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1. Introduction

Modern set theory formulated by George Cantor is fundamental for the whole
Mathematics. One issue associated with the notion of a set is the concept of vague-
ness. Mathematics requires that all mathematical notions including set must be
exact. This vagueness or the representation of imperfect knowledge has been a
problem for a long time for philosophers, logicians and mathematicians. However,
recently it became a crucial issue for computer scientists, particularly in the area
of artificial intelligence. To handle situations like this, many tools were suggested.
They include Fuzzy sets, Rough sets, Soft sets etc.

In particular, Lotfi Zadeh [12] proposed fuzzy sets as mathematical model of
vagueness where elements belong to a given set to some degree that is typically a
number that belongs to the unit interval [0,1].

Many fields of modern mathematics have been emerged by violating a basic prin-
ciple of a given theory only because useful structures could be defined this way. Set
is a well-defined collection of distinct objects, that is, the elements of a set are pair
wise different. If we relax this restriction and allow repeated occurrences of any
element, then we can get a mathematical structure that is known as Multisets or
Bags. For example, the prime factorization of an integer n > 0 is a Multiset whose
elements are primes. The number 120 has the prime factorization 120 = 233151

which gives the Multiset {2, 2, 2, 3, 5}. A complete account of the development of
multiset theory can be seen in [1, 2, 9, 10] As a generalization of multiset, Yager [11]



T. K. Shinoj et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 1, 77–90

introduced the concept of Fuzzy Multiset (FMS). An element of a Fuzzy Multiset
can occur more than once with possibly the same or different membership values.

2. Preliminaries

Definition 2.1 ([3]). Let X be a set. A multiset (mset) M drawn from X is
represented by a function Count M or CM defined as CM : X → {0, 1, 2, 3, . . . }.

For each x ∈ X, CM (x) is the characteristic value of x in M . Here CM (x) denotes
the number of occurrences of x in M .

Definition 2.2 ([3]). Let M1 and M2 be two msets drawn from a set X. An mset
M1 is a submset of M2(M1 ⊆ M2) if CM1(x) ≤ CM2(x) for all x ∈ X. M1 is a proper
sub mset of M2(M1 ⊂ M2) if CM1(x) ≤ CM2(x) for all x ∈ X and there exists at
least one x ∈ X such that CM1(x) < CM2(x).

Definition 2.3 ([3]). Union of two msets M1 and M2 drawn from a set X is an mset
M denoted by M = M1∪M2 such that for all x ∈ X, CM (x) = max{CM1(x), CM2(x)}.

Definition 2.4 ([3]). Intersection of two msets M1 and M2 drawn from a set
X is an mset M denoted by M = M1 ∩ M2 such that for all x ∈ X, CM (x) =
min{CM1(x), CM2(x)}.

Definition 2.5. ([6]) Let X be a group. A multi set G over X is a multi group over
X if the count of G satisfies the following two conditions

(1) CG(xy) ≥ CG(x) ∧ CG(y) ∀x, y ∈ X;
(2) CG(x−1) ≥ CG(x) ∀x ∈ X

Definition 2.6. ([8]) If X is a collection of objects, then a fuzzy set A in X is a set
of ordered pairs: A = {(x, µA(x)) : x ∈ X, µA : X → [0, 1]} where µA is called the
membership function of A, and is defined from X into [0, 1].

Definition 2.7. ([5]) Let G be a group and µ ∈ FP (G) (fuzzy power set of G),
then µ is called fuzzy subgroup of G if

(1) µ(xy) ≥ µ(x) ∧ µ(y) ∀x, y ∈ G and
(2) µ(x−1) ≥ µ(x) ∀ x ∈ G

Definition 2.8. ([7]) Let X be a nonempty set. A Fuzzy Multiset (FMS) A drawn
from X is characterized by a function, ‘count membership’ of A denoted by CMA

such that CMA : X → Q where Q is the set of all crisp multisets drawn from the
unit interval [0,1]. In particular, a fuzzy multiset A is characterized by a higher
order function A : X → [0, 1] → N, where of course N is the set of natural numbers.

