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their properties are examined in soft normed linear space settings.

2010 AMS Classification: 03E72, 08A72

Keywords: Soft sets, Soft elements, Soft vectors, Soft linear spaces, Soft normed
linear spaces, Soft Banach spaces, Equivalent soft norm, Convex soft sets.

Corresponding Author: Sujoy Das (sujoy math@yahoo.co.in)

1. Introduction

In 1999, Molodtsov [16] introduced the concept of soft set as a new mathemat-
ical tool for dealing with uncertainties while modeling the problems in engineering,
physics, computer science, economics, social sciences, and medical sciences. Follow-
ing his work Maji et al. ([13], [14]) introduced several operations on soft sets and
applied soft sets to decision making problems. Some new operations on soft sets were
described by Ali et al. in ([2]). Chen et al. [3] presented a new definition of soft set
parametrization reduction and some works in this line have been found in ([12], [17],
[21]). Soft group was introduced by Aktas and Cagman [1] and soft BCK/BCI –
algebras and its application in ideal theory was investigated by Jun ([10], [11]). Feng
et al. [8] worked on soft semirings, soft ideals and idealistic soft semirings. Some
works on semigroups and soft ideals over a semi-group has been found in ([18]). The
idea of a soft topological space was first given by M. Shabir, M. Naz [19]. Mappings
between soft sets were described by P. Majumdar, S. K. Samanta [15]. Feng et al.
[9] worked on soft sets combined with fuzzy sets and rough sets. Recently in ([4], [5])
we have introduced notions of soft real sets, soft real numbers, soft complex sets, soft
complex numbers and some of their basic properties have been investigated. Some
applications of soft real sets and soft real numbers have been presented in real life
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problems. Two different notions of ’soft metric’ are presented in ([6], [7]) and some
properties of soft metric spaces are studied in both cases.

In this paper we have introduced notions of soft linear space and soft normed
linear space. In Section 2, some preliminary results are given. In Section 3, a notion
of ‘soft linear space’ is given and various properties of soft linear spaces are studied.
In Section 4, a definition of ‘soft vector’ in a soft linear space is given and various
properties of soft vectors are studied in details with examples and counter examples.
A notion of ‘soft norm’ in a soft linear space is introduced in Section 5. It has been
shown that every ‘soft normed linear space’ is also a ‘soft metric space’ [6]. In that
section, completeness of soft normed linear spaces, equivalent soft norms and convex
soft sets are studied in soft normed linear space settings. Section 6 concludes the
paper.

2. Preliminaries

Definition 2.1 ([16]). Let U be an universe and E be a set of parameters. Let
P(U) denote the power set of U and A be a non-empty subset of E. A pair (F,A)
is called a soft set over U , where F is a mapping given by F : A → P(U). In other
words, a soft set over U is a parametrized family of subsets of the universe U . For
ε ∈ A, F (ε) may be considered as the set of ε – approximate elements of the soft
set (F,A).

Definition 2.2 ([9]). For two soft sets (F,A) and (G, B) over a common universe
U , we say that (F,A) is a soft subset of (G, B) if

(1) A ⊆ B and
(2) for all e ∈ A, F (e) ⊆ G(e). We write (F,A)⊂̃(G, B).

(F,A) is said to be a soft superset of (G, B), if (G, B) is a soft subset of (F,A). We
denote it by (F,A)⊃̃(G, B).

Definition 2.3 ([9]). Two soft sets (F,A) and (G, B) over a common universe U
are said to be equal if (F,A) is a soft subset of (G, B) and (G, B) is a soft subset of
(F,A).

Definition 2.4 ([9]). The complement of a soft set (F,A) is denoted by
(F,A)c = (F c, A), where F c : A → P(U) is a mapping given by F c (α) = U −F (α),
for all α ∈ A.

Definition 2.5 ([14]). A soft set (F,E) over U is said to be an absolute soft set
denoted by Ǔ if for all ε ∈ E, F (ε) = U .

Definition 2.6 ([14]). A soft set (F,E) over U is said to be a null soft set denoted
by Φ if for all ε ∈ E, F (ε) = ∅.

Definition 2.7 ([14]). The union of two soft sets (F,A) and (G, B) over the common
universe U is the soft set (H,C) , where C = A ∪B and for all e ∈ C,

H (e) =

 F (e) if e ∈ A−B
G (e) if e ∈ B −A
F (e) ∪G (e) if e ∈ A ∩B.

We express it as (F,A) ∪̃ (G, B) = (H,C).
92
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The following definition of intersection of two soft sets is given as that of the bi-
intersection in [8].

Definition 2.8 ([8]). The intersection of two soft sets (F,A) and (G, B) over the
common universe U is the soft set (H,C) , where C = A ∩ B and for all e ∈ C,
H (e) = F (e) ∩G(e). We write (F,A) ∩̃ (G, B) = (H,C).

Let X be an initial universal set and E be the non-empty set of parameters.

Definition 2.9 ([19]). The difference (H,E) of two soft sets (F,E) and (G, E) over
X, denoted by (F,E) \(G, E), is defined by H (e) = F (e)\G(e) for all e ∈ E.

Proposition 2.10 ([19]). Let (F,E) and (G, E) be two soft sets over X. Then
(i). ((F,E)∪̃(G, E))c = (F,E)c∩̃(G, E)c

(ii). ((F,E)∩̃(G, E))c = (F,E)c∪̃(G, E)c
.

Definition 2.11 ([4]). Let X be a non-empty set and E be a non-empty parameter
set. Then a function ε : E → X is said to be a soft element of X. A soft element
ε of X is said to belongs to a soft set A of X, which is denoted by ε∈̃A, if ε (e) ∈
A (e) , ∀e ∈ E. Thus for a soft set A of X with respect to the index set E, we have
A (e) =

{
ε (e) , ε∈̃A

}
, e ∈ E.

It is to be noted that every singleton soft set (a soft set (F,E) for which F (e) is
a singleton set, ∀e ∈ E) can be identified with a soft element by simply identifying
the singleton set with the element that it contains ∀e ∈ E.

Definition 2.12 ([4]). Let R be the set of real numbers and B(R) the collection
of all non-empty bounded subsets of R and A taken as a set of parameters. Then a
mapping F : A → B(R) is called a soft real set. It is denoted by (F,A). If specifically
(F,A) is a singleton soft set, then after identifying (F,A) with the corresponding
soft element, it will be called a soft real number.

We use notations r̃, s̃, t̃ to denote soft real numbers whereas r, s, t will denote
a particular type of soft real numbers such that r (λ) = r, for all λ ∈ A etc. For
example 0 is the soft real number where 0 (λ) = 0, for all λ ∈ A.

Definition 2.13 ([6]). For two soft real numbers r̃, s̃ we define
(i). r̃≤̃s̃ if r̃ (λ) ≤ s̃ (λ) , for all λ ∈ A.

(ii). r̃≥̃s̃ if r̃ (λ) ≥ s̃ (λ) , for all λ ∈ A.
(iii). r̃<̃s̃ if r̃ (λ) < s̃ (λ) , for all λ ∈ A.
(iv). r̃>̃s̃ if r̃ (λ) > s̃ (λ) , for all λ ∈ A.

Definition 2.14 ([6]). A soft real number r̃ is said to be non-negative if r̃ (λ) ≥ 0,
for all λ ∈ A. We denote the set of all non-negative soft real numbers by R (A)∗.

Remark 2.15. Let X be a non-empty set. Let X̌ be the absolute soft set i.e.,
F (λ) = X, ∀λ ∈ A, where (F,A) = X̌. Let S(X̌) be the collection all soft sets
(F,A) over X for which F (λ) 6= ∅, for all λ ∈ A together with the null soft set Φ.
Let (F,A)(6= Φ) ∈ S(X̌), then the collection of all soft elements of (F,A) will be
denoted by SE (F,A) . For a collection B of soft elements of X̌, the soft set generated
by B is denoted by SS(B).
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Definition 2.16 ([6]). A mapping d : SE(X̌) × SE(X̌) → R (A)∗, is said to be a
soft metric on the soft set X̌ if d satisfies the following conditions:
(M1). d (x̃, ỹ) ≥̃0, for all x̃, ỹ∈̃X̌.
(M2). d (x̃, ỹ) = 0 if and only if x̃ = ỹ.
(M3). d (x̃, ỹ) = d (ỹ, x̃) for all x̃, ỹ∈̃X̌.
(M4). For all x̃, ỹ, z̃∈̃X̌, d (x̃, z̃) ≤̃d (x̃, ỹ) + d (ỹ, z̃)

The soft set X̌ with a soft metric d on X̌ is said to be a soft metric space and
is denoted by (X̌, d, A) or (X̌, d). (M1), (M2), (M3) and (M4) are said to be soft
metric axioms.

