
Annals of Fuzzy Mathematics and Informatics

Volume 9, No. 2, (February 2015), pp. 183–195

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Application of intuitionistic fuzzy mathematical
programming with exponential membership and

quadratic non-membership functions in
matrix games

Mijanur Rahaman Seikh, Prasun Kumar Nayak, Madhumangal Pal

Received 14 April 2014; Revised 21 July 2014; Accepted 6 August 2014

Abstract. The aim of this paper is to develop a new concept of opti-
mization technique using Atanassov’s intuitionistic fuzzy sets(IFS), to solve
two-person zero sum matrix games in which each player has a intuitionistic
fuzzy goal for each payoff. In this methodology, the solution concept for
such games is defined by applying intuitionistic fuzzy mathematical pro-
gramming with exponential membership and quadratic non-membership
functions. It is noted that each matrix game with goals represented by
Atanassov’s IFS has a solution, which can be obtained through solving
a pair of auxiliary non-linear programming models for two players. It is
shown that the solution obtained from this methodology is better than the
solution obtained from crisp equivalent problem. In addition, numerical
example is also provided to illustrate the methodology.
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1. Introduction

Fuzziness in game theory has been investigated and applied by various re-
searchers ([6], [18], [21], [28], [14]). However in many cases they do not represent
exactly the real problems. In practical situation, due to insufficiency in the infor-
mation available, it is not easy to describe the constraint conditions by ordinary
fuzzy sets and the evaluation of membership values is not always possible up to
decision makers(DM)’s satisfaction, consequently there remains an indeterministic
part of which hesitation survives. The fuzzy set uses only a membership function
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to indicate the degree of belongingness to the fuzzy set under consideration. The
degree of non-belongingness is just automatically the compliment of 1. However,
a human being who expresses the degree of membership of a given element in a
fuzzy set very often does not express corresponding degree of non-membership as
the complement to 1. Sometimes it seems to be more natural to describe imprecise
and uncertain opinions not only by membership functions. However, in some sit-
uations players also describe their negative feelings, i.e., degrees of dissatisfaction
about the outcomes of the game. On the other hand, the players can only estimate
their aspiration levels (goals) and/or their values with some imprecision. But it is
possible that he/she is not so sure about it. In other words, there may be hesitation
about the approximate payoff values. It is therefore most likely that the players have
some indeterminacy or hesitation about these approximations. Fuzzy set theory is
thus not enough to model the matrix game problems involving indeterminacy in as-
piration levels of the players. Therefore it is reasonable to believe that there is some
indeterminacy in estimating the aspiration levels. In such situation intuitionistic
fuzzy(IF) set, introduced by Atanassov [4, 5], serve better our required purpose. IF
set is characterized by two functions expressing the degree of membership and the
degree of non-membership, respectively. The hesitation degree is equal to 1 minus
both the degree of membership and the degree of non-membership. The IF set may
express and describe information more abundant and flexible than the fuzzy sets
when uncertain information is involved. The IF set has been applied to different ar-
eas such as decision making problem [29], medical diagnosis ([7],[9]) multi-attribute
decision making problems [13] etc.

Intuitionistic fuzziness in matrix games can appear in so many ways, but two
cases are seemed to be very natural. First one is the goal may be IF and other
is the elements of the pay-off matrix are IF numbers ([12], [25], [22]). These two
classes of fuzzy matrix games are referred as matrix games with IF goals and ma-
trix games with IF pay-offs. Li and Nan [11] described a non-linear programming
approach for the matrix games with pay-offs of IF sets. Nan and Li [16] discussed a
method for solving matrix games with pay-offs of triangular IF numbers. Li et al.
[15] implemented a bi-objective programming approach to solve matrix games with
pay-offs of IF numbers. Seikh et al. [24] applied IF numbers to bi-matrix games.
Aggarwal et al. [1, 2] extended some results in matrix games with fuzzy goals and
fuzzy pay-offs [6] to IF scenario. Nan and Li [17] formulated a linear programming
approach to matrix games with IF goals. Seikh et al.[26] investigated matrix games
in intuitionistic fuzzy environment based on aspiration level approach.

