (0, 1].
If there exists a t0 ∈ R such that x(t0) = 1, then x is called normal. For
0 < α ≤ 1, α-level set of an upper semi continuous convex normal fuzzy real
number η(denoted by [η]α) is a closed interval [aα , bα], where aα = −∞ and
bα = +∞ are admissible. When aα = −∞, for instance, then [aα , bα] means the
interval (−∞ , bα]. Similar is the case when bα = +∞.
A fuzzy real number x is called non-negative if x(t) = 0, ∀t < 0.
Each real number r is considered as a fuzzy real number denoted by r̄ and defined
by
r̄(t) = 1 if t = r and r̄(t) = 0 if t 6= r.
Kaleva [7] ( Felbin [5] ) denoted the set of all convex, normal, upper semicontinuous
fuzzy real numbers by E ( R(I)) and the set of all non-negative, convex, normal,
upper semicontinuous fuzzy real numbers by G(R∗(I)).

A partial ordering ” � ” in E is defined by η � δ if and only if a1
α ≤ a2

α and
b1
α ≤ b2

α for all α ∈ (0 , 1] where [η]α = [a1
α , b1

α] and [δ]α = [a2
α , b2

α]. The
strict inequality in E is defined by η ≺ δ if and only if a1

α < a2
α and b1

α < b2
α for each

α ∈ (0 , 1].
According to Mizumoto and Tanaka [10], the arithmetic operations ⊕, 	 ,� on

E × E are defined by
(x⊕ y)(t) = Sups∈Rmin {x(s) , y(t− s)}, t ∈ R
(x	 y)(t) = Sups∈Rmin {x(s) , y(s− t)}, t ∈ R
(x� y)(t) = Sups∈R,s 6=0min {x(s) , y( t

s )}, t ∈ R

Proposition 2.1 ([10]). Let η, δ ∈ E(R(I)) and [η]α = [a1
α, b1

α], [δ]α = [a2
α, b2

α],
α ∈ (0, 1]. Then

[η
⊕

δ]α = [a1
α + a2

α , b1
α + b2

α]
[η 	 δ]α = [a1

α − b2
α , b1

α − a2
α]

[η � δ]α = [a1
αa2

α , b1
αb2

α]

Definition 2.2 ([7]). A sequence {ηn} in E is said to be convergent and converges to
η denoted by lim

n→∞
ηn = η if lim

n→∞
an

α = aα and lim
n→∞

bn
α = bα where [ηn]α = [an

α, bn
α]

and [η]α = [aα, bα] ∀α ∈ (0, 1].

Note 2.3 ([7]). If η, δ ∈ G(R∗(I)) then η ⊕ δ ∈ G(R∗(I)).
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Note 2.4 ([7]). For any scalar t, the fuzzy real number tη is defined as tη(s) = 0 if
t=0 otherwise tη(s) = η( s

t ).

Definition of fuzzy norm on a linear space as introduced by C. Felbin is given
below:

Definition 2.5 ([5]). Let X be a vector space over R.
Let || || : X → R∗(I) and let the mappings
L,U : [0 , 1] × [0 , 1] → [0 , 1] be symmetric, nondecreasing in both arguments
and satisfy
L(0 , 0) = 0 and U(1 , 1) = 1.
Write
[||x||]α = [||x||1α , ||x||2α] for x ∈ X, 0 < α ≤ 1 and suppose for all x ∈ X, x 6= 0,
there exists α0 ∈ (0 , 1] independent of x such that for all α ≤ α0,

(A) ||x||2α < ∞
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed linear space and || || is

a fuzzy norm if
(i) ||x|| = 0̄ if and only if x = 0 ;
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R ;
(iii) for all x, y ∈ X,
(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s + t ≤ ||x + y||11,

||x + y||(s + t) ≥ L(||x||(s) , ||y||(t)),
(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s + t ≥ ||x + y||11,

||x + y||(s + t) ≤ U(||x||(s) , ||y||(t))

Remark 2.6. Felbin proved that,
if L =

∧
(Min) and U =

∨
(Max) then the triangle inequality (iii) in the Definition

1.1 is equivalent to
||x + y|| � ||x||

⊕
||y||.

Further || ||iα; i = 1, 2 are crisp norms on X for each α ∈ (0 , 1].

Definition 2.7 ([2]). Let (E, || ||) be a fuzzy real Banach space where || || : E →
R∗(I).
Denote the range of || || by E∗(I). Thus E∗(I) ⊂ R∗(I).

Definition 2.8 ([2]). A member η ∈ A ⊂ R∗(I) is said to be an interior point if
∃r > 0 such that
S(η, r) = {δ ∈ R∗(I) : η 	 δ ≺ r̄} ⊂ A.
Set of all interior points of A is called interior of A.