Theorem 2.17 ([6]). (Decomposition Theorem) If a soft metric d satisfies the con-
dition:
(M5).For (ξ, η) ∈ X×X, and λ ∈ A, {d (x̃, ỹ) (λ) : x̃ (λ) = ξ, ỹ (λ) = η} is a singleton
set, and if for λ ∈ A, dλ : X ×X → R+ is defined by dλ (x̃ (λ) , ỹ (λ)) = d (x̃, ỹ) (λ),
x̃, ỹ∈̃X̌; then dλ is a metric on X.

Definition 2.18 ([6]). (X̌, d) be a soft metric space, r̃ be a non-negative soft real
number and ã∈̃X̌. By an open ball with centre ã and radius r̃, we mean the collection
of soft elements of X̌ satisfying d(x̃, ã)<̃r̃.
The open ball with centre ã and radius r̃ is denoted by B(ã, r̃).
Thus B (ã, r̃) = {x̃∈̃X̌; d(x̃, ã)<̃r̃} ⊂ SE(X̌).
SS(B (ã, r̃)) will be called a soft open ball with centre ã and radius r̃.

Definition 2.19 ([6]). Let B be a collection of soft elements of X̌ in a soft metric
space (X̌, d). Then a soft element ã is said to be an interior element of B if there
exists a positive soft real number r̃ such that ã ∈ B (ã, r̃) ⊂ B.

Definition 2.20 ([6]). Let (X̌, d) be a soft metric space and B be a non-null col-
lection of soft elements of X̌. Then B is said to be ‘open in X̌ with respect to d’ or
‘ open in (X̌, d)’ if all elements of B are interior elements of B.

Definition 2.21 ([6]). Let (X̌, d) be a soft metric space and (Y, A) be a non-null
soft subset of S

(
X̌
)

in (X̌, d). Then (Y,A) is said to be ‘soft open in X̌ with respect
to d’ if there is a collection B of soft elements of (Y, A) such that B is open with
respect to d and (Y,A) = SS(B).

Definition 2.22 ([6]). Let (X̌, d) be a soft metric space. A soft set (Y, A) of S(X̌),
is said to be ‘soft closed in X̌ with respect to d’ if its complement (Y, A)c is soft
open in (X̌, d).

Definition 2.23 ([6]). Let (X̌, d) be a soft metric space and B be a collection of
soft elements of X̌. A soft element ã∈̃B is said to be a limit element of B, if every
open ball B (ã, r̃) containing ã in (X̌, d) contains at least one element of B different
from ã.
The set of all limit elements of B is said to be the derived set of B and is denoted
by Bd.

Definition 2.24 ([6]). Let (X̌, d) be a soft metric space and (Y, A) ∈ S(X̌). A soft
element ã∈̃X̌ is said to be a soft limit element of (Y,A), if every open ball B (ã, r̃)
containing ã in (X̌, d) contains at least one soft element of (Y, A) different from ã.
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A soft limit element of a soft set (Y,A) may or may not belong to the soft set (Y, A).
The set of all soft limit elements of (Y,A) is said to be the derived set of (Y, A) and
is denoted by (Y,A)d

.

Definition 2.25 ([6]). Let
(
X̌, d

)
be a soft metric space and B be a collection of

soft elements of X̌. Then the collection of all soft elements of B and limit elements
of B in

(
X̌, d

)
is said to be the closure of B in

(
X̌, d

)
. It is denoted by B̃.

Definition 2.26 ([6]). Let
(
X̌, d

)
be a soft metric space and (Y,A) be a soft subset

of S(X̌). Then the collection of all soft elements of (Y,A) and soft limit elements of
(Y, A) in

(
X̌, d

)
is said to be the soft closure of (Y,A) in

(
X̌, d

)
. It is denoted by

(Y,A).

Definition 2.27 ([6]). Let {x̃n} be a sequence of soft elements in a soft metric
space

(
X̌, d

)
. The sequence {x̃n} is said to be convergent in

(
X̌, d

)
if there is a soft

element x̃∈̃X̌ such that d(x̃n, x̃) → 0 as n →∞.
This means for every ε̃>̃0, chosen arbitrarily, there exists a natural number N =

N(ε̃), such that 0≤̃d(x̃n, x̃)<̃ε̃, whenever n > N . i.e., n > N =⇒ x̃n ∈ B(x̃, ε̃).
We denote this by x̃n → x̃ as n →∞ or by limn→∞ x̃n = x̃. x̃ is said to be the

limit of the sequence x̃n as n →∞.

3. Soft vector/linear spaces

Let V be a vector space over a field K and let A be a parameter set. A soft set
(F,A) where F : A → ℘(V ) will be denoted by F only.

Definition 3.1. (Sums and Scalar products of soft sets) Let F1, F2, . . . , Fn be n
soft sets over V . Then F = F1 + F2 + · · ·+ Fn is a soft set over V and is defined as
F (λ) = {x1 + x2 + · · ·+ xn;xi ∈ Fi (λ) , i = 1, 2, . . . , n} , ∀λ ∈ A.
Let α ∈ K be a scalar and F be a soft sets over V , then αF is a soft set over V and
is defined as follows: αF = G, G (λ) = {αx;x ∈ F (λ)}, λ ∈ A.

Definition 3.2. Let V be a vector space over a field K and let A be a parameter
set. Let G be a soft set over V . Now G is said to be a soft vector space or soft linear
space of V over K if G(λ) is a vector subspace of V, ∀λ ∈ A.

Example 3.3. Consider the Euclidian n-dimensional space Rn over R. Let A =
{1, 2, 3, . . . , n} be the set of parameters. Let G : A → ℘(Rn) be defined as follows:

G (i) = {t ∈ Rn; i− th co− ordinate of t is 0} , i = 1, 2, . . . , n.

Then G is a soft vector space or soft linear space of Rn over R.

Proposition 3.4. α (F + G) = αF + αG for all soft sets F,G over V and α ∈ K.

Proof. [α (F + G)] (λ) = {αz; z ∈ (F + G) (λ)}
= {α (x + y) ;x ∈ F (λ) , y ∈ G (λ)}
= {αx + αy;x ∈ F (λ) , y ∈ G (λ)}, (V is a vector space)

Again (αF + αG) (λ) = {x′
+ y

′
;x

′ ∈ αF (λ) , y
′ ∈ αG (λ)}

= {αx
′′

+ αy
′′
;x

′′ ∈ F (λ) , y
′′ ∈ G (λ)}.

Hence the result follows. �
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Lemma 3.5. Let F1, F2, . . . , Fn, G1, G2, . . . , Gm be soft sets over V and let F =
F1 +F2 + · · ·+Fn and G = G1 +G2 + · · ·+Gm. Then H = F +G is soft set, where
H = F1 + F2 + · · ·+ Fn + G1 + G2 + · · ·+ Gm.

Proof. The proof is straightforward and hence omitted. �

Definition 3.6. Let x ∈ V and F be a soft set over V . Then x + F is a soft set
over V defined as follows:

(x + F ) (λ) = {x + y; y ∈ F (λ)} , λ ∈ A.

Lemma 3.7. Let U be an ordinary subset of V and let F be a soft set over V . Then
U + F is a soft set over V defined as follows:

(U + F ) (λ) =
⋃

x∈U

{x + y; y ∈ F (λ)}, λ ∈ A.

U + F =
⋃

x∈U

(x + F )

Proof. Follows from Definition 3.6 and the Definition 2.7. �

Definition 3.8. (Soft Vector Subspaces) Let F be a soft vector space of V over K.
Let G : A → ℘(V ) be a soft set over V . Then G is said to be a soft vector subspace
of F if

(i). for each λ ∈ A,G(λ) is a vector subspace of V over K
(ii). F (λ) ⊇ G (λ) , ∀λ ∈ A.

Theorem 3.9. A soft subset G of a soft vector space F is a soft vector subspace of
F if and only if for all scalars α,β ∈ K, αG + βG⊂̃G.