In this paper, intuitionistic fuzzy optimization(IFO) is used to solve matrix games
in the sense of degree of attainment of IF goals. The advantage of the IFO tech-
nique is that it gives the richest apparatus for formulation of optimization problems
because this method can consider together the degree of acceptance and the degree
of rejection. We assume that each player has a IF goal for the choice of the strategy
in order to incorporate ambiguity of human judgement. We assume that, DMs want
to optimize the degree of attainment of the IF goal. It is important to note that
when implementing a matrix game to IF linear programming formulations, unique
membership function and non-membership function are required to define. The de-
gree of membership of a solution may be defined as the degree of acceptance and
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the degree of non-membership of a solution as the degree of rejection. The sum of
degrees of acceptance and rejection is considered as less than or equal to 1.

Several membership and non-membership functions have been employed in op-
timization techniques such as: linear, piece-wise linear, exponential, hyperbolic,
logistic, parabolic, S-shaped, etc. Linear membership and non-membership func-
tions are most commonly used ([6], [21]) because it is defined by fixing two points
(upper and lower levels) of acceptability and rejectability. However, a linear mem-
bership function is not a suitable representation in many practical situations. The
non-linear membership and non-membership functions are used more frequently ([8],
[10], [27]) that provide a better representation. Furthermore, if the membership and
non-membership functions are interpreted as the IF utility of decision maker used
for describing levels of indifference, preference or aversion towards uncertainty, then
non-linear membership and non-membership functions provide a better representa-
tion. For this reason, in this paper, we choose exponential membership function and
quadratic non-membership function to establish IF environment.

The paper is organized as follows: In Section 2, some basic definitions and nota-
tions on IFS are recalled. In Section 3, the solution procedure of the matrix game
on the basis of defining IFO model is described. In Section 4, numerical example is
provided for illustration.

2. Preliminaries

2.1. Intuitionistic fuzzy sets. The IFS introduced by Atanassov [4, 5] is charac-
terized by two functions expressing the degree of belongingness and the degree of
non-belongingness respectively.

Definition 2.1. Let U = {x1, x2, · · · , xn} be a finite universal set. An IFS Ã in a
given universal set U is an object having the form

Ã =
{
〈x, µÃ(x), νÃ(x)〉 | x ∈ U

}
(2.1)

where the functions

µÃ : U → [0, 1] and νÃ : U → [0, 1]

define the degree of membership and the degree of non-membership of an element
x ∈ U to the set A ⊆ U, respectively, such that they satisfy the following condition:

0 ≤ µÃ(x) + νÃ(x) ≤ 1,∀x ∈ U

which is known as IF condition. The degree of acceptance µÃ(x) and of non-
acceptance νÃ(x) can be arbitrary. The set of all IFSs over U is defined by IFS(U).

Definition 2.2. Let Ã and B̃ be two IFSs in the set U . The union and intersection
of Ã and B̃, Atanassov [4, 5], are defined as

A ∪B =
{
〈x,max(µÃ(x), µB̃(x)),min(νÃ(x), νB̃(x))〉|x ∈ U

}
A ∩B =

{
〈x,min(µÃ(x), µB̃(x)),max(νÃ(x), νB̃(x))〉|x ∈ U

}  .(2.2)
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Note: From the above definitions we see that the numbers µÃ(x) and νÃ(x) reflect
respectively the extent of acceptance and the degree of rejection of the element x to
the set Ã, and the value πÃ(x) = 1− µÃ(x)− νÃ(x) is the extent of indeterminacy
between both.