Definition 2.9 ([2]). A subset of F of E∗(I) is said to be fuzzy closed if for any
sequence {ηn} such that lim

n→∞
ηn = η implies η ∈ F.

Definition 2.10 ([2]). A subset P of E∗(I) is called a fuzzy cone if
(i) P is fuzzy closed, nonempty and P 6= {0̄};
(ii) a, b ∈ R, a, b ≥ 0, η, δ ∈ P ⇒ aη ⊕ bδ ∈ P .

Note 2.11. If η ∈ P then 	η ∈ P ⇒ η = 0̄.
For, suppose [η]α = [η1

α , η2
α], α ∈ (0, 1].

295



T. Bag/Ann. Fuzzy Math. Inform. 9 (2015), No. 2, 293–306

Since η ∈ P ⊂ E∗(I), we have η1
α, η2

α ≥ 0 ∀α ∈ (0, 1].
Now [	η]α = [−η2

α , −η1
α], α ∈ (0, 1].

If η 6= 0̄, then η1
α, η2

α > 0 ∀α ∈ (0, 1].
i.e. −η2

α ≤ −η1
α < 0 ∀α ∈ (0, 1].

This implies that 	η does not belong to P. Hence η = 0̄.

Given a fuzzy cone P ⊂ E∗(I), define a partial ordering ≤ with respect to P by
η ≤ δ iff δ	 η ∈ P and η < δ indicates that η ≤ δ but η 6= δ while η << δ will stand
for δ 	 η ∈IntP where IntP denotes the interior of P.

The fuzzy cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,
with 0̄ ≤ ||x|| ≤ ||y|| implies ||x|| � K||y||. The least positive number satisfying
above is called the normal constant of P.
The fuzzy cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is if {xn} is a sequence in E such that ||x1|| ≤
||x2|| ≤ ........ ≤ ||xn|| ≤ .... ≤ ||y|| for some y ∈ E, then there is x ∈ E such that
||xn − x|| → 0̄ as n →∞.
Equivalently, the fuzzy cone P is regular if every decreasing sequence which is
bounded below is convergent.

In the following we always assume that E is a fuzzy real Banach space, P is a
fuzzy cone in E with IntP 6= φ and ≤ is a partial ordering with respect to P.

Definition 2.12 ([2]). Let X be a nonempty set. Suppose the mapping
d : X ×X → E∗(I) satisfies

(Fd1) 0̄ ≤ d(x, y) ∀x, y ∈ X and d(x, y) = 0̄ iff x = y;
(Fd2) d(x, y) = d(y, x) ∀x, y ∈ X;
(Fd3) d(x, y) ≤ d(x, z)⊕ d(z, y) ∀x, y, z ∈ X.

Then d is called a fuzzy cone metric and (X, d) is called a fuzzy cone metric space.

Example 2.13. Let (E, || ||′) be a real Banach space.
Define || || : E → R∗(I) by

||x||(t) =


||x||′

t if t ≥ |x||′, x 6= 0
1 if t = ||x||′ = 0
0 otherwise

Then [||x||]α = [||x||′ , ||x||′
α ] ∀α ∈ (0, 1].

It is easy to verify that,
(i) ||x|| = 0̄ iff x = 0 (ii) ||rx|| = |r|||x|| (iii) ||x + y|| � ||x|| ⊕ ||y||.
Thus (E, || ||) is a fuzzy normed linear space in Felbin’s sense ( where L = min and
U = max ). Let {xn} be a Cauchy sequence in (E, || ||)
So, limm,n→∞ ||xn − xm|| = 0̄.
⇒ limm,n→∞ ||xn − xm|| = 0
⇒ {xn} is a Cauchy sequence in (E, || ||′).
Since (E, || ||′) is complete, ∃x ∈ E such that limm,n→∞ ||xn − x||′ = 0.
i.e. limn→∞ ||xn − x|| = 0̄.
Thus (E, || ||) is a real fuzzy Banach space.
Define P = {η ∈ E∗(I) : η � 0̄}.
(i) P is fuzzy closd.
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For, consider a sequence {δn} in P such that limn→∞ δn → δ.
i.e. limn→ δ1

n,α = δ1
α and limn→ δ2

n,α = δ2
α where [δn]α = [δ1

n,α , δ2
n,α] and

[δ]α = [δ1
α , δ2

α] ∀α ∈ (0, 1].
Now δn � 0̄ ∀n.
So, δ1

n,α ≥ 0 and δ2
n,α ≥ 0 ∀α ∈ (0, 1].