Proof. Let G be a soft vector subspace of F of V over K.
Let λ ∈ A, (αG + βG) (λ) = {x′

+ y
′
;x

′ ∈ αG (λ) , y
′ ∈ βG (λ) , α, β ∈ K}

= {αx + βy;x, y ∈ G(λ), α, β ∈ K} ⊂ G(λ),
[Now, G(λ) is a vector subspace over K and x, y ∈ G(λ), α,β ∈ K ⇒ αx+βy ∈ G(λ)]
So, αG + βG⊂̃G, and the given condition is satisfied.
Conversely, let the given condition hold.
We have, (αG + βG) (λ) = {αx + βy;x, y ∈ G(λ)}, ∀λ ∈ A.
By the given condition, αG + βG⊂̃G i.e., {αx + βy;x, y ∈ G(λ)} ⊂ G(λ),∀λ ∈ A.
i.e., for all x, y ∈ G (λ) and for every scalar α,β ∈ K, αx + βy ∈ G (λ)
This implies G(λ) is a vector subspace of F over K. This is true for all λ ∈ A.
Also since G is a soft subset of F, F (λ) ⊇ G (λ) , ∀λ ∈ A.
Hence G is a soft vector subspace of F . �

Proposition 3.10. If F and G be two soft vector subspaces of H over K and α be
a scalar, then F + G and αF are soft vector subspaces of H over K.

Proof. The proof is straight forward and hence imitted. �

Proposition 3.11. If {Fi} be a family of soft vector subspaces of H over K, then
G =

⋂
i Fi is a soft vector subspaces of H over K.

Proof. The proof is straight forward and hence omitted. �
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4. Soft vectors in soft vector spaces

In this section we introduce the concept of soft vectors in soft vector spaces and
study some of their basic properties.

Definition 4.1. Let G be a soft vector space of V over K. Then a soft element of
G is said to be a soft vector of G. In a similar manner a soft element of the soft set
(K, A) is said to be a soft scalar, K being the scalar field.

Example 4.2. Consider the soft vector space G as Example 3.3. Let x̃ be a soft
element of G as the following;
x̃ (i) = (1, 1, .., 0i−th, .., 1) ∈ Rn, i = 1, 2, .., n. Then x̃ is a soft vector of G.

Definition 4.3. A soft vector x̃ in a soft vector space G is said to be the null soft
vector if x̃ (λ) = θ, ∀λ ∈ A, θ being the zero element of V . It will be denoted by Θ.
A soft vector is said to be non-null if it is not a null soft vector.

Definition 4.4. Let x̃, ỹ be soft vectors of G and k̃ be a soft scalar. Then the
addition x̃ + ỹ of x̃, ỹ and scalar multiplication k̃.x̃ of k̃ and x̃ are defined by
(x̃ + ỹ) (λ) = x̃ (λ) + ỹ (λ) ,

(
k̃.x̃
)

(λ) = k̃ (λ) .x̃ (λ) , ∀λ ∈ A. Obviously, x̃ + ỹ, k̃.x̃

are soft vectors of G.

Theorem 4.5. In a soft vector space G of V over K,
(i). 0.α̃ = Θ, for all α̃∈̃G;
(ii). k̃.Θ = Θ, for all soft scalar k̃.
(iii).

(
−1
)
.α̃ = −α̃, for all α̃∈̃G.

Proof. (i) We have,
(
0.α̃
)
(λ) = 0 (λ) .α̃ (λ) = 0.α̃ (λ) = θ, ∀λ ∈ A.

This implies 0.α̃ = Θ, for all α̃∈̃G.

(ii)
(
k̃.Θ

)
(λ) = k̃ (λ) .Θ(λ) = k̃ (λ) .θ = θ, ∀λ ∈ A.

This implies k̃.Θ = Θ, for all soft scalar k̃.
(iii)

((
−1
)
.α̃
)
(λ) =

(
−1
)
(λ) .α̃ (λ) = (−1) .α̃ (λ) = −α̃ (λ) = (−α̃) (λ) ,

∀λ ∈ A.
This implies

(
−1
)
.α̃ = −α̃, for all α̃∈̃G. �

Remark 4.6. However, k̃.α̃ = Θ does not necessarily imply that either k̃ = 0 or
α̃ = Θ. For example let us consider the soft vector space as Example 3.3. Let k̃ (1) =
1, and k̃ (i) = 0, for i = 2, 3, .., n and α̃ (1) = θ, and α̃ (i) = (1, 1, .., 0i−th, .., 1) ∈
Rn, i = 2, 3, .., n. Then

(
k̃.α̃
)

(1) = k̃ (1) .α̃ (1) = 1.θ = θ = Θ (1) and(
k̃.α̃
)

(i) = k̃ (i) .α̃ (i) = 0. (1, 1, .., 0i−th, .., 1) = θ = Θ (i) , for i = 2, 3, .., n.

So, k̃.α̃ = Θ, but neither k̃ = 0 nor α̃ = Θ.

Theorem 4.7. A non-null soft subset (W,A) of a soft vector space G of V over
K, is a soft subspace of G if and only if α̃, β̃∈̃(W,A) and k̃, s̃ be soft scalars then
k̃.α̃ + s̃.β̃∈̃(W,A).

Proof. Let (W,A) be a soft vector subspace of G of V over K. Let α̃, β̃∈̃(W,A) and
k̃, s̃ be soft scalars, then
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k̃.α̃ + s̃.β̃

)
(λ) = k̃ (λ) .α̃ (λ) + s̃ (λ) .β̃ (λ) ∈ W (λ) , ∀λ ∈ A. (W (λ) is a vector

subspace of V for each λ ∈ A, k̃ (λ) , s̃ (λ) ∈ K, α̃ (λ) + β̃ (λ) ∈ W (λ) , ∀λ ∈ A.)

∴ k̃.α̃ + s̃.β̃∈̃ (W,A) .

Conversely, let the given condition be satisfied.
Then for all soft scalars k̃, s̃ and soft vectors α̃, β̃∈̃ (W,A) , k̃.α̃ + s̃.β̃∈̃ (W,A) .

i.e.,
(
k̃.α̃ + s̃.β̃

)
(λ) ∈ W (λ) ,∀λ ∈ A, i.e., k̃ (λ) .α̃ (λ)+s̃ (λ) .β̃ (λ) ∈ W (λ) ,∀λ ∈ A;

This implies W (λ) is a vector subspace of V for each λ ∈ A. Also it is obvious that,
W (λ) ⊂ V (λ) , ∀λ ∈ A.
Hence, (W,A) is a soft vector subspace of G of V over K. �

Definition 4.8. Let G be a soft vector space of V over K. Let α̃1, α̃2, . . . , α̃n∈̃G. A
soft vector β̃ in G is said to be a linear combination of the soft vectors α̃1, α̃2, . . . , α̃n if
β̃ can be expressed as β̃ = c̃1.α̃1+c̃2.α̃2+..+c̃n.α̃n, for some soft scalars c̃1, c̃2, . . . , c̃n.

Example 4.9. Consider the soft vector space G as Example 3.3.
Let α̃i = (1, 1, .., 0i−th, .., 1) ∈ Rn, i = 1, 2, 3. Then α̃1 + α̃2, α̃1 + α̃2 + α̃3, 2.α̃1 +
5, α̃2 + α̃3 are linear combinations of α̃1, α̃2, α̃3.

Definition 4.10. A finite set of soft vectors {α̃1, α̃2, . . . , α̃n} of a soft vector space
G is said to be linearly dependent in G if there exists soft scalars c̃1, c̃2, . . . , c̃n not
all 0 such that

(4.1) c̃1.α̃1 + c̃2.α̃2 + · · ·+ c̃n.α̃n = Θ

An arbitrary set S of soft vectors of G is said to be linearly dependent in G if there
exists a finite subset of S which is linearly dependent in G.

Definition 4.11. Let {α̃1, α̃2, . . . , α̃n} be a set of soft vectors of a soft vector space
G such that α̃i (λ) 6= θ for any λ ∈ A and i = 1, 2, .., n. Then {α̃1, α̃2, . . . , α̃n}
is said to be linearly independent in G if for any set of soft scalars c̃1, c̃2, . . . , c̃n,
c̃1.α̃1 + c̃2.α̃2 + · · ·+ c̃n.α̃n = Θ implies c̃1 = c̃2 = · · · = c̃n = 0.

Proposition 4.12. A set S = {α̃1, α̃2, . . . , α̃n} of soft vectors in a soft vector space
G over V is linearly independent if and only if the sets
S (λ) = {α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ)} are linearly independent in V, ∀λ ∈ A.