2.2. Intuitionistic fuzzy optimization model. IFO, a method of uncertainty
optimization, is put forward on the basis of fuzzy set. It is an extension of fuzzy
optimization in which the degrees of rejection of objective(s) and constraints are
considered together with the degrees of satisfaction ([3], [19]). According to IFO
theory, we are to maximize the degree of acceptance of the IF objective(s) and
constraints and to minimize the degree of rejection of IF objective(s) and constraints
as follows:

max
x∈<n

{µk(x)};
min
x∈<n

{νk(x)};
µk(x), νk(x) ≥ 0;
µk(x) ≥ νk(x);

0 ≤ µk(x) + νk(x) ≤ 1;


k = 1, 2, . . . , n

where µk(x) denotes the degree of acceptance and νk(x) denotes the degree of re-
jection of x from the kth IFS. The formula can be transformed to the following
system

max ξ, min η
ξ ≤ µk(x); k = 1, 2, . . . , n
η ≥ νk(x); k = 1, 2, . . . , n

ξ ≥ η; ξ + η ≤ 1; ξ, η ≥ 0

where ξ denotes the minimal acceptable degree of objective(s) and constraints and
η denotes the maximal degree of rejection of objective(s) and constraints. The IFO
model can be changed into the following crisp optimization model as:

max{ξ − η}
ξ ≤ µk(x); k = 1, 2, . . . , n
η ≥ νk(x); k = 1, 2, . . . , n

ξ ≥ η; ξ + η ≤ 1; ξ, η ≥ 0

(2.3)

which can be easily solved by various mathematical programming.

3. Mathematical model of a matrix game

Let i ∈ {1, 2, . . . ,m} be a pure strategy available for player I and j ∈ {1, 2, . . . , n}
be a pure strategy available for player II. When player I chooses a pure strategy i
and the player II chooses a pure strategy j, then aij is a payoff for player I and −aij

be a payoff for player II. The two person zero sum matrix game G can be represented
186
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by the pay-off matrix

B1 B2 · · · Bn

A =

A1

A2

...
Am


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 .

3.1. Mixed strategy. Consider the game G with no saddle point, i.e. max
i
{min

j
aij}

6= min
j
{max

i
aij}. To solve such game, Neumann and Morgenstern [20] introduced

the concept of mixed strategy in classical form. We denote the sets of all mixed
strategies, called strategy spaces, available for players I, II by

SI =
{
x = (x1, x2, · · · , xm) ∈ <m

+ |xi ≥ 0; i = 1, 2, · · · ,m and
m∑

i=1

xi = 1
}

SII =
{
y = (y1, y2, · · · , yn) ∈ <n

+|yj ≥ 0; j = 1, 2, · · · , n and
n∑

j=1

yj = 1
}

,

where <m
+ denotes the m−dimensional non-negative Euclidean space. Thus by a

crisp two person zero sum game G we mean the triplet G = (SI , SII , A). Since the
player is uncertain about what strategy he/she will choose, he/she will choose a
probability distribution over the set of alternatives available to him/her or a mixed
strategy in terms of game theory.

Definition 3.1. (Expected payoff) If the mixed strategies x and y are proposed
by the player I and player II respectively, then the expected pay-off of the player I
when the player II uses the strategy y is defined by

E(x,y) = xT Ay =
m∑

i=1

n∑
j=1

xiaijyj .(3.1)

A pair of mixed strategies (x∗,y∗) is said to be optimal if and only if

E(x∗,y) ≥ E(x∗,y∗) ≥ E(x,y∗) for all x ∈ SI and y ∈ SII .

Also v∗ = E(x∗,y∗) = x∗T Ay∗ is known as the value of the game. The existing
theory of crisp games has certain limitations because of uncertainties and ambiguous
communication. The purpose of this paper is to obviate such difficulties. Now, we
define the meaning of IF goal and try to explain how the players will play the game
in IF environment.