⇒ limn→ δ1
n,α ≥ 0 and limn→ δ2

n,α ≥ 0 ∀α ∈ (0, 1]
⇒ δ1

α ≥ 0 and δ2
α ≥ 0 ∀α ∈ (0, 1]

⇒ δ � 0̄.
So δ ∈ P. Hence P is fuzzy closed.
(ii) It is obvious that, a, b ∈ R, a, b ≥ 0 η, δ ∈ P ⇒ aη ⊕ bδ ∈ P.
Thus P is a fuzzy cone in E.
Now choose the ordering ≤ as � and define d : E×E → E∗(I) by d(x, y) = ||x−y||.
Then it is easy to verify that d satisfies the conditions (Fd1) to (Fd3). Hence (E , d)
is a fuzzy cone metric space.

Definition 2.14 ([2]). Let (X, d) be a fuzzy cone metric space. Let{xn} be a
sequence in X and x ∈ X. If for every c ∈ E with 0̄ << ||c|| there is a positive integer
N such that for all n > N, d(xn, x) << ||c||, then {xn} is said to be convergent and
converges to x and x is called the limit of {xn}. We denote it by lim

n→∞
xn = x.

Definition 2.15 ([2]). Let (X, d) be a fuzzy cone metric space and {xn} be a
sequence in X. If for any c ∈ E with 0̄ << ||c||, there exists a natural number N
such that ∀m,n > N, d(xn, xm) << ||c||, then {xn} is called a Cauchy sequence in
X.

Definition 2.16 ([2]). Let (X, d) be a fuzzy cone metric space. If every Cauchy
sequence is convergent in X, then X is called a complete fuzzy cone metric space.

Note 2.17. In a fuzzy cone metric space, every convergent sequence is Cauchy
( please see Lemma 3.13[2]).
For, let {xn} converges to x. So for any c ∈ E with 0̄ << ||c|| there exists a natural
number N such that ∀m,n > N, d(xn, x) << || c2 || and d(xm, x) << || c2 ||.
Hence d(xn, xm) ≤ d(xn, x)⊕ d(x, xm) << ||c|| ∀m,n > N.
Thus {xn} is a Cauchy sequence.

Converse of the result may not hold.
To verify it, first we prove the following result:
Let X = C[0, 1]. Define a metric d by d(x, y) =

∫ 1

0
|x(t)− y(t)|dt ( integral is taken

in the sense of Riemann ).
Consider a sequence {xn} given by

xn(t) =
{

0 if t ∈ [0, 1
2 ]

1 if t ∈ [an, 1]

where an = 1
2 + 1

n .
It is easy to verify that {xn} is Cauchy.
For x ∈ X, we have
d(xn, x) =

∫ 1

0
|xn(t)− x(t)|dt =

∫ 1
2

0
|x(t)|dt +

∫ an
1
2
|xn(t)− x(t)|dt +

∫ 1

an
|1− x(t)|dt.

Since the integrands are non-negative, so is each integral on the right. Hence
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d(xn, x) → 0 would imply that each integral approaches to zero. Since x is con-
tinuous, we should have

x(t) =
{

0 if t ∈ [0, 1
2 ]

1 if t ∈ ( 1
2 , 1]

which is impossible for a continuous function. Hence {xn} does not converge.
Choose E = X = C[0, 1], the Banach space w.r.t. norm || ||′ defined by
||x||′ =

∨
0≤t≤1

|x(t)|.

Define || || : X → R∗(I) by

||x||(t) =
{

1 if t = ||x||′
0 otherwise

Then [||x||]α = [||x||′ , ||x||′] ∀α ∈ (0, 1].
Then it can be shown that (X , || ||) is a complete fuzzy normed linear space
( Felbin’s sense , L= min and U= max ).
Now we define ρ : E × E → E∗(I) by

ρ(x, y)(t) =


d(x,y)

t if t ≥ d(x, y), x 6= y
1 t = d(x, y) = 0
0 otherwise

Then [ρ(x, y)]α = [d(x, y) , d(x,y)
t ] ∀α ∈ (0, 1].

It is easy to verify that (X , ρ) is a fuzzy cone metric space if we choose the ordering
≤ as �.
Since ρ1

α(x, y) = d(x, y) and ρ2
α(x, y) = d(x,y)

α α ∈ (0, 1], it follows that if {xn} is a
Cauchy sequence in (X, d) iff it is a Cauchy sequence in (X , ρ). So if we consider the
sequence {xn} defined as above, then it is a Cauchy in (X , ρ) but not convergent.

Following is an example of a regular fuzzy cone metric space:

Example 2.18. Let X = R. Define || || : X → R∗(I) by

||x||(t) =
{

1 if t = |x|
0 otherwise

Then [||x||]α = [|x| , |x|] ∀α ∈ (0, 1].
It can be shown that (X , || ||) is a complete fuzzy normed linear space ( Felbin’s
sense where L = min and U= max ).
Now we define d : E × E → E∗(I) where E = R by

d(x, y)(t) =


|x|
t if t ≥ |x|, x 6= 0
1 if t = |x| = 0
0 otherwise

Then [d(x, y)]α = [|x| , |x|
α ] ∀α ∈ (0, 1].