Then for any x ∈ X, the value CMA(x) is a crisp multiset drawn from [0, 1].
For each x ∈ X, the membership sequence is defined as the decreasingly ordered
sequence of elements in CMA(x). It is denoted by

{µ1
A(x), µ2

A(x), . . . µp
A(x)}; µ1

A(x) ≥ µ2
A(x) ≥ . . . µp

A(x).

When every x ∈ X is mapped to a finite multiset of Q under the count membership
function CMA, then A is called a finite fuzzy multiset of X. The collection of all
finite multisets of X is denoted by FM(X). Throughout this paper fuzzy multisets
are taken from FM(X).
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Example 2.9. Assume X = {x, y, z} is the set of three different breeds of goats. A
cloning process was executed on them. A slight error in the process ended up giving
clones which had exact physical features but different resistance to a particular
disease. If the experts are not able to put tags to distinguish the clones of same
goats, the natural representation of the situation is

A = {(x, 0.3), (x, 0.3), (x, 0.9), (y, 0.4), (y, 0.7), (z, 0.7), (z, 0.6), (z, 0.6)}

and we may write

A = {{0.9, 0.3, 0.3}/x, {0.7, 0.4}/y, {0.7, 0.6, 0.6}/z}

in which the msets of membership {0.9, 0.3, 0.3}, {0.7, 0.4}, {0.7, 0.6, 0.6} correspond
to the resistance to the disease.

Definition 2.10. ([4]) Let A ∈ FM(X) and x ∈ A. Then L(x;A) = max{j;µj
A(x) 6=

0}.
When we define an operation between two fuzzy multisets, the length of their

membership sequences should be set to equal. So if A and B are FMS at consid-
eration, take L(x;A,B) = max{L(x;A), L(x : B)}. When no ambiguity arises we
denote the length of membership by L(x).

Basic relations and operations, assuming that A and B are two fuzzy multisets
of X is taken from [9] and is given below.

(1) Inclusion
A ⊆ B ⇔ µj

A(x) ≤ µj
B(x), j = 1, 2, . . . , L(x) ∀ x ∈ X

(2) Equality
A = B ⇔ µj

A(x) = µj
B(x), j = 1, 2, . . . , L(x) ∀ x ∈ X

(3) Union
µj

A∪B(x) = µj
A(x) ∨ µj

B(x), j = 1, 2, . . . , L(x) where ∨ is the maximum
operation.

(4) Intersection
µj

A∩B(x) = µj
A(x) ∧ µj

B(x), j = 1, 2, . . . , L(x) where ∧ is the minimum
operation.

By CMA(x) ≥ CMA(y) it is taken that µi
A(x) ≥ µi

A(y) ∀i = 1, . . . ,max{L(x), L(y)}.
And CMA(x)∧CMA(y) means that {µi

A(x)∧µi
A(y)} ∀ i = 1, . . . ,max{L(x), L(y)}.

And by CMA(x) ∨ CMA(y) we mean

{µi
A(x) ∨ µi

A(y)} ∀i = 1, . . . ,max{L(x), L(y)}.

Definition 2.11. Let X and Y be two nonempty sets and f : X → Y be a mapping.
Then

(1) The image of the FMS A ∈ FM(X) under the mapping f is denoted by
f(A) or

CMf [A](y) =

{
∨f(x)=yCMA(x); f−1(y) 6= ∅
0 otherwise

(2) The inverse image of the FMS B ∈ FM(Y ) under the mapping f is denoted
by f−1(B) or f−1[B], where CMf−1[B](x) = CMBf [x].
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Proposition 2.12. Let X, Y and Z be three nonempty sets and f : X → Y and
g : Y → Z be two mappings. If A,Ai ∈ FM(X), B,Bi ∈ FM(Y ), C ∈ FM(Z);
i ∈ I then
a) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2)
b) f [∪i∈IAi] = ∪i∈If [Ai]
c) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2)
d) f−1[∪i∈IBi] = ∪i∈If

