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Abstract. In this note, we examine a connection of the Zadeh extension
principle with the notion of matrix theories (as used in category theory)
in the sense of E.G. Manes. In particular, we employ matrix theories over
a complete idempotent semiring, for this purpose.
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1. Introduction

The well- known Zadeh extension principle (ZEP) of fuzzy set theory is regarded
as an important tool in fuzzy set theory and its applications (e.g. in fuzzy arith-
metic). ZEP is given, e.g., in Zadeh [13], as follows:
For every function f : X → Y between sets, there exist functions f→ : IX → IY

and f← : IY → IX , (where I = [0, 1]; elements of IX are called fuzzy sets in X)
defined as:

f→(µ)(y) = ∨
{
µ(x) : x ∈ f−1(y)

}
,∀µ ∈ IX and

f←(ν) = ν ◦ f, ∀ν ∈ IY such that
(f→ ◦ f←)(b) ≤ b, ∀b ∈ IY and (f← ◦ f→)(a) ≥ a, ∀a ∈ IX .

(f→ and f← are frequently referred to as the forward and the backward lifting
operators). An introductory account of ZEP has been given by Kerre [5], while a
somewhat detailed study of the extension principle for fuzzy sets has been made,
e.g., by Gerla and Scarpati [2], Nguyen [9] and Yager [12]. It may be pointed out
that the ZEP was initially introduced in the context of fuzzy sets but has since been
extended in related areas also (e.g., to define the image of an intuitionistic fuzzy
sets under a functions, ZEP is used; see, e.g., Kang et al [4] and Saleh [11]). The
ZEP has been also looked into from a category theoretic point of view by a few
authors, e.g., Rodabaugh [10], Kotze [6] and Barone [1]. In this note, we point out a



Pawan Kumar Tiwari et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 1, 37–41

connection of the ZEP with the notion of a matrix theory over a complete semiring
S, as introduced by Manes [8]. In fact, we show that given such a matrix theory,
each function f : X → Y between sets, naturally gives rise to a function SX → SY

which resembles the forward lifting operators f→ in the ZEP, in case the complete
semiring S is additionally assumed to be idempotent.

2. Preliminaries

We shall use the following result from category theory; see, e.g., Herrlich et al [3]
and Maclane [7].

Theorem 2.1. (Freyd’s adjoint functor theorem for posets) Let L and M be posets
with L closed under arbitrary ∨. Let a function g : L → M preserve arbitrary joins.
Then there exists an order-preserving map f : M → L such that f is right adjoint
of g, i.e., gf(a) ≤ a and fg(b) ≥ b hold ∀a ∈ M and ∀b ∈ L. Moreover, f is given
by

f(a) = ∨{b ∈ L : a ≥ g(b)} .

Definition 2.2. A semiring (S,⊕,�) is a non empty set S on which two commu-
tative binary operations ⊕ and � are defined such that the following conditions are
satisfied:

(1) (S,⊕) is a monoid (with identity element 0),
(2) (S,�) is a monoid,
(3) Multiplication distributes over addition from either side,
(4) 0� a = 0 = a� 0, ∀a ∈ S,

Further, a semiring (S,⊕,�) is called (i) idempotent if ⊕ is idempotent and (ii)
complete if for every family {ai ∈ S : i ∈ Ω}, there exists an element Σ

i∈Ω
ai of S such

that the following conditions hold:
(i) Σ

i∈Ω
ai = 0, if Ω = φ,

(ii) Σ
i∈Ω

ai = a1 ⊕ a2 ⊕ . . .⊕ an, if Ω = {1, 2, . . . , n},
(iii) b� Σ

i∈Ω
ai = Σ

i∈Ω
(b� ai) and ( Σ

i∈Ω
ai)� b = Σ

i∈Ω
(ai � b),∀b ∈ S

(iv) Σ
i∈Ω

ai = Σ
j∈π

( Σ
k∈Ωj

ak) for every partition Ω =
⋃

j∈π

Ωj of Ω.

Remark 2.3. We can easily verify that if (S,⊕,�) is a complete idempotent semir-
ing and X is any set, then (SX ,+, .) is also a complete idempotent semiring with .
and + defined as follows: for all f, g ∈ SX , {fi : i ∈ Ω} ⊆ SX and x ∈ X,
(f.g)(x) = f(x).g(x),
(f + g)(x) = f(x) + g(x),∀x ∈ X, and
(+ Σ

i∈Ω
fi)(x) = ⊕ Σ

i∈Ω
fi(x).

Definition 2.4 ([8]). An algebraic theory in a category K (in extension form) is a
triple (T, η, (−)#) where :

(1) T is a function assigning to each K-object X, a K-object T (X),
(2) η is an assignment, assigning to each K-object X, a K-morphism,

X
ηX−→ TX,
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(3) (−)# assigns to each K-morphism X
α→ T (Y ), a K-morphism

T (X) α#

→ T (Y ) such that for all K-objects X and K-morphisms X
α→ T (Y ),

Y
β→ T (Z),

(i) α#.ηX = α, (ii) η#
X = IdT (X), (iii) (β#.α)# = β#.α#.