It is easy to verify that (X , d) is a fuzzy cone metric space if we choose the
ordering ≤ as �, usual ordering of fuzzy real numbers and the cone P is given by
P = {η : η � 0̄}.
This is also a regular fuzzy cone metric space.
For, consider a sequence {xn} in E such that

298



T. Bag/Ann. Fuzzy Math. Inform. 9 (2015), No. 2, 293–306

||x1|| � ||x2|| � ..... � ||xn|| � .... � ||x|| for some x ∈ E.
This implies that,
||x1||iα ≤ ||x2||iα ≤ ..... ≤ ||xn||nα ≤ .... ≤ ||x||iα for i = 1, 2 and α ∈ (0, 1].
i.e. |x1| ≤ |x2| ≤ ..... ≤ |xn| ≤ .... ≤ |x|. Thus the sequence {|xn|} is convergent and
hence the sequence {xn} is convergent and converges to some y ∈ E.
So lim

n→∞
|xn − y| = 0.

i.e. lim
n→∞

di
α(xn , y) = 0 for i = 1, 2 and α ∈ (0, 1].

i.e. lim
n→∞

d(xn , y) = 0̄.

Hence P is regular.

3. Some observations on fuzzy cone metric spaces

In this Section it is shown that every regular fuzzy cone metric space is normal
but not conversely and there does not exist any normal fuzzy cone with normal
constant M < 1.

Lemma 3.1. Every regular fuzzy cone metric space is normal.

Proof. Let (X , d) be a fuzzy cone metric space and P be a regular fuzzy cone and
if possible suppose that P is not normal.
Thus for each n ≥ 1, ∃||xn||, ||yn|| ∈ P where xn, yn ∈ E such that
||xn|| 	 ||yn|| ∈ P and n2||xn|| ≺ ||yn|| (3.1.1).
Clearly xn 6= θ ∀n.
For, if xn = θ for some n then ||xn|| = 0̄ and so 	||yn|| ∈ P.
This implies that ||yn|| = 0̄ which contradicts (3.1.1).
For each n ≥ 1,

put ||zn|| = ||xn||∨
α∈(0,1]

||xn||2α
( ”Sup” exists because of (A) in Felbin’s definition ).

||z′n|| =
||yn||∨

α∈(0,1]

||xn||2α
.

Then ||zn|| 	 ||z′n|| ∈ P ∀n.
We have ||zn||1α ≤ 1 and ||zn||2α ≤ 1∀n, ∀α ∈ (0, 1] (3.1.2).

Now [
∞∑

n=1

||zn||
n2

]α = [
∞∑

n=1

||zn||1α
n2

,
∞∑

n=1

||zn||2α
n2

] ∀α ∈ (0, 1].

From (3.1.2), it follows that
∞∑

n=1

||zn||1α
n2

and
∞∑

n=1

||zn||2α
n2

both are convergent for each

α ∈ (0, 1].

Since P is closed, thus ∃z ∈ E such that ||z|| ∈ P and ||z|| =
∞∑

n=1

||zn||
n2

.

Now we have,
0̄ ≤ ||z′1|| ≤ ||z′1|| ⊕ 1

22 ||z′2|| ≤ ||z′1|| ⊕ 1
22 ||z′2|| ⊕ 1

32 ||z′3|| ≤ ..... ≤ ||z||.
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Since P is a regular fuzzy cone, so
∞∑

n=1

||z′n||
n2

is convergent.

i.e.
∞∑

n=1

||z′n||1α
n2

and
∞∑

n=1

||z′n||2α
n2

and are convergent for each α ∈ (0, 1].

Thus lim
n→∞

||z′n||1α
n2

= lim
n→∞

||z′n||2α
n2

= 0 ∀α ∈ (0, 1] (3.1.3).

From (3.1.1), we get n2||xn||1α < ||yn||1α and n2||xn||2α < ||yn||2α ∀n, ∀α ∈ (0, 1].
Now n2||xn||2α < ||yn||2α ∀n, ∀α ∈ (0, 1]
⇒ n2||xn||2α < ||z′n||2α

∨
α∈(0,1]

||xn||2α ∀n, ∀α ∈ (0, 1]

⇒ ∃α0 ∈ (0, 1] such that
n2||xn||2α < ||z′n||2α||xn||2α0

∀n, ∀α ∈ (0, 1]
⇒ n2||xn||2α0

< ||z′n||2α0
||xn||2α0

∀n

⇒ ||z′
n||

2
α0

n2 > 1 ∀n

⇒ lim
n→∞

||z′n||2α0

n2
≥ 1-which contradicts (3.1.3).