3.2. Matrix game with IF goal. The IF goal models are described on the basis of
maxmin and minmax principles of crisp matrix game theory. First, we define some
terms which are useful in the solution procedure. Let the domain for the player I be
defined by
D =

{
xT Ay|(x,y) ∈ SI × SII ⊂ <m ×<n

}
⊆ <.
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Definition 3.2. (IF goal) An IF goal Ĝ1 for player I is defined as an IFS on D
characterized by the membership and nonmembership functions

µĜ1
: D → [0, 1] and νĜ1

: D → [0, 1]

or simply, µ1 : D → [0, 1] and ν1 : D → [0, 1]

such that 0 ≤ µ1(x) + ν1(x) ≤ 1. Similarly, an IF goal for player II is an IFS on
D characterized by the membership function µĜ2

: D → [0, 1] and nonmembership
function νĜ2

: D → [0, 1] such that 0 ≤ µĜ2
(x) + νĜ2

(x) ≤ 1.

The values of membership and non-membership functions for an IF goal can be
interpreted as the degree of attainment [23] of the IF goal for a strategy of a payoff.
According to property of IFS (seen in section 2.1 in this paper), the intersection of
IF objective(s) and constraints is defined as

C = A ∩B =
{
〈x, µC(x), νC(x)〉|x ∈ X

}
where µC(x) = min[µA(x), µB(x)]; νC(x) = max[νA(x), νB(x)]

where A denotes integrated IF objective and B denotes integrated IF constraint set.
µC(x) denotes the degree of acceptance of IF decision set and νC(x) denotes the
degree of rejection of IF decision set.

Definition 3.3. (Degree of attainment of IF goal) For any pair of mixed strategies
(x,y) ∈ SI × SII , the degree of attainment of the IF goal for player I is defined by
the membership and non-membership functions as

max
x∈SI

{µ1(x,y)} and min
x∈SI

{ν1(x,y)}.(3.2)

The degree of attainment of the IF goal can be considered to be a concept of
a degree of satisfaction and the degree of rejection, when the IF constraint can
be replaced by expected pay-off. Let player I supposes that, player II will choose a
strategy y so as to minimize player I’s membership function µ1 and non-membership
function ν1. Let us assume that, a player has no information about his opponent
or the information is not useful for the decision making if he/she has. Here player
I chooses a strategy so as to maximize the membership function µ1 and minimize
the non-membership function ν1 of the IF goal. Similar for player II. Thus, when a
player has two different strategies, he/she prefers the strategy possessing the higher
membership function value and lower non-membership function value in comparison
to the other.

Definition 3.4. (Maxmin Value) For any pair of mixed strategies (x,y) ∈ SI ×SII ,
the maxmin value with respect to a degree of attainment of the IF goal for player I
is defined as

max
x∈SI

min
y∈SII

µ1(xT Ay) and min
x∈SI

max
y∈SII

ν1(xT Ay).(3.3)

Similarly, the minmax value with respect to the degree of attainment of the IF goal
for player II is defined as

max
y∈SII

min
x∈SI

µ2(xT Ay) and max
x∈SI

min
y∈SII

ν2(xT Ay).(3.4)
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Thus the player I wishes to determine x∗ ∈ SI (respectively y∗ ∈ SII) such that
the maxmin value with respect to the degree of attainment of the IF goal for player
I is attained. Similarly, for player II. For this, we assume exponential membership
function and quadratic non-membership functions {µk(xT Ay), νk(xT Ay); k = 1, 2},
for player I and player II respectively.

We now analyze the optimization problems for player I and player II so as to
obtain a solution of the given matrix game with respect to the degree of attainment
of the IF goal. By using the above definitions for the IF game, we construct the
following IF programming problem for player I and II respectively.

3.3. Optimization problem for player I. We construct the membership function
µ1(xT Ay) and non-membership function ν1(xT Ay) of the IF goal for the player I
as (depicted in Fig.1):

µ1(xT Ay) =


1; xT Ay ≥ a

e
−α( xT Ay−a

a−a
)−1

e−α−1 ; a < xT Ay < a

0; xT Ay ≤ a

ν1(xT Ay) =


1; xT Ay ≤ a(

a−xT Ay
a−a

)2

; a < xT Ay < a

0; xT Ay ≥ a

where α is a parameter that measure the degree of vagueness and is called the shape
parameter.