−1[Bi]
e) f−1[∩i∈IBi] = ∩i∈If

−1[Bi]
f) g[f(Ai)] = [gf ](Ai) and f−1[g−1(Bj)] = [gf ]−1(Bj)

Proof. a) Let A1 ⊆ A2. So CMA1(x) ≤ CMA2(x).
Then ∨f(x)=yCMA1(x) ≤ ∨f(x)=yCMA2(x) ∀x ∈ X. Then by (2.11)

CMf(A1)(y) ≤ CMf(A2)(y); f−1(y) 6= ∅.

Hence the proof.
b) Let A = ∪Ai. So

CMf(∪i∈IAi)(y) = CMf(A)(y)

= ∨f(x)=yCMA(x) by 2.11

= ∨f(x)=y{∨i∈ICMf(Ai)(x)}(2.1)

CM∪i∈I [f(Ai)](y) = ∨i∈ICMf(Ai)(y)

= ∨i∈I{∨f(x)=yCMAi
(x)}; f−1(y) 6= ∅(2.2)

From (2.1) and (2.2) the proof follows.
c) B1 ⊆ B2

CMB1(f(x)) ≤ CMB2(f(x)).

So by CMf−1(N)(x) = CMN (f(x))

CMf−1(B1)(x) ≤ CMf−1(B2)(x).

Then f−1(B1) ⊆ f−1(B2).

Hence the proof.
d) Let ∪i∈IBi = B

CMf−1(∪i∈IBi)(x) = CMf−1(B)(x)

= CMBf(x) by 2.11 (b)

= ∨i∈ICMBif(x)

= ∨i∈ICMf−1[Bi](x)

= CM∪i∈If−1(Bi)(x)

So f−1[∪i∈IBi] = ∪i∈If
−1[Bi].
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e) Let ∩i∈IBi = B.

CMf−1(∩i∈IBi)(x) = CMf−1(B)(x)

= CMBf(x) by (2.11) (b)

= ∧i∈ICMBif(x)

= ∧i∈ICMf−1(Bi)(x)

= CM∩i∈If−1(Bi)(x)

So f−1[∪i∈IBi] = ∩i∈If
−1[Bi].

f) Let A ∈ FM(X) and z ∈ Z. Then

CMg[f(A)](z) = ∨g(y)=zCMf(A)(y); y ∈ Y

= ∨g(y)=z{∨f(x)=yCMA(x)}; y ∈ Y and x ∈ X

= ∨{∨{CMA(x);x ∈ X and f(x) = y}; y ∈ Y and g(y) = z}
= ∨{CMA(x);x ∈ X and [gf ](x) = z}
= ∨[gf ](x)=zCMA(x);x ∈ X

= CM[gf ](A)(z).

Hence g[f(A)] = [gf ](A).
Now let B ∈ FM(Z) and x ∈ X. Then

CM[gf ]−1(B)(x) = CMB [gf ](x) by 2.11 (b)

= CMBg[f(x)] by the above part

= CMg−1(B)f(x) by 2.11(b)

= CMf−1[g−1(B)](x).

Hence the proof.
�

Proposition 2.13. Let X and Y be two non empty sets and f : X → Y be a
mapping. If A ∈ FM(X) then
a) A ⊆ f−1[f(A)]
b) f−1[f(A)] = A, if f is injective.

Proof.
a)

CMf−1[f(A)](x) = CMf(A)f(x)

= ∨{CMA(x′);x′ ∈ X, f(x′) = f(x)}
≥ CMA(x).

Hence A ⊆ f−1[f(A)].
b) Let f be injective.