Hence P is normal.
Converse result may not be true and is justified by the Example 3.3. �

Lemma 3.2. There is no fuzzy cone with normal constant M < 1.

Proof. Let (X , d) be a fuzzy cone metric space and if possible suppose that P be
the fuzzy normal cone with normal constant M < 1.
Choose a non-zero element ||x|| ∈ P where x(6= θ) ∈ E and 0 < ε < 1 such that
M < 1− ε.
Now ||x|| 	 (1− ε)||x|| = ε||x|| ∈ P. So (1− ε)||x|| ≤ ε||x||.
We have, M ||x||1α < (1− ε)||x||1α and M ||x||2α < (1− ε)||x||2α ∀α ∈ (0, 1].
Thus M ||x|| ≺ (1−ε)||x||. This contradicts the fact that P is a fuzzy normal cone. �

Following is an example to justify that there exists fuzzy normal cone with normal
constant 1.

Example 3.3. Let E = C[0 , 1], the space of all real valued continuous functions
with norm || ||′ ( supnorm ) given by ||f ||′ =

∨
t∈[0,1]

|f(t)|.

Define || || : E → E∗(I) by

||f ||(t) =
{

1 if t ≥ ||f ||′
0 if t < ||f ||′.

Then (E , || ||) is a Felbin’s type fuzzy normed linear space where
[||f ||]α = [||f ||1α , ||f ||2α] = [||f ||′ , ||f ||′] ∀α ∈ (0, 1]. Define P = {||f || ∈ E∗(I) : ||f || �
0̄}.
Now take ||f ||, ||g|| ∈ P such that 0̄ ≤ ||f || ≤ ||g||.
Thus ||g|| 	 ||f || ∈ P. i.e. ||g|| 	 ||f || � 0̄.
i.e. ||g||1α − ||f ||2α ≥ 0 and ||g||2α − ||f ||1α ≥ 0 ∀α ∈ (0, 1].
i.e. ||g||′ − ||f ||′ ≥ 0. i.e. ||g||′ ≥ ||f ||′.
This implies that ||g||1α ≥ ||f ||1α and ||g||2α ≥ ||f ||2α ∀α ∈ (0, 1].
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i.e. ||f || � ||g||.
Since f and g are arbitrary, it follows that normal constant of P is 1.

Now consider the sequence {f , f2, f3, ......, fn, ...} in E defined by fn(t) =
{f(t)}n = tn.
Then ||f || ≥ ||f2|| ≥ ||f3|| ≥ ..... ≥ 0̄ is a decreasing sequence in P and bounded
below.
If possible suppose that ∃g ∈ E such that lim

n→∞
||fn − g|| = 0̄.

i.e. lim
n→∞

supt∈[0,1]|tn − g(t)| = 0

⇒ for each ε > 0 there exists a positive integer N such that
∨

t∈[0,1]

|tn−g(t)| < ε ∀n ≥

N
⇒

∨
t∈[0,1]

|tn − g(t)| < ε ∀n ≥ N ∀t ∈ [0, 1]

⇒ limn∞ |tn − g(t)| = 0 ∀t ∈ [0, 1].
From above it follows that

g(t) =
{

0 for t ∈ [0 , 1)
1 for t = 1.

So g is not a member of E. Hence P is not regular.

4. Fixed point theorems in fuzzy cone metric spaces

In this Section some fixed point theorems of contractive mappings are established
in fuzzy cone metric spaces without considering normal cone.

Theorem 4.1. Let (X, d) be a complete fuzzy cone metric space and the mapping
T : X → X satisfies the contractive condition
d(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ X where k ∈ [0, 1) is a constant. Then T has a unique
fixed point in X. For any x ∈ X, iterative sequence {Tnx} converges to the fixed
point.

Proof. Choose x0 ∈ X.
Set x1 = Tx0, x2 = Tx1 = T 2x0, ........, xn+1 = Txn = Tn+1x0, .....
we have,
d(xn+1, xn) = d(Txn, Txn−1) ≤ kd(xn, xn−1) ≤ k2d(xn−1, xn−2) ≤ .... ≤ knd(x1, x0).
So for n > m, we have
d(xn, xm) ≤ d(xn, xn−1)⊕ d(xn−1, xn−2)⊕ ....⊕ (xm+1, xm).
i.e. d(xn, xm) ≤ (kn−1 + kn−2 + ........ + km)d(x1, x0).
i.e. d(xn, xm) ≤ km

1−kd(x1, x0) (4.1.1).
Let ||z|| ∈ IntP be given. i.e. ||z|| >> 0̄ ( where z ∈ E ).
Choose ε > 0 such that ||z|| ⊕Nε(0̄) ⊂P where
Nε(0̄) = {||y|| ∈ E∗(I) where y ∈ E : ||y|| ≺ ε̄}.
Again choose a natural number N1 such that km

1−kd(x1, x0) ∈ Nε(0̄) ∀m ≥ N1.