-

6

xT Aya a

µ1

µ1, ν1

ν11

Figure 1. Optimization problem for player I

Also a and a are the tolerances of the expected pay-off xT Ay and µ1(xT Ay)
should be determined in objective allowable region [a, a]. For player I, a and a
are the pay-offs giving the worst and the best degree of satisfaction respectively.
Although a and a would be any scalars with a > a, Nishizaki and Sakawa [21]
suggested that, parameters a and a can be taken as

a = max
x

max
y

xT Ay = max
i

max
j

aij

a = min
x

min
y

xT Ay = min
i

min
j

aij .

Thus player I is not satisfied by the pay-off less than a but is fully satisfied by the
pay-off greater than a. Thus, the conditions a ≤ min

i,j
aij and a ≥ max

i,j
aij hold.
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For these membership and non-membership functions of the IF goal for player
I from (2.3) a maxmin solution with respect to the degree of attainment of the
aggremented IF goal can be obtained by solving the following crisp mathematical
problem:

max{ξ1 − η1}

S.T. ξ1 ≤ e

−α
(xT Ay − a

a− a

)
−1

e−α−1 ;

η1 ≥
(

a− xT Ay
a− a

)2

;

eT x = 1; ξ1 ≥ η1; ξ1 + η1 ≤ 1; x, ξ1, η1 ≥ 0,


(3.5)

where ξ1 and η1 denote respectively the minimal acceptance degree and the maximal
rejection degree of constraints fixed by the player I. Also e = (1, 1, · · · , 1)T , is an
unit vector in <m

+ .
From (3.5) we see that the constraints are separable in the decision variable x.

Thus the model can be changed into the following optimization model.

max{ξ1 − η1}

S.T.
1

e−α − 1
e

−α

[
m∑

i=1

aij

a− a
xi −

a

a− a

]
− 1 ≥ ξ1; j = 1, 2, . . . , n[

m∑
i=1

aij

a− a
xi −

a

a− a

]2

≤ η1; j = 1, 2, . . . , n

eT x = 1; ξ1 ≥ η1; ξ1 + η1 ≤ 1; x, ξ1, η1 ≥ 0


(3.6)

For the choice of exponential membership and quadratic non-membership functions
of the IF goals, solution of (3.6) is equal to degree of attainment of the IF goal
for the matrix game. Since SI is convex and the membership and non-membership
functions both are continuous within [a, a], quite naturally these two functions meet
at a point somewhere in [a, a]. Therefore, the existence of solution of the game is
guaranteed from the equation (3.6). Also if (x∗, ξ∗1 , η∗1) is an optimal solution of (3.6)
then x∗ is an optimal strategy for player I and (ξ∗1 − η∗1) is the degree of attainment
to which the aspiration level of player I can be met by choosing to play the strategy
x∗.

3.4. Optimization problem for player II. Similarly, for player II, we consider
the membership function µ2(xT Ay) and non-membership function ν2(xT Ay) of the
IF goal as:

µ2(xT Ay) =


0; xT Ay ≤ a

e
−β

(
a−xT Ay

a−a

)
−e−β

1−e−β ; a < xT Ay < a

1; xT Ay ≥ a

ν2(xT Ay) =


0; xT Ay ≥ a(

xT Ay−a
a−a

)2

; a < xT Ay < a

1; xT Ay ≤ a,
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where β is the shape parameter that measures the degree of vagueness. Also a and a
are the tolerances of the expected pay-off xT Ay and µ2(xT Ay) should be determined
in objective allowable region [a, a].