Proof. Let S be linearly independent.
Let λ0 ∈ A, and S (λ0) = {α̃1 (λ0) , α̃2 (λ0) , . . . , α̃n (λ0)}. Let c1. α̃1 (λ0)+c2. α̃2 (λ0)+
· · · + cn. α̃n (λ0) = θ. Let us consider any set of soft scalars c̃1, c̃2, . . . , c̃n, such
that c̃1 (λ0) = c1, c̃2 (λ0) = c2 . . . c̃n (λ0) = cn and c̃1 (µ) = c̃2 (µ) = · · · = c̃n (µ) =
0, ∀µ(6= λ0) ∈ A. Now c̃1. α̃1 + c̃2. α̃2 + · · ·+ c̃n. α̃n = Θ.
Since S is linearly independent, c̃1 = c̃2 = · · · = c̃n = 0.
=⇒ c̃1 (λ0) = c̃2 (λ0) = · · · = c̃n (λ0) = 0
=⇒ c1 = c2 = · · · = cn = 0.
=⇒ S (λ0) = {α̃1 (λ0) , α̃2 (λ0) , . . . , α̃n (λ0)} is linearly independent in V .
Since λ0 ∈ A is arbitrary, it follows that S (λ) = {α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ)}, are
linearly independentin V, ∀λ ∈ A.
Conversely let S (λ) = {α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ)} be linearly independent in V, ∀λ ∈
A.
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Let c̃1, c̃2, . . . , c̃n be any set of soft scalars such that c̃1. α̃1+ c̃2. α̃2+ ..+ c̃n. α̃n = Θ.
Then c̃1 (λ) . α̃1 (λ) + c̃2 (λ) . α̃2 (λ) + · · · + c̃n (λ) . α̃n (λ) = θ ⇒ c̃1 (λ) = c̃2 (λ) =
· · · = c̃n (λ) = 0, ∀λ ∈ A ⇒ c̃1 = c̃2 = · · · = c̃n = 0.
Hence S = {α̃1, α̃2, . . . , α̃n} is linearly independent. �

Proposition 4.13. A set S = {α̃1, α̃2, . . . , α̃n} of soft vectors in a soft vector space
G over V is linearly dependent if and only if the sets
S (λ) = {α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ)}, are linearly dependent in V for some λ ∈ A.

Proof. Let S be linearly dependent. Then there is a set of soft scalars c̃1, c̃2, . . . , c̃n,
not all equal to 0 such that c̃1.α̃1 + c̃2.α̃2 + · · · + c̃n.α̃n = Θ. Then c̃1 (λ) .α̃1 (λ) +
c̃2 (λ) .α̃2 (λ) + · · · + c̃n (λ) .α̃n (λ) = θ, ∀λ ∈ A and there is at least one λ0 ∈
A, such that c̃1 (λ0) , c̃2 (λ0) , . . . , c̃n (λ0) are not all zeros. Then c̃1 (λ0) .α̃1 (λ0) +
c̃2 (λ0) .α̃2 (λ0)+ · · ·+ c̃n (λ0) .α̃n (λ0) = θ and c̃1 (λ0) , c̃2 (λ0) , . . . , c̃n (λ0) are not all
zeros. Proving that S (λ0) = {α̃1 (λ0) , α̃2 (λ0) , . . . , α̃n (λ0)} is linearly dependent.
Conversely let S (λ0) = {α̃1 (λ0) , α̃2 (λ0) , . . . , α̃n (λ0)}, be linearly dependent for
some λ0 ∈ A. Then there is a set of scalars c1, c2, . . . , cn not all zeros such that
c1.α̃1 (λ0) + c2.α̃2 (λ0) + · · ·+ cn.α̃n (λ0) = θ.
Let c̃1, c̃2, . . . , c̃n be a set of soft scalars such that c̃i (λ0) = ci, and c̃i (λ) = 0
for λ ∈ A\{λ0}, for i = 1, 2, . . . , n. Then c̃1, c̃2, . . . , c̃n, are not all equal to 0 and
c̃1.α̃1 + c̃2.α̃2 + · · ·+ c̃n.α̃n = Θ. Hence S is linearly dependent. �

5. Soft norm and soft normed linear spaces

Let X be a vector space over a field K, X is also our initial universe set and
A be a non-empty set of parameters. Let X̌ be the absolute soft vector space i.e.,
X̌ (λ) = X, ∀λ ∈ A. We use the notation x̃, ỹ, z̃ to denote soft vectors of a soft
vector space and r̃, s̃, t̃ to denote soft real numbers.

5.1. Definitions and examples of soft norm and soft normed linear spaces.

Definition 5.1. Let X̌ be the absolute soft vector space i.e., X̌ (λ) = X, ∀λ ∈ A.
Then a mapping ‖.‖ : SE(X̌) → R (A)∗ is said to be a soft norm on the soft vector
space X̌ if ‖.‖ satisfies the following conditions:

(N1). ‖x̃‖ ≥̃ 0, for all x̃∈̃X̌;
(N2). ‖x̃‖ = 0 if and only if x̃ = Θ;
(N3). ‖α̃.x̃‖ = |α̃| ‖x̃‖ for all x̃∈̃X̌ and for every soft scalar α̃;
(N4). For all x̃, ỹ∈̃X̌, ‖x̃ + ỹ‖ ≤̃ ‖x̃‖+ ‖ỹ‖.

The soft vector space X̌ with a soft norm ‖.‖ on X̌ is said to be a soft normed linear
space and is denoted by (X̌, ‖.‖ , A) or (X̌, ‖.‖). (N1), (N2), (N3) and (N4) are said
to be soft norm axioms.

Example 5.2. Let R(A) be the set of all soft real numbers. We define ‖.‖ : R(A) →
R (A)∗, by, ‖x̃‖ = |x̃|, for all x̃∈̃ R(A), where |x̃| denotes the modulus of soft real
numbers. Then ‖.‖ satisfied all the soft norm axioms so, ‖.‖ is a soft norm on R(A)
and (R(A), ‖.‖ , A) or (R(A), ‖.‖) is a soft normed linear space.

Proposition 5.3. Every parametrized family of crisp norms {‖.‖λ : λ ∈ A} on a
crisp vector space X can be considered as a soft norm on the soft vector space X̌.
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Proof. Let X̌ be the absolute soft vector space over a field K, A be a non-empty
set of parameters. Let {‖.‖λ : λ ∈ A} be a family of crisp norms on the vector
space X. Let x̃∈̃X̌, then x̃(λ) ∈ X, for every λ ∈ A. Let us define a mapping
‖.‖ : X̌ → R (A)∗ by ‖x̃‖ (λ) = ‖x̃ (λ)‖λ, ∀λ ∈ A, ∀x̃∈̃X̌.

Then ‖.‖ is a soft norm on X̌.
To verify it we now verify the conditions (N1), (N2), (N3) and (N4) for soft norm.
(N1). We have ‖x̃‖ (λ) = ‖x̃ (λ)‖λ ≥ 0,∀λ ∈ A, ∀x̃∈̃X̌,

∴ ‖x̃‖ ≥̃0, for all x̃∈̃X̌.
(N2). ‖x̃‖ = Θ
⇐⇒ ‖x̃‖ (λ) = θ, ∀λ ∈ A
⇐⇒ ‖x̃ (λ)‖λ = θ, ∀λ ∈ A
⇐⇒ x̃ (λ) = θ, ∀λ ∈ A
⇐⇒ x̃ = Θ
(N3). We have, ‖α̃.x̃‖ (λ) = ‖α̃(λ).x̃ (λ)‖λ

= |α̃(λ)| ‖x̃ (λ)‖λ, [∵ ‖α̃(λ).x̃ (λ)‖λ = |α̃(λ)|‖x̃ (λ)‖λ, ∀λ ∈ A]
= (|α| ‖x̃‖) (λ) , ∀λ ∈ A.

So, ‖α̃.x̃‖ = |α̃| ‖x̃‖, for all x̃∈̃X̌ and for every soft scalar α̃∈̃K̃.
(N4). For all x̃, ỹ∈̃X̌,
[‖x̃‖+ ‖ỹ‖] (λ) = ‖x̃‖ (λ) + ‖ỹ‖ (λ)
= ‖x̃ (λ)‖λ + ‖ỹ (λ)‖λ

≥ ‖x̃ (λ) + ỹ (λ)‖λ, [by the property of triangle inequality of ‖.‖λ]
= ‖x̃ + ỹ‖ (λ) ,∀λ ∈ A.

∴ ‖x̃‖+ ‖ỹ‖ ≥̃ ‖x̃ + ỹ‖ .
Thus (N4) is satisfied.
∴ ‖.‖ is a soft norm on X̌ and consequently (X̌, ‖.‖) is a soft normed linear space. �

Proposition 5.4. Every crisp norm ‖.‖X on a crisp vector space X can be extended
to a soft norm on the soft vector space X̌.