CMf−1[f(A)](x) = CMf(A)f(x)

= ∨{CMA(x′);x′ ∈ X, f(x′) = f(x)}
= CMA(x)
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since f is injective. Hence the proof. �

Proposition 2.14. Let X and Y be two non empty sets and f : X → Y be a
mapping. If B ∈ FM(Y ) then
a) f [f−1(B)] ⊆ B
b) f [f−1(B)] = B, if f is surjective.

Proof. a)

CMf [f−1(B)](y) = ∨f(x)=y{CMf−1(B)(x)}; x ∈ X

= ∨f(x)=y{CMBf(x)}; x ∈ X

=

{
∨f(x)=y{CMBf(x)}; y ∈ f(X)
{0}/y y 6∈ f(X)

≤ CMB(y).

b)

CMf [f−1(B)](y) = ∨f(x)=y{CMf−1(B)(x)}; x ∈ X

= ∨f(x)=y{CMBf(x)}; x ∈ X

=

{
∨f(x)=y{CMBf(x)}; y ∈ f(X)
{0}/y y 6∈ f(X)

= CMB(y).

Since f is surjective. �

3. Fuzzy multigroups

Throughout this section, let X be a group with a binary operation and the identity
element is e. Also through the rest of the paper we assume that the fuzzy multisets
are taken from the FM(X) and FMG(X) denote the set of all fuzzy multi groups
(FMG) over the group X. We introduce some operations on a fuzzy multi subset of
a group X in terms of the group operations.

Definition 3.1. Let A ∈ FM(X). Then A−1 is defined as CMA−1(x) = CMA(x−1).

Definition 3.2. Let A,B ∈ FM(X). Then define A ◦B as

CMA◦B(x) = ∨{CMA(y) ∧ CMB(z); y, z ∈ X and yz = x}.

Proposition 3.3. Let A,B,Ai ∈ FM(X), then the following hold
a) [A−1]−1 = A
b) A ⊆ B ⇒ A−1 ⊆ B−1.
c) [

⋃n
i=1 Ai]−1 =

⋃n
i=1[A

−1
i ]

d) [
⋂n

i=1 Ai]−1 =
⋂n

i=1[A
−1
i ]

e) (A ◦B)−1 = B−1 ◦A−1

f)

CMA◦B(x) = ∨y∈X{CMA(y) ∧ CMB(y−1x)} ∀x ∈ X

= ∨y∈X{CMA(xy−1) ∧ CMB(y)} ∀x ∈ X.
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Proof. a)

CM(A−1)−1(x) = CM(A−1)(x−1) by 3.1

= CMA((x−1)−1)

= CMA(x) ∀x ∈ X.

Since X is a group ((x−1)−1) = x ⇒ A = (A−1)−1.
b) Given A ⊆ B

⇒ CMA(x−1) ≤ CMB(x−1) ∀x ∈ X

CM(A−1)(x) ≤ CM(B−1)(x) by 3.1

⇒ A−1 ⊆ B−1.

c)

CM(∪n
i=1Ai)−1(x) = CM(∪n

i=1Ai)(x
−1) by 3.1

= ∨{CMAi
(x−1); i = 1, . . . , n} by definition of union

= ∨{CMA−1
i

(x); i = 1, . . . , n} by 3.1

= CM∪n
i=1A−1

i
(x) by definition of union

⇒

[
n⋃

i=1

Ai

]−1

=
n⋃

i=1

(A−1
i )

d)

CM(∩n
i=1Ai)−1(x) = CM(∩n

i=1Ai)(x
−1) by 3.1

= ∧{CMAi
(x−1); i = 1, . . . , n}

= ∧{CMA−1
i

(x); i = 1, . . . , n} by 3.1

= CM∩n
i=1A−1

i
(x) by definition of intersection

⇒

[
n⋂

i=1

Ai

]−1

=
n⋂

i=1

(A−1
i )

e)

CM(A◦B)−1(x) = CM(A◦B)(x−1)

= ∨{CMA(y) ∧ CMB(z); y, z ∈ X and yz = x−1}
= ∨{CMB(z) ∧ CMA(y); y, z ∈ X and (yz)−1 = x}
= ∨{CMB(z−1)−1 ∧ CMA(y−1)−1; y, z ∈ X and (yz)−1 = x}

(Since X is a group)

= ∨{CMB−1(z−1) ∧ CMA−1(y−1); y−1, z−1 ∈ X and z−1y−1 = x}
= CMB−1◦A−1(x) x ∈ X.