As in case of player I, we have the following certain mathematical problem as

max{ξ2 − η2}

S.T. ξ2 ≥
e
−β

(
a− xT Ay

a− a

)
− e−β

1− e−β
;

η2 ≤
(

xT Ay − a

a− a

)2

;

eT y = 1; ξ2 ≥ η2; ξ2 + η2 ≤ 1; y, ξ2, η2 ≥ 0,


(3.7)

where ξ2 denotes the maximum acceptance degree of constraints and η2 denotes the
minimal rejection degree of constraints fixed by the player II and e = (1, 1, · · · , 1)T ,
is an unit vector in <n

+.
From (3.7) we see that the constraints are separable in the decision variable y.

Thus the model can be changed into the following optimization model.max{η2 − ξ2}

S.T
e

−β

−
n∑

j=1

aij

a− a
yj +

a

a− a


− e−β

1− e−β
≤ ξ2; i = 1, 2, . . . ,m n∑

j=1

aij

a− a
yi −

a

a− a

2

≥ η2; i = 1, 2, . . . ,m

eT y = 1; η2 ≥ ξ2; ξ2 + η2 ≤ 1; y, ξ2, η2 ≥ 0


(3.8)

The optimal solution (y∗, ξ∗2 , η∗2) obtained from the mathematical programming
problem (3.8) for which y∗ gives an optimal strategy for player II and (η∗2−ξ∗2) gives
the degree of attainment to which the aspiration level of player II can be met by
choosing to play the strategy y∗. Thus, once an optimal solutions (x∗, ξ∗1 , η∗1) and
(y∗, ξ∗2 , η∗2) of the mathematical programming problems (3.6) and (3.8) have been
obtained for given α, β (shape parameters) , x∗ and y∗ give an equilibrium solution
of the matrix game. The value of the game can be determined by evaluating x∗T Ay∗.

4. Numerical example

Consider a two-person zero-sum crisp matrix game G, whose pay-off matrix is
given by

A =

 9 1 4
1 6 3
5 2 8

 .

The optimal solution(crisp) of the game G is given by (x∗,y∗, v∗) where x∗ = (0.375,
0.541667, 0.083333)T , y∗ = (0.291667, 0.55556, 0.152778)T and the value of the game
is v∗ = 3.79167.

Next we consider the IF versions of the game G. The tolerances are arbitrar-
ily fixed for each membership and non-membership functions of the players. Let
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the IF goals of the player I be represented by the following membership and non-
membership functions,

µ1(xT Ay) =


1; xT Ay ≥ 9

e
−α

(
xT Ay−1

8

)
−1

e−α−1 ; 1 < xT Ay < 9
0; xT Ay ≤ 1,

ν1(xT Ay) =


1; xT Ay ≤ 1(

9−xT Ay
8

)2

; 1 < xT Ay < 9
0; xT Ay ≥ 9.

Using (3.6) we get the following mathematical programming problem for player I.

max{ξ1 − η1}

e−
α
8 [9x1+x2+5x3−1] − (e−α − 1)ξ1 − 1 ≥ 0

e−
α
8 [x1+6x2+2x3−1] − (e−α − 1)ξ1 − 1 ≥ 0

e−
α
8 [4x1+3x2+8x3−1] − (e−α − 1)ξ1 − 1 ≥ 0
81x2

1 + x2
2 + 25x2

3 + 18x1x2 + 10x2x3

+90x1x3 − 162x1 − 18x2 − 90x3 − 64η1 + 81 ≤ 0
x2

1 + 36x2
2 + 4x2

3 + 12x1x2 + 24x2x3

+4x1x3 − 18x1 − 108x2 − 36x3 − 64η1 + 81 ≤ 0
16x2

1 + 9x2
2 + 64x2

3 + 24x1x2 + 48x2x3

+64x1x3 − 72x1 − 54x2 − 144x3 − 64η1 + 81 ≤ 0
x1 + x2 + x3 = 1

ξ1 + η1 ≤ 1; ξ1 ≥ η1; x, ξ1, η1 ≥ 0.