Thus km

1−kd(x1, x0) << ||z|| ∀m ≥ N1.

So from (4.1.1), we have
d(xn, xm) ≤ km

1−kd(x1, x0) << ||z|| ∀m ≥ N1.

Therefore {xn} is a Cauchy sequence in (X , d).
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By completeness of X, there is x∗ ∈ X such that xn → x∗.
Now,
Choose a natural number N2 such that d(xn , x∗) << ||z||

2 ∀n ≥ N2.
Now we have,
d(Tx∗, x∗) ≤ d(Txn, Tx∗)⊕ d(Txn, x∗) ≤ kd(xn, x∗)⊕ d(xn+1, x

∗)
⇒ d(Tx∗, x∗) ≤ kd(xn, x∗)⊕ d(xn+1, x

∗)
⇒ d(Tx∗, x∗) ≤ d(xn, x∗)⊕ d(xn+1, x

∗) ( since 1− k > 0)
This implies that ∀n ≥ N2,

d(Tx∗, x∗) << ||z||
2 ⊕ ||z||

2 = ||z||.
i.e. d(Tx∗, x∗) << ||z||

m ∀m ≥ 1,

⇒ ||z||
m 	 d(Tx∗, x∗) ∈ P ∀m ≥ 1.

Since ||z||
m → 0̄ as m →∞ and P is closed we have

	d(Tx∗, x∗) ∈ P. Thus d(Tx∗, x∗) = 0̄. i.e. Tx∗ = x∗

So x∗ is a fixed point of T.
For uniqueness, suppose that y∗ is another fixed point of T. We have
d(x∗, y∗) = d(Tx∗, T y∗) ≤ kd(x∗, y∗)
⇒ (k − 1)d(x∗, y∗) ∈ P
⇒ d(x∗, y∗) = 0̄ ( since k − 1 < 0)
⇒ x∗ = y∗. �

Theorem 4.1 is justified by the following example.

Example 4.2. Let E be the real Banach space where E=R.
Define || || : E → R∗(I) by

||x||(t) =
{

1 if t = |x|
0 otherwise

Then [||x||]α = [|x| , |x|] ∀α ∈ (0, 1].
It is easy to verify that,
(i) ||x|| = 0̄ iff x = 0 (ii) ||rx|| = |r|||x|| (iii) ||x + y|| � ||x|| ⊕ ||y||.
Thus (E, || ||) is a complete fuzzy normed linear space ( since E is complete ).
If we define d : X ×X → E∗(I) where X=R by

d(x, y)(t) =


|x−y|

t if t ≥ |x− y|, x 6= y
1 if t = |x− y| = 0
0 otherwise

Then [d(x, y)]α = [|x− y| , |x−y|
α ] ∀α ∈ (0, 1].

It can be verified that d is a complete fuzzy ( since R is complete ) cone metric if we
choose the ordering ” ≤ ” as ” � ” and the cone P is given by P = {η ∈ E∗(I) : η �
0̄}.
Define a function f : X → X by

f(x) =
{ β

1+β x if x 6= 0
0 if x = 0

where 0 ≤ β < 2.
We have d(fx , fy) = d( β

1+β x , β
1+β y.
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Then [d(fx , fy)]α = [ β
1+β |x− y| , β

α(1+β) |x− y|] ∀α ∈ (0, 1].

Now d1
α(fx, fy) = β

1+β |x− y| = k|x− y| = kd1
α(x, y), k ∈ [0, 1).

Similarly d2
α(fx, fy) = k

α |x− y| = kd2
α(x, y).

So d(fx, fy) � kd(x, y). Thus f satisfies the condition of the Theorem 4.1 and x = 0
is the unique fixed of point of f.
Again for any fixed x0, iterative sequence {xn} is given by xn = ( β

1+β )nx0.

So lim
n→∞

xn = 0.

Theorem 4.3. Let (X, d) be a complete fuzzy cone metric space and the mapping
T : X → X satisfies the the contractive condition d(Tx, Ty) ≤ k(d(Tx, x) ⊕
d(Ty, y)) ∀x, y ∈ X, where k ∈ [0, 1

2 ) is a constant. Then T has a unique fixed
point in X. Also for any x ∈ X, iterative sequence {Tnx} converges to the fixed
point.