Hence the proof.
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f) Since X is a group, it follows that for each x, y ∈ X, ∃ a unique z (= y−1x) ∈
X, such that yz = x. Then

CMA◦B(x) = ∨y∈X{CMA(y) ∧ CMB(y−1x)} ∀x ∈ X.

Also

CMA◦B(x) = ∨{CMB(z) ∧ CMA(y); y, z ∈ X and yz = x}.

(By commutative property of minimum). Since X is a group, it follows that
for each x, y ∈ X, ∃ a unique z (= xy−1) ∈ X, such that zy = x. Then

CMA◦B(x) = ∨y∈X{CMB(xy−1) ∧ CMA(y)} ∀x ∈ X.

�

Note. Similarly we could define CMA◦B(x) w.r.t z.

Definition 3.4. Let X be a group. A fuzzy multiset G over X is a fuzzy multi
group (FMG) over X if the count (count membership) of G satisfies the following
two conditions.

(1) CMG(xy) ≥ CMG(x) ∧ CMG(y) ∀ x, y ∈ X
(2) CMG(x−1) = CMG(x) ∀ x ∈ X.

Example 3.5. (Z4,+4) is a group. Then
A = {(.8, .7, .7, .5, .1, .1)/2, (.6, .4, .3, .1)/1, (.6, .4, .3, .1)/3, (.9, .8, .7, .5, .1, .1)/0} is a
fuzzy multi group. But
B = {(.6, .4, .3, .1)/2, (.9, .7, .7, .5, .1, .1)/1, (.8, .7, .7, .5, .1, .1)/3, (.9, .8, .7, .5, .1, .1)/0}
is not a FMG. Because CMB(1) 6= CMB(3).

From the definition and above example it is clear that FMG is a generalized case
of fuzzy group. Also it is a general case of multi group (when µi

G(x) = 1∀x ∈ X;
i = 1, 2, . . . , L(x)).

Proposition 3.6. Let A ∈ FM(X) and CMA(x−1) ≥ CMA(x). Then CMA(x−1) =
CMA(x).

Proof.

CMA(x−1) ≥ CMA(x) (given)

Now CMA(x) = CMA((x−1)−1) ≥ CMA(x−1)

Then CMA(x) = CMA(x−1).

�

Proposition 3.7. Let A ∈ FMG(X). Then
a) CMA(e) ≥ CMA(x) ∀x ∈ X
b) CMA(xn) ≥ CMA(x)∀x ∈ X
c) A−1 = A.

Proof. Let x, y ∈ X.
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a)

CMA(e) = CMA(xx−1)

≥ CMA(x) ∧ CMA(x−1) by 3.4

= CMA(x) ∧ CMA(x) by 3.4

= CMA(x).

b)

CMA(xn) ≥ CMA(xn−1) ∧ CMA(x) by 3.4 and since xn−1x = xn

≥ CMA(x) ∧ CMA(x) ∧ · · · ∧ CMA(x) by recursion

= CMA(x).

c)

CM−1
A (x) = CMA(x−1) by 3.1

= CMA(x) by 3.4

⇒ A−1 = A.

�

Proposition 3.8. Let A ∈ FM(X). Then A ∈ FMG(X) iff CMA(xy−1) ≥
CMA(x) ∧ CMA(y) ∀x, y ∈ X.