(4.1)

Similarly, let the IF goals of the player II be represented by the following mem-
bership and non-membership functions,

µ2(xT Ay) =


0; xT Ay ≤ 1

e
−β

(
9−xT Ay

8

)
−e−β

1−e−β ; 1 < xT Ay < 9
1; xT Ay ≥ 9

ν2(xT Ay) =


1; xT Ay ≤ 1(

xT Ay−1
8

)2

; 1 < xT Ay < 9
0; xT Ay ≥ 9.

With the help of (3.8) we get the following mathematical programming problem for
player II.

max{η2 − ξ2}
192
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Subject to

e−
β
8 [9−9y1−y2−4y3] − e−β − (1− e−β)ξ2 ≤ 0

e−
β
8 [9−y1−6y2−3y3] − e−β − (1− e−β)ξ2 ≤ 0

e−
β
8 [9−5y1−2y2−8y3] − e−β − (1− e−β)ξ2 ≤ 0

81y2
1 + y2

2 + 16y2
3 + 18y1y2 + 8y2y3

+72y1y3 − 18y1 − 2y2 − 8y3 − 64η2 + 1 ≥ 0
y2
1 + 36y2

2 + 9y2
3 + 12y1y2 + 36y2y3

+6y1y3 − 2y1 − 12y2 − 6y3 − 64η2 + 1 ≥ 0
25y2

1 + 4y2
2 + 64y2

3 + 20y1y2 + 32y2y3

+80y1y3 − 10y1 − 4y2 − 16y3 − 64η2 + 1 ≥ 0
y1 + y2 + y3 = 1

ξ2 + η2 ≤ 1; η2 ≥ ξ2; y, ξ2, η2 ≥ 0.



(4.2)

The best values of the optimal solutions are obtained by solving (4.1), and (4.2)
using LINGO software are given by, for α = 1 and for β = 3,

x∗ = (0.3043478, 0.5652174, 0.1304348)T , ξ∗1 = 0.60255, η∗1 = 0.387448

y∗ = (0.3043478, 0.5217391, 0.1739130)T , ξ∗2 = 0.1712481, η∗2 = 0.397448.

This choice corresponds to the situation where player I aspires to win more than
0.60255, but is satisfied if he/she wins more than 0.387448. Similarly for player II
aspires not to lose more than 0.397448 but he/she will be satisfied if he/she loses at
most 0.1712481. The degree of attainment of the IF goals for the players I and II
are 0.2051 and 0.2262 respectively. The value of the game with IF goal is given by
x∗T Ay∗ = 3.95652, which is better value than our analogous crisp one.

Remark: In general, the solution of the IFO problem is different from the solution
of the analogous crisp problems, and the degrees of satisfaction of the given objective
or constraint in an IFO problem can be higher or lower. This depends on the
formulation of the respective functions of acceptance and rejection.

5. Conclusion

In this paper, two-person zero sum matrix games in which goals are represented
by Atanassov’s IFS has been considered. The solutions are obtained by solving two
non-linear programming problems which have been formulated by choosing exponen-
tial membership and quadratic non-membership functions. One of the advantages of
using exponential membership function(which is a continuous function) is the flex-
ibility in changing the shape parameters. Also, the players can easily minimize the
worse cases and maximize the better cases. In the process of solution it is desirable
that the shape parameters are heuristically and experimentally decided by the play-
ers, because, after obtaining the optimum value in any situation, if the player is not
satisfied with the outputs, he/she may perform the analysis again by re-choosing
the shape parameters until a better optimal solution is obtained. Also, The degree
of membership and the degree of non-membership functions have been considered
together so that the sum of both values is less than or equal to 1. Further, the
solution concept is defined in the sense of degree of attainment of the intuitionistic
fuzzy goals. With the help of numerical illustration, we have shown that the IF
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version of two person zero sum matrix game gives better results than that of our
crisp situation.

Although, in the proposed methodology we have considered matrix games with
IF goals, a general methodology for the solution of matrix games in which the goals
as well as the pay-offs are described by IFS will be investigated in near future.
This theory can be applied in decision making theory such as economics, operations
research, management, war science, etc.
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