Proof. First we construct the absolute soft vector space X̌ using a non-empty set of
parameters A.
Let us define a mapping ‖.‖ : SE(X̌) → R(A)∗ by ‖x̃‖ (λ) = ‖x̃ (λ)‖X ,∀λ ∈
A, ∀x̃∈̃X̌.
Then using the same procedure as Proposition 5.3, it can be easily proved that ‖.‖
is a soft norm on X̌.
This soft norm is generated using the crisp norm ‖.‖X and it is said to be the soft
norm generated by ‖.‖X . �

Theorem 5.5. (Decomposition Theorem) Every soft norm ‖.‖ satisfies the condition
(A) ......... For ξ ∈ X, and λ ∈ A, {‖x̃‖ (λ) : x̃ (λ) = ξ} is a singleton set.
And hence each soft norm ‖.‖ can be decomposed into a family of crisp norms
{‖.‖λ, λ ∈ A}, where ‖.‖λ : X → R+ is defined by the following:
for each ξ ∈ X, ‖ξ‖λ = ‖x̃‖ (λ), with x̃ ∈̃ X̌ such that x̃ (λ) = ξ.

Proof. First we prove the condition (A) holds for each soft norm. The proof of the
first part of this theorem is as presented in [20].
Let x̃ be any soft element of X̌ such that x̃ (µ) = θ, where µ ∈ A. Let us consider a
soft scalar α̃ such that α̃ (µ) = 1 and α̃ (λ) = 0, ∀λ ∈ A− {µ}. Then α̃.x̃ = Θ.
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We have by (N3), ‖α̃.x̃‖ = |α̃| ‖x̃‖
=⇒ ‖Θ‖ = |α̃| ‖x̃‖
=⇒ 0 = |α̃| ‖x̃‖
=⇒ 0 = |α̃ (µ) | ‖x̃‖ (µ), in particular.
=⇒ 0 = 1. ‖x̃‖ (µ)
=⇒ 0 = ‖x̃‖ (µ)
Thus we see that if for any soft element x̃ of X̌, x̃ (µ) = θ =⇒ ‖x̃‖ (µ) = 0.
Next let ξ ∈ X and µ ∈ A be arbitrary. Let x̃, ỹ∈̃ X̌ be any two soft elements such
that x̃ (µ) = ỹ (µ) = ξ.
Then (x̃− ỹ) (µ) = θ and hence by the above argument we get ‖x̃− ỹ‖ (µ) = 0.

We also have by (N4), ‖x̃‖ = ‖x̃− ỹ + ỹ‖ ≤̃ ‖x̃− ỹ‖+ ‖ỹ‖
i.e., ‖x̃‖ − ‖ỹ‖ ≤̃ ‖x̃− ỹ‖
=⇒ (‖x̃‖ − ‖ỹ‖) (µ) ≤ ‖x̃− ỹ‖ (µ), in particular.
=⇒ ‖x̃‖ (µ)− ‖ỹ‖ (µ) ≤ ‖x̃− ỹ‖ (µ).
In a similar way it can be shown that,
‖ỹ‖ (µ)− ‖x̃‖ (µ) ≤ ‖ỹ − x̃‖ (µ) = ‖x̃− ỹ‖ (µ).
Thus we get, | ‖x̃‖ (µ)− ‖ỹ‖ (µ) | ≤ ‖x̃− ỹ‖ (µ) ≤ 0. [since ‖x̃− ỹ‖ (µ) = 0.]
=⇒ |‖x̃‖ (µ)− ‖ỹ‖ (µ) | = 0
=⇒ ‖x̃‖ (µ) = ‖ỹ‖ (µ)
=⇒ {‖x̃‖ (µ) : x̃ (µ) = ξ} is a singleton set.
=⇒ The condition (A) is satisfied.
Now we prove the second part of the theorem.
Clearly ‖.‖λ : X → R+ is a rule that assign a vector of X to a non-negative crisp
real number ∀λ ∈ A. Now the well defined property of ‖.‖λ, ∀λ ∈ A follows from the
condition (A) and the soft norm axioms gives the norm conditions of ‖.‖λ, ∀λ ∈ A.
Thus every soft norm gives a parameterized family of crisp norms. With this point
of view, it also follows that, a soft norm, is a particular ‘soft mapping’ as defined by
P. Majumdar, et al. in [15] where ‖.‖ : A → (R+)

X
. �

Proposition 5.6. Let (X̌, ‖.‖ , A) be a soft normed linear space. Let us define
d : SE(X̌) × SE(X̌) → R (A)∗ by d (x̃, ỹ) = ‖x̃− ỹ‖, for all x̃, ỹ∈̃X̌. Then d is a
soft metric on X̌.

Proof. We have, (M1). d (x̃, ỹ) = ‖x̃− ỹ‖ ≥̃0, for all x̃, ỹ∈̃X̌. [using (N1)]
(M2). d (x̃, ỹ) = 0 ⇐⇒ ‖x̃− ỹ‖ = 0 ⇐⇒ x̃ = ỹ. [using (N2)]
(M3). d (x̃, ỹ) = ‖x̃− ỹ‖ = ‖ỹ − x̃‖ = d (ỹ, x̃) for all x̃, ỹ∈̃X̌. [using (N3)]
(M4). d (x̃, ỹ) + d (ỹ, z̃) = ‖x̃− ỹ‖+ ‖ỹ − z̃‖ ≥̃ ‖x̃− z̃‖ = d (x̃, z̃) . [using (N4)]
So, d is a soft metric on X̌. d is said to be the soft metric induced by the soft norm
‖.‖. From the above proposition it also follows that every soft normed linear space
is also a soft metric space. �

Proposition 5.7. (Translation invariance) A soft metric d induced by a soft norm
‖.‖ on a soft normed linear space (X̌, ‖.‖) satisfies

(1). d (x̃ + ã, ỹ + ã) = d(x̃, ỹ);
(2). d (α̃.x̃, α̃.ỹ) = |α̃| d(x̃, ỹ), for all x̃, ỹ∈̃X̌ and for every soft scalar α̃.

Proof. We have, (1). d (x̃ + ã, ỹ + ã) = ‖(x̃ + ã)− (ỹ + ã)‖ = ‖x̃− ỹ‖ = d(x̃, ỹ);
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(2). d (α̃.x̃, α̃.ỹ) = ‖α̃.x̃− α̃.ỹ‖ = |α̃| ‖x̃− ỹ‖ = |α̃| d(x̃, ỹ). �

Definition 5.8. Let (X̌, ‖.‖) be a soft normed linear space and (Y,A) be a non-null
member of S(X̌). Then the mapping ‖.‖Y : SE(Y,A) → R(A)∗ given by ‖x̃‖Y = ‖x̃‖
for all x̃∈̃(Y, A) is a soft norm on (Y, A). This norm ‖.‖Y is known as the relative
norm induced on (Y,A) by ‖.‖. The soft normed linear space (Y, ‖.‖Y , A) is called a
normed subspace or simply a subspace of the soft normed linear space (X̌, ‖.‖ , A).

5.2. Sequences and their convergence in soft normed linear spaces.

Definition 5.9. Let (X̌, ‖.‖ , A) be a soft normed linear space and r̃>̃0 be a soft
real number. We define the followings;

(5.1) B (x̃, r̃) = {ỹ∈̃X̌ : ‖x̃− ỹ‖ <̃r̃} ⊂ SE(X̌)

(5.2) B (x̃, r̃) = {ỹ∈̃X̌ : ‖x̃− ỹ‖ ≤̃r̃} ⊂ SE(X̌)

(5.3) S (x̃, r̃) = {ỹ∈̃X̌ : ‖x̃− ỹ‖ = r̃} ⊂ SE(X̌)

B (x̃, r̃) , B (x̃, r̃) and S (x̃, r̃) are respectively called an open ball, a closed ball and
a sphere with centre at x̃ and radius r̃. SS(B (x̃, r̃)), SS(B (x̃, r̃)) and SS(S (x̃, r̃))
are respectively called a soft open ball, a soft closed ball and a soft sphere with
centre at x̃ and radius r̃.

Definition 5.10. A sequence of soft elements {x̃n} in a soft normed linear space
(X̌, ‖.‖ , A) is said to be convergent and converges to a soft element x̃ if ‖x̃n − x̃‖ → 0
as n →∞.This means for every ε̃>̃0, chosen arbitrarily, there exists a natural number
N = N(ε̃), such that 0≤̃ ‖x̃n − x̃‖ <̃ε̃ , whenever n > N .
i.e., n > N =⇒ x̃n ∈ B(x̃, ε̃). We denote this by x̃n → x̃ as n → ∞ or by
limn→∞ x̃n = x̃. x̃ is said to be the limit of the sequence x̃n as n →∞.

Example 5.11. Let us consider the set R of all real numbers endowed with the
usual norm ‖.‖. Let

(
Ř, ‖.‖

)
or (Ř, ‖.‖ , A) be the soft norm generated by the crisp

norm ‖.‖ , where A is the non-empty set of parameters. Let (Y, A)⊂̃Ř such that
Y (λ) = (0, 1] in the real line, ∀λ ∈ A. Let us choose a sequence {x̃n} of soft elements
of (Y,A) where x̃n (λ) = 1

n , ∀n ∈ N,∀λ ∈ A. Then there is no x̃∈̃(Y,A) such that
x̃n → x̃ in (Y, ‖.‖Y , A). However the sequence {ỹn} of soft elements of (Y,A) where
ỹn (λ) = 1

2 , ∀n ∈ N,∀λ ∈ A is convergent in (Y, ‖.‖ , A) and converges to 1
2 .