Proof. Let A ∈ FMG(X). Then

CMA(xy−1) ≥ CMA(x) ∧ CMA(y−1)

= CMA(x) ∧ CMA(y) ∀x, y ∈ X

by 3.4.
Conversely, let the given condition be satisfied.

i.e., CMA(xy−1) ≥ CMA(x) ∧ CMA(y)(3.1)

Now CMA(e) = CMA(xx−1)

≥ CMA(x) ∧ CMA(x) by (3.1)

= CMA(x)(3.2)

Also CMA(x−1) = CMA(ex−1)

≥ CMA(e) ∧ CMA(x) by (3.1)

= CMA(x) by (3.2)

i.e., CMA(x−1) = CMA(x).(3.3)

Now CMA(xy) ≥ CMA(x) ∧ CMA(y−1) by (3.1)

= CMA(x) ∧ CMA(y) by (3.3)

Hence the proof. �

Definition 3.9. Let A ∈ FM(X). Then A[α, n] = {x ∈ X : µj
A(x) ≥ α;L(x) ≥ j ≥

n and j, n ∈ N}. This is called n-α level set of A.

Proposition 3.10. Let A ∈ FMG(X). Then A[α, n] are subgroups of X.
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Proof. Let x, y ∈ A[α, n]. It implies that

µj
A(x) ≥ α and µj

A(y) ≥ α; j ≥ n.

Then µj
A(xy−1) ≥ α by 3.8.

This ⇒ if x, yA[α, n] then xy−1 ∈ A[α, n]. Then A[α, n] is a subgroup of X.
Hence the proof. �

Definition 3.11. Let A ∈ FMG(X). Then define A∗ = {x ∈ X : CMA(x) =
CMA(e)}.

Proposition 3.12. Let A ∈ FMG(X). Then A∗ is a subgroup of X.

Proof. Let x, y ∈ A∗. Then

(3.4) CMA(x) = CMA(y) = CMA(e)

Then

CMA(xy−1) ≥ CMA(x) ∧ CMA(y) by (3.8)

= CMA(e) ∧ CMA(e) by (3.4)

= CMA(e).

But CMA(xy−1) ≤ CMA(e) by 3.7(a)

i.e. CMA(xy−1) = CMA(e)

⇒ xy−1 ∈ A∗. Then A∗ is a subgroup of X. Hence the proof. �

Definition 3.13. Let A ∈ FM(X). Let j ∈ N. Then define

Aj = {x ∈ X : µj
A(x)0 and µj+1

A (x) = 0}.

Proposition 3.14. Let A ∈ FMG(X). Then Aj is a subgroup of X iff

µj+1
A (xy−1) = 0 ∀x, y ∈ Aj .

Proof. Let x, y ∈ Aj . Then it implies that µj
A(x) > 0 and µj

A(y) > 0. Also µj+1
A (x) =

0 and µj+1
A (y) = 0. Then µj

A(xy−1) > 0 (Since x, y ∈ A, by 3.8). Also µj+1
A (xy−1) =

0 (given) ⇒ xy−1 ∈ Aj . Then Aj is a subgroup of X. Hence the proof.
Conversely, Aj is a subgroup of X. Then

x, y ∈ Aj ⇒ xy−1 ∈ Aj ⇒ µj+1
A (xy−1) = 0

by 3.13. Hence the proof. �

Proposition 3.15. Let A ∈ FM(X). Then A ∈ FMG(X) iff A ◦ A ⊆ A and
A−1 = A.

Proof. Let A ∈ FMG(X) and x, y, z ∈ X.

⇒ CMA(xy) ≥ CMA(x) ∧ CMA(y) by 3.4

⇒ CMA(z) ≥ ∨{CMA(x) ∧ CMA(y);xy = z}since X is a group, by 3.4

= CA◦A(z) by 3.2
⇒ A ◦A ⊆ A.

Now by 3.7(c) we get the 2nd condition.
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Conversely, assume

(3.5) A ◦A ⊆ A

and A−1 = A
⇒ CM−1

A (x) = CMA(x)
But CM−1

A (x) = CMA(x−1) by 3.1

(3.6) ⇒ CMA(x) = CMA(x−1).