Proof. Choose x0 ∈ X, n ≥ 1.
Set x1 = Tx0, x2 = Tx1 = T 2x0, ........, xn+1 = Txn = Tn+1x0, .....
We have,
d(xn+1, xn) = d(Txn, Txn−1) ≤ k(d(Txn, xn)⊕ d(Txn−1, xn−1)) = k(d(xn+1, xn)⊕
d(xn, xn−1)).
So, d(xn+1, xn) ≤ k

1−kd(xn, xn−1) = hd(xn, xn−1) where h = k
1−k .

For n > m, we have
d(xn, xm) ≤ d(xn, xn−1)⊕ d(xn−1, xn−2)⊕ ......⊕ d(xm+1, xm).
i.e. d(xn, xm) ≤ (hn−1 + hn−2 + ...... + hm)d(x1, x0) = hm

1−hd(x1, x0).
Let 0̄ << ||c|| (c ∈ E) be given. Choose a natural number N1 such that
hm

1−hd(x1, x0) << ||c|| ∀m ≥ N1.

Thus ∀m,n ≥ N1 we get d(xn, xm) << ||c||. So {xn} is a Cauchy sequence in (X , d).
By completeness of X, there is x∗ ∈ X such that xn → x∗.

Choose a natural number N2 such that d(xn+1 , xn) << (1−k)
2k ||c|| and

d(xn+1 , x∗) << (1−k)
2 ||c|| ∀n ≥ N2.

Thus ∀n ≥ N2 we have
d(Tx∗, x∗) ≤ d(Txn , Tx∗) ⊕ d(Txn , x∗) ≤ k(d(Txn , xn) ⊕ d(Tx∗, x∗)) ⊕
d(xn+1 , x∗)
⇒ d(Tx∗, x∗) ≤ 1

1−k (kd(Txn, xn)⊕ d(xn+1, x
∗)) << ||c||

2 ⊕ ||c||
2 = ||c||

⇒ d(Tx∗, x∗) << ||c||
m ∀m ≥ 1 ( since ||c|| ∈ IntP ⇒ s||c|| ∈ IntP ∀s > 0)

⇒ ||c||
m 	 d(Tx∗, x∗) ∈ P ∀m ≥ 1.

Since ||c||
m → 0̄ as m →∞ and P is closed, it follows that

	d(Tx∗, x∗) ∈ P . So d(Tx∗, x∗) = 0̄. i.e. Tx∗ = x∗.
For uniqueness, if suppose that y∗ is another fixed point of T. Then
d(x∗ , y∗) = d(Tx∗ , T y∗) ≤ k(d(Tx∗ , x∗)⊕ d(Ty∗ , y∗)) = 0̄.
i.e. d(x∗ , y∗) = 0̄. i.e. x∗ = y∗. �

Theorem 4.3. is justified by the following example:

Example 4.4. In Example 4.2, define T (x) = x
4 , x ∈ X.

We have d1
α(Tx, Ty) = d1

α(x
4 , y

4 ) = |x4 −
y
4 | =

1
4 |x− y|.

Now d1
α(Tx, x) + d1

α(Ty, y) = d1
α(x

4 , x) + d1
α(y

4 , y) = |x4 − x|+ |y4 − y|.
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i.e. d1
α(Tx, x) + d1

α(Ty, y) = 3
4{|x|+ |y|} ≥ 3

4 |x− y|.
⇒ 1

3{d
1
α(Tx, x)+d1

α(Ty, y)} ≥ 1
4 |x−y| = d1

α(Tx, Ty) (4.4.1).
Similarly 1

3{d
2
α(Tx, x) + d2

α(Ty, y)} ≥ d2
α(Tx, Ty) (4.4.2).

From (4.4.1) and (4.4.2), we have 1
3{d(Tx, x)⊕ d(Ty, y)} � d(Tx, Ty).

i.e. d(Tx, Ty) � k{d(Tx, x)⊕ d(Ty, y)} where k = 1
3 ∈ [0, 1

2 ).
Thus T satisfies the condition of Theorem 4.3. Here 0 is the unique fixed point of
T.
Also any iterative sequence in X converges to 0.

Theorem 4.5. Let (X, d) be a complete fuzzy cone metric space and the mapping
T : X → X satisfies the the contractive condition d(Tx, Ty) ≤ k(d(Tx, y) ⊕
d(x, Ty)) ∀x, y ∈ X, where k ∈ [0, 1

2 ) is a constant. Then T has a unique fixed
point in X. For any x ∈ X, iterative sequence {Tnx} converges to the fixed point.