Theorem 5.12. Limit of a sequence in a soft normed linear space, if exists is
unique.

Proof. If possible let there exists a sequence {x̃n} of soft elements in a soft normed
linear space

(
X̌, d

)
such that limn→∞ x̃n = x̃, limn→∞ x̃n = x̃

′
, where x̃ 6= x̃

′
. Then

there is at least one λ ∈ A such that∥∥∥x̃− x̃
′
∥∥∥ (λ) 6= 0. We consider a positive real number ελ satisfying 0 < ελ <

1
2

∥∥∥x̃− x̃
′
∥∥∥ (λ). Let ε̃>̃0 with ε̃ (λ) = ελ.
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Since x̃n → x̃, x̃n → x̃
′
. Corresponding to ε̃>̃0, there exists natural numbers

N1 = N1(ε̃), N2 = N2(ε̃) such that n > N1 Implies x̃n ∈ B(x̃, ε̃) Implies
∥∥∥x̃− x̃

′
∥∥∥ <̃ε̃

This implies
∥∥∥x̃− x̃

′
∥∥∥ (λ) < ελ, in particular.

Also, n > N2 Implies x̃n ∈ B(x̃
′
, ε̃) Implies

∥∥∥x̃− x̃
′
∥∥∥ <̃ε̃ Implies

∥∥∥x̃− x̃
′
∥∥∥ (λ) < ελ,

in particular.
Hence for all n > N = max{N1, N2},∥∥∥x̃− x̃

′
∥∥∥ (λ) ≤ ‖x̃n − x̃‖ (λ) +

∥∥∥x̃n − x̃
′
∥∥∥ (λ) < 2ελ

So, ελ > 1
2

∥∥∥x̃− x̃
′
∥∥∥ (λ). This contradicts our hypothesis.

Hence the result follows. �

Definition 5.13. A sequence {x̃n} of soft elements in
(
X̌, d

)
is said to be bounded

if the set {‖x̃n − x̃m‖ ;m,n ∈ N} of soft real numbers is bounded, i.e., there exists
M̃>̃0 such that ‖x̃n − x̃m‖ ≤̃M̃ , ∀m,n ∈ N .

Definition 5.14. A sequence {x̃n} of soft elements in a soft normed linear space
(X̌, ‖.‖ , A) is said to be a Cauchy sequence in X̌ if corresponding to every ε̃>̃0, there
exists m ∈ N such that ‖x̃i − x̃j‖ ≤̃ε̃, ∀ i, j ≥ m i.e., ‖x̃i − x̃j‖ → 0 as i, j →∞.

Theorem 5.15. Every convergent sequence in a soft normed linear space is Cauchy
and every Cauchy sequence is bounded.

Proof. Let {x̃n} be a convergent sequence of soft elements with limit x̃(say) in(
X̌, ‖.‖

)
. Then corresponding to each ε̃>̃0, there exists m ∈ N such that x̃n ∈

B
(
x̃, ε̃

2

)
i.e., ‖x̃− x̃n‖ ≤̃ ε̃

2 , ∀n ≥ m.
Then for i, j ≥ m, ‖x̃i − x̃j‖ ≤̃ ‖x̃i − x̃‖ + ‖x̃− x̃j‖ <̃ ε̃

2 + ε̃
2 = ε̃. Hence {x̃n} is a

Cauchy sequence.
Next let {x̃n} be a Cauchy sequence of soft elements in

(
X̌, ‖.‖

)
. Then there exists

m ∈ N such that ‖x̃i − x̃j‖ <̃1, ∀i, j ≥ m. Take M̃ with
M̃ (λ) = max1≤i,j≤m {‖x̃i − x̃j‖ (λ)} , ∀λ ∈ A. Then for 1 ≤ i ≤ m and j ≥ m,
‖x̃i − x̃j‖ ≤̃ ‖x̃i − x̃m‖+ ‖x̃m − x̃j‖ <̃M̃ + 1.
Thus, ‖x̃i − x̃j‖ <̃M̃ + 1, ∀i, j ∈ N and consequently the sequence is bounded. �

Definition 5.16. A soft subset (Y,A) with Y (λ) 6= ∅, ∀λ ∈ A, in a soft normed
linear space (X̌, ‖.‖ , A) is said to be bounded if there exists a soft real number k̃

such that ‖x̃‖ ≤̃k̃, ∀x̃∈̃(Y,A).

Definition 5.17. Let (X̌, ‖.‖ , A) be a soft normed linear space. Then X̌ is said to
be complete if every Cauchy sequence in X̌ converges to a soft element of X̌ i.e.,
every complete soft normed linear space is called a soft Banach space.

Theorem 5.18. Let (X̌, ‖.‖ , A) be a soft normed linear space. Then
(i). if x̃n → x̃ and ỹn → ỹ then x̃n + ỹn → x̃ + ỹ.
(ii). if x̃n → x̃ and λ̃n → λ̃ then λ̃n.x̃n → λ̃.x̃, where {λ̃n} is a sequence of soft

scalars.
(iii). if {x̃n} and {ỹn} are Cauchy sequences in X̌ and {λ̃n} is a Cauchy sequence

of soft scalars, then {x̃n + ỹn} and {λ̃n.x̃n} are also Cauchy sequences in X̌.
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Proof. (i) Since x̃n → x̃ and ỹn → ỹ, for ε̃>̃0, there exists positive integers N1, N2

such that ‖x̃n − x̃‖ <̃ ε̃
2 , ∀n ≥ N1 and ‖ỹn − ỹ‖ <̃ ε̃

2 , ∀n ≥ N2. Let N = max{N1, N2},
then both the above relations hold for n ≥ N .
Then ‖(x̃n + ỹn)− (x̃ + ỹ)‖ = ‖x̃n + ỹn − x̃− ỹ‖ ≤̃ ‖x̃n − x̃‖ + ‖ỹn − ỹ‖ <̃ ε̃

2 + ε̃
2 =

ε̃, ∀n ≥ N .
=⇒ x̃n + ỹn → x̃ + ỹ.

(ii) Since x̃n → x̃, for ε̃>̃0, there is a positive integer N such that ‖x̃n − x̃‖ <̃ε̃, ∀n ≥
N .
Now, ‖x̃n‖ = ‖x̃n − x̃ + x̃‖ ≤̃ ‖x̃n − x̃‖+ ‖x̃‖ <̃ε̃ + ‖x̃‖ , ∀n ≥ N .

(5.4) =⇒ ‖x̃n‖ <̃ε̃ + ‖x̃‖ , ∀n ≥ N.

Thus the sequence {‖x̃n‖} is bounded.
Now,

∥∥∥λ̃n.x̃n − λ̃.x̃
∥∥∥ =

∥∥∥λ̃n.x̃n − λ̃.x̃n + λ̃.x̃n − λ̃.x̃
∥∥∥ =

∥∥∥x̃n(λ̃n − λ̃) + λ̃(x̃n − x̃)
∥∥∥

≤̃
∥∥∥x̃n(λ̃n − λ̃)

∥∥∥+
∥∥∥λ̃(x̃n − x̃)

∥∥∥ =
∣∣∣λ̃n − λ̃

∣∣∣ ‖x̃n‖+
∣∣∣λ̃∣∣∣ ‖x̃n − x̃‖

(5.5) =⇒
∥∥∥λ̃n.x̃n − λ̃.x̃

∥∥∥ ≤̃ ∣∣∣λ̃n − λ̃
∣∣∣ ‖x̃n‖+

∣∣∣λ̃∣∣∣ ‖x̃n − x̃‖

Since x̃n → x̃ and λ̃n → λ̃ we get,
∣∣∣λ̃n − λ̃

∣∣∣→ 0 and ‖x̃n − x̃‖ → 0 as n →∞.

Now using (5.4) and (5.5) we get,
∥∥∥λ̃n.x̃n − λ̃.x̃

∥∥∥→ 0 as n →∞.

Hence λ̃n.x̃n → λ̃.x̃.
(iii) Let {x̃n} and {ỹn} be Cauchy sequences in X̌, then for ε̃>̃0, there exists positive
integers N1, N2 such that
‖x̃n − x̃m‖ <̃ ε̃

2 , ∀ m,n ≥ N1 and ‖ỹn − ỹn‖ <̃ ε̃
2 , ∀ m,n ≥ N2.