Since A ∈ FM(X), then to prove A ∈ FMG(X) it is enough to prove that

CMA(xy−1) ≥ CMA(x) ∧ CMA(y) ∀x, y ∈ X by 3.8

CMA(xy−1) ≥ CMA◦A(xy−1) by (3.5)

= ∨z∈X{CMA(z) ∧ CMA(z−1xy−1)} by 3.3

≥ {CMA(x) ∧ CMA(y−1)}; z = x

(as it is only one case out of all possibilities)

= CMA(x) ∧ CMA(y)by (3.6).

Hence the proof. �

Corollary 3.16. Let A ∈ FM(X). Then A ∈ FMG(X) iff A◦A = A and A−1 = A.

Proof. Let A ∈ FMG(X). Then

CMA◦A(x) = ∨{CMA(y) ∧ CMA(z); y, z ∈ X and yz = x}
≥ {CMA(e) ∧ CMA(e−1x)}
= CMA(x)

So A ⊆ A ◦A. Hence the proof by 3.15. �

Proposition 3.17. Let A ∈ FM(X). Then A ∈ FMG(X) iff A ◦A−1 ⊆ A.

Proof. Let A ∈ FMG(X). Then

A ◦A ⊆ A and A−1 = A by 3.15

⇒ A ◦A−1 = A ◦A ⊆ A.

Conversely, assume

(3.7) A ◦A−1 ⊆ A

Since A ∈ FM(X), then to prove A ∈ FMG(X) it is enough to prove that

CMA(xy−1) ≥ CMA(x) ∧ CMA(y) ∀x, y ∈ X by 3.8

CMA(xy−1) ≥ CMA◦A−1(xy−1) by (3.7)

= ∨z∈X{CMA(z) ∧ CMA−1(z−1xy−1)} by 3.3

≥ {CMA(x) ∧ CMA−1(y−1)}; z = x

(as it is only one case out of all possibilities)

= CMA(x) ∧ CMA(y).

Hence the proof. �
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Corollary 3.18. If A ∈ FM(X). Then A ∈ FMG(X) iff A ◦A−1 = A.

Proof. Let A ∈ FMG(X).

CMA◦A−1(x) = ∨{CMA(y) ∧ CMA−1(z); y, z ∈ X and yz = x}
≥ {CMA(e) ∧ CMA−1(e−1x)}
= CMA−1(x) = CMA(x) by (A ∈ FMG(X))

So A ⊆ A ◦A−1.
Then by 3.17 we get the proof. �

Proposition 3.19. Let A,B ∈ FMG(X). Then A ∩B ∈ FMG(X).

Proof. Let x, y ∈ A ∩B ∈ FM(X)
⇒ x, y ∈ A and x, y ∈ B
⇒ CMA(xy−1) ≥ CMA(x)∧CMA(y−1) and CMB(xy−1) ≥ CMB(x)∧CMB(y−1).
Now

CMA∩B(xy−1) = CMA(xy−1) ∧ CMB(xy−1)
by definition of intersection

≥ [CMA(x) ∧ CMA(y−1)] ∧ [CMB(x) ∧ CMB(y−1)]

= [CMA(x) ∧ CMB(x)] ∧ [CMA(y−1) ∧ CMB(y−1)]
by commutative property of minimum

= [CMA(x) ∧ CMB(x)] ∧ [CMA(y) ∧ CMB(y)]

since A,B ∈ FMG(X)

= CMA∩B(x) ∧ CMA∩B(y)
by definition of intersection

⇒ CMA∩B(xy−1) ≥ CMA∩B(x) ∧ CMA∩B(y).

Hence by 3.8 A ∩B ∈ FMG(X). Hence the proof. �

Remark 3.20. If {Ai; iI} is a family of FMG over X, then their intersection ∩i∈IAi

is also a FMG over X.

Proposition 3.21. Let A,B ∈ FMG(X). Then CMA∪B(x) = CMA∪B(x−1).