Given a complete semiring (S,⊕,�), an algebraic theory (T, η, (−)#) in the category
SET is called a matrix theory of S if, for every set X

(1) T (X) = SX ,
(2) ηX : X → T (X) is defined by ηX(x)(x′) = δx′

x ,

(3) for sets X, Y and any X
α→ T (Y ), T (X) α#

→ T (Y ) is defined by:
(α#(p))(y) = Σ

x∈X
(α(x)(y))� p(x),∀p ∈ T (X), ∀y ∈ Y .

X
α→ T (Y ), may be thought as a matrix with entries in S with X indexing

columns and Y indexing rows.
As is known, T gives rise to a functor T : SET → SET, given by T (X) = SX and for
any f : X → Y , T (f) : SX → SY is defined by (T (f)(p))(y) = ⊕ Σ

x∈f−1(y)
p(x),∀p ∈

SX , ∀y ∈ Y .

3. Main observation

Proposition 3.1. Let (T, η, (−)#) be a matrix theory of a complete semiring (S,⊕,�).
Then for any function f : X → Y , between sets

T (f)(+ Σ
j∈J

pj) = + Σ
j∈J

T (f)(pj), ∀pj ∈ SX , j ∈ J.

Proof. Let y ∈ Y . Then for every y ∈ Y,
(T (f)(+ Σ

j∈J
pj))(y) = ⊕Σ

x∈f−1(y)
(+ Σ

j∈J
pj)(x),

= ⊕ Σ
x∈f−1(y)

(⊕ Σ
j∈J

pj(x)),

= ⊕ Σ
j∈J

( ⊕Σ
x∈f−1(y)

pj(x)),

= ⊕ Σ
j∈J

(T (f)(pj)(y)),

= (+ Σ
j∈J

T (f)(pj))(y),∀y ∈ Y .

Hence, (T (f)(+ Σ
j∈J

pj) = + Σ
j∈J

T (f)(pj). �

We now confine to a complete semiring (S,⊕,�) which is idempotent also (i.e.,⊕
is idempotent). Then we can define a relation ≤ on S as follows: a ≤ b iff a⊕ b = b.
It is easy to see that ≤ is a partial order on S and the ⊕ operation coincides with
the join operation induced by ≤.

Theorem 3.2. Let (S,⊕,�) be a complete idempotent semiring, f : X → Y a map
between sets X and Y , and T (f) be denoted by f→. Then there exists a function
f← : SY → SX such that

(f→ ◦ f←)(q) ≤ q, ∀q ∈ SY , and
(f← ◦ f→)(p) ≥ p, ∀p ∈ SX .
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Moreover, f← is given by,

f←(q) = q ◦ f,∀q ∈ SY .

Proof. For a proof, we view f→ : SX → SY , as a functor from the poset SX to the
poset SY , considered as categories. Then from Proposition 3.1 and Theorem 2.1,
∃ an order-preserving map f← : SY → SX such that f←, considered as functor, is
right adjoint of (f→), i.e.,

(f→ ◦ f←)(q) ≤ q, ∀q ∈ SY , and
(f← ◦ f→)(p) ≥ p, ∀p ∈ SX .

We now show that f←(q) = q ◦ f . By Theorem 2.1,

∀q ∈ SY , f←(q) = +Σ
{
p ∈ SX : q ≥ (f→)(p)

}
= + Σ

p∈Ωq

p,

where Ωq =
{
p ∈ SX : q ≥ (f→)(p)

}
. First, we show that f←(q) ≥ q ◦ f.

Now, ∀y ∈ Y,
(f→(q ◦ f))(y) = ⊕ Σ

x∈f−1(y)
(q ◦ f)(x) = ⊕ Σ

x∈f−1(y)
q(f(x)) = ⊕Σq(y) = q(y).

Hence q ◦ f ∈ Ωq, whereby f←(q) = + Σ
p∈Ωq

p ≥ q ◦ f . (1)

Now we have to show that
q ◦ f ≥ f←(q), i.e., (q ◦ f)(x) ≥ f←(q)(x), ∀x ∈ X
We note that,

p ∈ Ωq ⇒ q(y) ≥ f→(p)(y),∀y ∈ Y ⇒ q(y) ≥ ⊕ Σ
z∈f−1(y)

p(z),∀y ∈ Y.

In particular, for any given x ∈ X and p ∈ Ωq,

q(f(x)) ≥ ⊕Σ
z∈f−1(f(x))

p(z),∀p ∈ Ωq.

Taking summation over p ∈ Ωq, we get

q(f(x)) ≥ ⊕ Σ
p∈Ωq

( ⊕Σ
z∈f−1(f(x))

p(z)).

But as ⊕Σ
z∈f−1(f(x))

p(z) ≥ p(x),

⊕ Σ
p∈Ωq

( ⊕Σ
z∈f−1(f(x))

p(z)) ≥ ⊕ Σ
p∈Ωq

p(x), whereby q(f(x)) ≥ ⊕ Σ
p∈Ωq

p(x),

i.e., (q ◦ f)(x) ≥ (+ Σ
p∈Ωq

p)(x) = (f←(q))(x),∀x ∈ X.

Hence (q ◦ f) ≥ f←(q). (2)
From (1) and(2), we find that f←(q) = q ◦ f . �

Remark 3.3. In view of Theorem 3.2 and in particular due to the properties (f→ ◦
f←)(q) ≤ q, ∀q ∈ SY and (f← ◦ f→)(p) ≥ p, ∀p ∈ SX , it appears appropriate to
refer to the functions f→ and f← as the forward and backward operators, as in the
case of the ZEP.
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