Let N = max{N1, N2}, then both the above relations hold for m,n ≥ N .
Now, ‖(x̃n + ỹn)− (x̃m + ỹm)‖ = ‖(x̃n − x̃m) + (ỹn − ỹm)‖
≤̃ ‖x̃n − x̃m‖+ ‖ỹn − ỹm‖ <̃ ε̃

2 + ε̃
2 = ε̃,

∀ m,n ≥ N . =⇒ {x̃n + ỹn} is a Cauchy sequence in X̌.
Since {x̃n} is a Cauchy sequence in X̌, for ε̃>̃0, there exists positive integers N such
that ‖x̃n − x̃m‖ <̃ε̃, ∀ m,n ≥ N.
Taking in particular n = m + 1, ‖x̃m+1‖ <̃ε̃, ∀ m,n ≥ N, so {‖x̃n‖} is bounded.
Now {λ̃n} is bounded too.
Then,

∥∥∥λ̃n.x̃n − λm.x̃m

∥∥∥ =
∥∥∥λ̃n.x̃n − λ̃n.x̃m + λ̃n.x̃m − λ̃m.x̃m

∥∥∥
=
∥∥∥λ̃n(x̃n − x̃m) + x̃m(λ̃n − λ̃m)

∥∥∥ ≤̃ ∣∣∣λ̃n

∣∣∣ ‖(x̃n − x̃m)‖ + ‖x̃m‖
∣∣∣(λ̃n − λ̃m)

∣∣∣ → 0 as
n →∞.
=⇒ {λ̃n.x̃n} is also a Cauchy sequence in X̌. �

Theorem 5.19. If (M,A) is a soft subspace in a soft normed linear space (X̌, ‖.‖ , A),
then the closure of (M,A), (M,A) is also a soft subspace.

Proof. Let x̃, ỹ∈̃(M,A), we must show that any linear combination of x̃, ỹ belongs
to (M,A). Since x̃, ỹ∈̃(M,A), corresponding to ε̃>̃0, there exists soft elements
x̃1, ỹ1∈̃(M,A) such that ‖x̃− x̃1‖ <̃ε̃, ‖ỹ − ỹ1‖ <̃ε̃.

For soft scalars α̃, β̃>̃0,
∥∥∥(α̃x̃ + β̃ỹ

)
− (α̃x̃1 + β̃ỹ1)

∥∥∥
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≤̃ |α̃| ‖x̃− x̃1‖+
∣∣∣β̃∣∣∣ ‖ỹ − ỹ1‖ <̃ε̃

(
|α̃|+

∣∣∣β̃∣∣∣) = ε̃
′
(say),

The above inequality shows that α̃x̃1 + β̃ỹ1 belongs to the open ball B(α̃x̃ + β̃ỹ, ε̃
′
).

As α̃x̃1 + β̃ỹ1 and ε̃
′
>̃0 are arbitrary, it follows that α̃x̃ + β̃ỹ∈̃(M,A).

Hence (M,A) is a soft subspace of X̌. �

Definition 5.20. A soft linear space X̌ is said to be of finite dimensional if there
is a finite set of linearly independent soft vectors in X̌ which also generates X̌.

Lemma 5.21. Let x̃1, x̃2, . . . , x̃n be a linearly independent set of soft vectors in a
soft normed linear space X̌. Then there is a soft real number c̃>̃0 such that for every
set of soft scalars α̃1, α̃2, . . . , α̃n we have

‖α̃1x̃1 + α̃2x̃2 + · · ·+ α̃nx̃n‖ ≥̃c̃ (|α̃1|+ |α̃2|+ · · ·+ |α̃n|) .

Proof. The lemma will be proved if we can prove

‖α̃1x̃1 + α̃2x̃2 + · · ·+ α̃nx̃n‖ (λ) ≥ [c̃ (|α̃1|+ |α̃2|+ · · ·+ |α̃n|)] (λ) ,∀λ ∈ A.

i.e., ‖α̃1 (λ) .x̃1 (λ) + α̃2 (λ) .x̃2 (λ) + · · ·+ α̃n (λ) .x̃n (λ)‖λ

≥ [c̃ (λ) . (|α̃1 (λ)|+ |α̃2 (λ)|+ · · ·+ |α̃n (λ)|)] ,∀λ ∈ A.
Now, x̃1, x̃2, . . . .., x̃n being soft vectors in X̌, x̃1 (λ) , x̃2 (λ) , . . . , x̃n (λ) are vectors in
X and α̃1, α̃2, . . . , α̃n being soft scalars α̃1 (λ) , α̃2 (λ) , . . . , α̃n (λ) are scalars. Then
using the property of normed linear space (X, ‖.‖λ) we get a real number cλ, such
that the above relation holds for c̃ (λ) = cλ,∀λ ∈ A. �

Theorem 5.22. Every Cauchy sequence in R(A) with finite parameter set A is
convergent, i.e., the set of all soft real numbers with its usual modulus soft norm as
defined in Example 5.2, with finite parameter set A, is a soft Banach space.

Proof. Let {x̃n} be any arbitrary Cauchy sequence in R(A). Then corresponding to
every ε̃>̃0, there exists m ∈ N such that |x̃i − x̃j |≤̃ε̃, ∀ i, j ≥ m i.e.,|x̃i − x̃j | (λ) ≤
ε̃ (λ), ∀ i, j ≥ m, ∀λ ∈ A i.e.,|x̃i (λ) − x̃j (λ) | ≤ ε̃ (λ), ∀ i, j ≥ m, ∀λ ∈ A. Then
{x̃n (λ)} is a Cauchy sequence of ordinary real numbers R for each λ ∈ A. By the
Completeness of R and finiteness of A, it follows that {x̃n (λ)} is convergent for
each λ ∈ A. Let x̃n (λ) → xλ, for each λ ∈ A. Consider the soft element x̃ defined
by x̃ (λ) = xλ, for each λ ∈ A. Then x̃ is a soft real number and it follows that the
sequence {x̃n} of soft real numbers is convergent and it converges to the soft real
number x̃. Hence R(A) is a soft Banach space. �

Theorem 5.23. Every finite dimensional soft normed linear space over a finite
parameter set A is complete.

Proof. Let X̌ be a finite dimensional soft normed linear space over a finite parameter
set A. Let {ỹm} be any arbitrary Cauchy sequence in X̌. We show that {ỹm}
converges to some soft element ỹ∈̃X̌. Suppose that the dimension of X̌ is n, and
let {ẽ1, ẽ2, . . . , ẽn} be a basis for X̌. Then each ỹm has a unique representation
ỹm = α̃

(m)
1 ẽ1 + α̃

(m)
2 ẽ2 + · · ·+ α̃

(m)
n ẽn.

Because {ỹm} is a Cauchy sequence, for ε̃>̃0 arbitrary there exist a positive integer
N such that ‖ỹm − ỹr‖ <̃ε̃ for m, r > N.
From Lemma 5.21, it follows that there exists c̃>̃0 such that
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ε̃>̃ ‖ỹm − ỹr‖ =
∥∥∥∑n

j=1 (α̃(m)
j − α̃

(r)
j )ẽj

∥∥∥ ≥̃c̃
∑n

j=1

∣∣∣α̃(m)
j − α̃

(r)
j

∣∣∣ , for m, r > N.

Consequently,
∣∣∣α̃(m)

j − α̃
(r)
j

∣∣∣ ≤̃∑n
j=1

∣∣∣α̃(m)
j − α̃

(r)
j

∣∣∣<̃ε̃/c̃

shows that each of the n sequences
{

α̃
(m)
j

}
=
{

α̃
(1)
j , α̃

(2)
j , α̃

(3)
j , . . .

}
, j = 1, 2, .., n is

Cauchy in R(A) and A is finite, converges to α̃j , (say), j = 1, 2, . . . , n.
We now define the soft element ỹ = α̃1ẽ1 + α̃2ẽ2 + · · ·+ α̃nẽn which is clearly a soft
element of X̌. Moreover, since α̃

(m)
j → α̃j as m →∞ and j = 1, 2, . . . , n; we have

‖ỹm − ỹ‖ =
∥∥∥∑n

j=1 (α̃(m)
j − α̃j)ẽj

∥∥∥ ≤̃∑n
j=1

∣∣∣α̃(m)
j − α̃j

∣∣∣‖ẽj‖ → 0 as m →∞.

i.e., ỹm → ỹ as m →∞. �

5.3. Equivalent soft norms.

Definition 5.24. Let X̌ be a soft linear (vector) space. A soft norm ‖.‖1 on X̌ is
said to be equivalent to a soft norm ‖.‖2 on X̌ if there are positive soft real numbers
ã and b̃ such that for all x̃∈̃X̌ we have

(5.6) ã‖x̃‖2≤̃‖x̃‖1≤̃b̃‖x̃‖2

Theorem 5.25. On a finite dimensional soft linear space X̌, any soft norm ‖.‖1 is
equivalent to any other norm ‖.‖2.