Proof.

CMA∪B(x−1) = ∨{CMA(x−1), CMB(x−1)}
= ∨{CMA(x), CMB(x)} since A,B ∈ FMG(X)

= CMA∪B(x).

Hence the proof.
From this it is clear that, if A,B ∈ FMG(X) then A ∪B ∈ FMG(X) iff

CMA∪B(xy) ≥ CMA∪B(x) ∧ CMA∪B(y).

�

Corollary 3.22. Let A,B ∈ FMG(X). Then A ∪ B need not be an element of
FMG(X).
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Proof. X = {a, b, c, e} is Klein’s 4 group. Then

A = {(.6, .4, .3, .1)/a, (.9, .8, .7, .5, .1, .1)/e}
and B = {(.8, .8, .5, .5, .1, .1)/b, (.9, .8, .7, .5, .1, .1)/e}

are fuzzy multi groups.

A ∪B = {(.6, .4, .3, .1)/a, (.8, .8, .5, .5, .1, .1)/b, (.9, .8, .7, .5, .1, .1)/e}.
But CMA∪B(c) < CMA∪B(a) ∧ CMA∪B(b) as ab = c in Klein’s 4 group. Then
A ∪B 6∈ FMG(X). �

Proposition 3.23. Let A ∈ FMG(X). Then CMA(xy−1) ≥ CMA◦A(xy).

Proof.

CMA(xy−1) ≥ CMA◦A−1(xy−1) by 3.16

= ∨z∈X{CMA(x) ∧ CMA−1(z−1xy−1)} by 3.3

= {CMA(x) ∧ CMA−1(y−1)} (when z = x)

= {CMA(x) ∧ CMA(y)} by 3.1

= CMA◦A(xy).

�

Definition 3.24. Let A,B ∈ FMG(X). Then A is said to be a sub-fuzzy multi
group of B if A ⊆ B.

Example 3.25. (Z4,+4) is a group. Then A = {(.6, .4, .3, .1)/2, (.8, .7, .7, .5, .1, .1)/1,
(.8, .7, .7, .5, .1, .1)/3, (.9, .8, .7, .5, .1, .1)/0} is a fuzzy multi group. And
B = {(.6, .4, .3, .1)/2, (.7, .6, .5, .5, .1, .1)/1, (.7, .6, .5, .5, .1, .1)/3, (.9, .8, .7, .5, .1, .1)/0}
is a sub-fuzzy multi group of A.

Definition 3.26. Let A ∈ FM(X). Then 〈A〉 = {∧Ai : A ⊆ Ai ∈ FMG(X)} is
called the fuzzy muli-subgroup of X generated by A.

Remark 3.27. 〈A〉 is the smallest fuzzy multi-subgroup of X that contains A.

Proposition 3.28. If A ∈ FMG(X), and H is a subgroup of X, then A|H (i.e.,
A restricted to H) ∈ FMG(H) and is a fuzzy multi-subgroup of A.

Proof. Let x, y ∈ H. Then xy−1 ∈ H. Now

CMA|H(xy−1) = CMA(xy−1) ≥ CMA(x) ∧ CMA(y) = CMA|H(x) ∧ CMA|H(y).

Hence the proof by 3.18. The second part is trivial. �

4. Conclusion

In this paper the algebraic structure of Fuzzy multiset is introduced as Fuzzy
Multigroup. Fuzzy Multigroup is a generalized case of fuzzy group and multi group.
The various basic operations, definitions and theorems related to Fuzzy Multigroup
have been discussed. The foundations which we made through this paper can be
used to get an insight into the higher order structures of Group theory. In the appli-
cations point of view, since the concept of Fuzzy Multiset theory is well established
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in dealing with the problems in Information retrieval and Flexible querying, the al-
gebraic structures defined on this will help to approach the problem with a different
perspective. In this way the structure which we introduced is useful in higher Math-
ematics as well as Computer science, in both theoretical and application points of
view.
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