Proof. Choose x0 ∈ X, n ≥ 1.
Set x1 = Tx0, x2 = Tx1 = T 2x0, ........, xn+1 = Txn = Tn+1x0, .....
We have,
d(xn+1, xn) = d(Txn, Txn−1) ≤ k(d(Txn, xn−1)⊕d(Txn−1, xn)) = k(d(xn+1, xn−1)⊕
d(xn, xn)) = kd(xn+1, xn−1).
i.e. d(xn+1, xn) ≤ k(d(xn+1 , xn)⊕ d(xn , xn−1))
⇒ d(xn+1, xn) ≤ k

1−kd(xn, xn−1) = hd(xn, xn−1) where h = k
1−k .

For n > m, we have
d(xn, xm) ≤ d(xn, xn−1)⊕ d(xn−1, xn−2)⊕ ......⊕ d(xm+1, xm).
i.e. d(xn, xm) ≤ (hn−1 + hn−2 + ...... + hm)d(x1, x0) = hm

1−hd(x1, x0).
Let 0̄ << ||z|| where z ∈ E be given. Choose a natural number N1 such that
hm

1−hd(x1, x0) << ||z|| ∀m ≥ N1.

Thus ∀n > m ≥ N1 we get d(xn, xm) << ||z||.
So {xn} is a Cauchy sequence in (X , d). By completeness of X, there is x∗ ∈ X
such that xn → x∗.

Choose a natural number N2 such that d(xn , x∗) << (1−k)
2k ||z|| and

d(xn+1 , x∗) << (1−k)
2(1+k) ||z|| ∀n ≥ N2.

Thus ∀n ≥ N2 we have
d(Tx∗, x∗) ≤ d(Txn , Tx∗) ⊕ d(Txn , x∗) ≤ k(d(Tx∗ , xn) ⊕ d(Txn, x∗)) ⊕
d(xn+1 , x∗)
⇒ d(Tx∗, x∗) ≤ k(d(Tx∗ , x∗)⊕ d(xn, x∗)⊕ d(xn+1 , x∗))⊕ d(xn+1 , x∗)
⇒ d(Tx∗, x∗) ≤ k

1−kd(xn, x∗)⊕ 1+k
1−kd(xn+1, x

∗)

i.e d(Tx∗, x∗) << ||z||
2 ⊕ ||z||

2 = ||z||
⇒ d(Tx∗, x∗) << ||c||

m ∀m ≥ 1 ( since ||c|| ∈ IntP ⇒ s||c|| ∈ IntP ∀s > 0)
⇒ ||c||

m 	 d(Tx∗, x∗) ∈ P ∀m ≥ 1.

Since ||c||
m → 0̄ as m →∞ and P is closed, it follows that

	d(Tx∗, x∗) ∈ P . So d(Tx∗, x∗) = 0̄. i.e. Tx∗ = x∗.
For uniqueness, if suppose that y∗ is another fixed point of T. Then
d(x∗ , y∗) = d(Tx∗ , T y∗) ≤ k(d(Tx∗ , y∗)⊕ d(Ty∗ , x∗)).
i.e. d(x∗ , y∗) ≤ 2kd(x∗ , y∗).
This implies that d(x∗ , y∗) = 0̄ ( since 2k − 1 < 0 ). i.e. x∗ = y∗. �
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Theorem 4.5 is justified by the following example:

Example 4.6. In Example 4.2, define T (x) = x
4 , x ∈ X.

We have d1
α(Tx, Ty) = 1

4 |x− y|.
Now, d1

α(Tx, y) + d1
α(x, Ty) = d1

α(x
4 , y) + d1

α(x , y
4 ) = |x4 − y|+ |x− y

4 |.
i.e. d1

α(Tx, y) + d1
α(x, Ty) ≥ |x4 − y + x− y

4 | =
5
4 |x− y|.

⇒ 1
5{d

1
α(Tx, y)+d1

α(x, Ty)} ≥ 1
4 |x−y| = d1

α(Tx, Ty) (4.6.1).
Similarly 1

5{d
2
α(Tx, y)+d2

α(x, Ty)} ≥ 1
4 |x−y| = d2

α(Tx, Ty) (4.6.2).
From (4.6.1) and (4.6.2), it follows that,
d(Tx, Ty) � k(d(Tx, y)⊕ d(x, Ty)) where k = 1

5 ∈ [0, 1
2 ).

Thus T satisfies the condition of Theorem 4.5. Here 0 is the unique fixed point of
T.
Also any iterative sequence in X converges to 0.

5. Conclusion

In this paper, it is shown that every regular fuzzy cone is normal but not con-
versely . There are no fuzzy normal cones with normal constant M < 1. Some fixed
point theorems are established in fuzzy cone metric spaces by omitting the assump-
tion of normality. I think that there is a large scope of developing more results of
fuzzy functional analysis particularly in the field of generalized fuzzy metric spaces.
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