Proof. Let n be the dimension of X̌ and {ẽ1, ẽ2, . . . .., ẽn} be a basis for X̌. If x̃∈̃X̌,
then x̃ has the representation x̃ = α̃1ẽ1 + α̃2ẽ2 + . . . . + α̃nẽn.
By Lemma 5.21, there is a soft real number c̃>̃0 such that,
‖x̃‖1≥̃c̃ (|α̃1|+ |α̃2|+ · · ·+ |α̃n|).
If R̃ (λ) = maxj{‖ẽj‖2 (λ)},∀λ ∈ A. Then soft norm axioms give,

‖x̃‖2≤̃
n∑

j=1

|α̃j |‖ẽj‖2≤̃R̃.
n∑

j=1

|α̃j |≤̃

(
R̃

c̃

)
.‖x̃‖1

or,
(

c̃
R̃

)
.‖x̃‖2≤̃‖x̃‖1

The other side inequality in (5.6) is obtained by interchanging the roles of ‖.‖1 and
‖.‖2 in the above argument. �

Lemma 5.26. (Riesz’s Lemma) Let L̃ be a proper soft closed subspace of a soft
normed linear space X̌. Then for ε̃>̃0, there exists ỹ∈̃X̌− L̃ with ‖ỹ‖ = 1 such that
for all x̃∈̃L̃, the inequality ‖x̃− ỹ‖ >̃1− ε̃ is satisfied.

Proof. Let ε̃>̃0, then ε̃ (λ) = ελ > 0,∀λ ∈ A.

Also, L̃ (λ) = Lλ is a proper closed subspace of the normed linear space X̌ (λ) = X,
for each λ ∈ A. Thus by Riesz’s Lemma for normed linear space (X, ‖.‖λ), there
exists ỹ (λ) ∈ X − Lλ with ‖ỹ (λ)‖λ = 1 such that for all x̃ (λ) ∈ Lλ the inequality
‖x̃ (λ)− ỹ (λ)‖λ > 1− ελ is satisfied.
Then for ε̃>̃0, there exists ỹ∈̃X̌−L̃ with ‖ỹ‖ = 1 such that for all x̃∈̃L̃, the inequality
‖x̃− ỹ‖ >̃1− ε̃ is satisfied. �
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5.4. Convex sets in soft normed linear spaces.

Definition 5.27. Let X̌ be a soft normed linear space and x̃1, x̃2∈̃X̌. The set of all
soft elements of the form ỹ = t̃x̃1 +

(
1− t̃

)
x̃2, where t̃ assumes all soft real numbers

such that t̃ (λ) ∈ [0, 1] , ∀λ ∈ A, is called the segment joining the soft elements
x̃1 and x̃2. A soft set K̃⊂̃X̌ is called convex if all segments joining any two soft
elements of K̃ are contained in K̃. Clearly, every soft subspace M̃ of X̌ is a convex
soft set.

Example 5.28. Let R be the set of all real numbers and A be a set of parameters.
Consider a soft set (F,A) over the Euclidean space R2 such that F (λ) is a circle
with center at (aλ, bλ) and radius rλ for each λ ∈ A; where aλ, bλ and rλ are real
numbers.
Let x̃1, x̃2 be any two soft elements of (F,A) and t̃ be a soft real number such
that t̃ (λ) ∈ [0, 1] , ∀λ ∈ A. Consider the segment t̃x̃1 +

(
1− t̃

)
x̃2 joining the

soft elements x̃1 and x̃2. Then for each λ ∈ A, (t̃x̃1 +
(
1− t̃

)
x̃2)(λ) = t̃(λ)x̃1(λ) +(

1− t̃(λ)
)
x̃2(λ) and the right hand side is the segment joining two crisp points x̃1(λ)

and x̃2(λ) of a circle with center at (aλ, bλ) and radius rλ. So, (t̃x̃1+
(
1− t̃

)
x̃2)(λ) is

an element of the circle with center at (aλ, bλ) and radius rλ. Hence t̃x̃1 +
(
1− t̃

)
x̃2

is a soft element of (F,A); proving that (F,A) is a convex soft set.

Theorem 5.29. A soft sphere in a soft normed linear space, is a convex soft set.

Proof. We prove the theorem for a soft closed sphere. The proof for the soft open
sphere is analogous. Let x̃1, x̃2∈̃SS

(
B(ã, r̃)

)
, so that ‖x̃1 − ã‖ ≤̃r̃ and ‖x̃2 − ã‖ ≤̃r̃.

Let ỹ = t̃x̃1 +
(
1− t̃

)
x̃2, t̃ (λ) ∈ [0, 1] , ∀λ ∈ A. Then we have, ‖ỹ − ã‖ =∥∥t̃x̃1 +

(
1− t̃

)
x̃2 − ã

∥∥ =
∥∥t̃x̃1 +

(
1− t̃

)
x̃2 − t̃ã−

(
1− t̃

)
ã
∥∥

=
∥∥t̃x̃1 − t̃ã

∥∥+
∥∥(1− t̃

)
x̃2 −

(
1− t̃

)
ã
∥∥ = t̃ ‖x̃1 − ã‖+

(
1− t̃

)
‖x̃2 − ã‖

≤̃t̃r̃ +
(
1− t̃

)
r̃ = r̃. So, ỹ∈̃SS

(
B(ã, r̃)

)
. This proves the theorem. �

Theorem 5.30. Let X̌ be a soft normed linear space and K̃ be a convex soft subset
of X̌. Then the closure of K̃, K̃ is convex.

Proof. Let x̃, ỹ∈̃K̃ and ε̃>̃0, there exists x̃1, ỹ1∈̃K such that
‖x̃− x̃1‖ <̃ε̃, ‖ỹ − ỹ1‖ <̃ε̃.
Let t̃ (λ) ∈ [0, 1] , ∀λ ∈ A. Then t̃ is a non-negative soft real number.
Then,

∥∥t̃x̃ +
(
1− t̃

)
ỹ −

{
t̃x̃1 +

(
1− t̃

)
ỹ1

}∥∥ ≤̃t̃ ‖x̃− x̃1‖+
(
1− t̃

)
‖ỹ − ỹ1‖

≤̃t̃ε̃ +
(
1− t̃

)
ε̃ = ε̃;

Since K̃ is convex, t̃x̃1 +
(
1− t̃

)
ỹ1∈̃K̃. Again since ε̃>̃0, is arbitrary,

t̃x̃ +
(
1− t̃

)
ỹ∈̃K̃. This implies K̃ is convex. �

Theorem 5.31. The intersection of an arbitrary number of convex soft sets is a
convex soft set.

Proof. Let M̃ =
⋂

a M̃a, where each M̃a is a convex soft set. If x̃, ỹ∈̃M̃ , then
x̃, ỹ belongs to all M̃a and because each M̃a is a convex, t̃x̃ +

(
1− t̃

)
ỹ∈̃M̃a, where

t̃ (λ) ∈ [0, 1] , ∀λ ∈ A. So, t̃x̃ +
(
1− t̃

)
ỹ∈̃M̃ and M̃ is convex. �
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Remark 5.32. However, the inverse of the above theorem may not be true. For
example let us consider two soft sets (F,A) and (G, A) over R2 such that F (λ) is
the circle with center at (1, 0) and radius 2 units and G(λ) is the circle with center
at (9, 0) and radius 4 units; for each λ ∈ A. Then by Example 5.28, (F,A) and
(G, A) are convex soft sets. Let us choose soft elements x̃1, x̃2 of (F,A) and (G, A)
respectively, such that x̃1(λ) = (2, 0) and x̃2(λ) = (6, 0), for each λ ∈ A. We consider
t̃ = 1/2. Then we have (t̃x̃1 +

(
1− t̃

)
x̃2)(λ) = (1/2)(2, 0) + (1/2)(6, 0) = (1, 0) +

(3, 0) = (4, 0); which is not a element of F (λ)∪G(λ). Consequently, t̃x̃1 +
(
1− t̃

)
x̃2

is not a soft element of (F,A)∪̃(G, A). Hence (F,A)∪̃(G, A) is not a convex soft set.

6. Conclusions

In this paper we have introduced a concept of soft linear space and soft norm
on a soft linear space. Completeness of soft normed linear spaces, convex soft sets
and equivalent soft norms are introduced and some basic properties are investigated.
There is an ample scope for further research on soft linear spaces, soft normed linear
spaces and operators on soft normed linear spaces.
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