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Abstract. The analysis of prime bi-ideals in near-rings is the primary
focus of our research. The concept of strongly prime, semiprime, irreducible
and strongly irreducible bi-ideals in near-rings N have been dilated upon
by our research team. Now we are taking up the significant concept of
fuzzification in prime bi-ideals of near-rings and exploring its behaviour and
its operations. Prime, strongly prime and semiprime fuzzy bi-ideals in near-
rings have been attempted to be defined systemotically. We have further
made a very minute and meticulous study of the process of irreducible and
strongly irreducible fuzzy bi-ideals in near-rings.
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1. Introduction

Generalized rings may be nomenclated as near-rings. We could describe them
as rings (N,+, ∗) which needs no additions as abelian and sufficies with only one
distributive law. In the historical perspective, a leading role was initiated toward
near-rings as an axiomatic research by Dickson in 1905 in [3]. He broughtout that,
there are certain fields which exist with only one distributive law called near-fields.
After a laps of few years these near-fields re-emerged and proved their utility in
co-ordinatizing some significant types of geometric plans.

Zassenhaus [13] was the one who enabled to distinguish and fixate all finite near-
fields. Presently near-fields happened to be a very effective tool in discovering and
determining bi-transtive, incidence and Ferobenious groups. Whereas it is assumed
that two endomorphisms of a non-abelian group (G, +) can not be termed in gen-
eral usage as endomorphisms. The set E(G) of all finite sums and differences of
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endomorphisms of G were taken in to consideration. E(G) are near-rings related
to the class of the distributely generated near-rings as regards, the addition and
composition of these structures.

LA Zadeh in 1965 in [14] launched the theory of fuzzy set as a general abstraction
of set theory. The concept of Quasi-ideals in integrative near-rings was poineered
by Yakabe [12]. Similarly, the notion of bi-ideals in near-rings was broughtforth by
Tamizh Chelvam and N. Ganesan [11]. S. J. Abbassi and Ambreen Zahra Rizvi
[2] meditated and research upon the prime ideals in near-rings in 2008. The ideas
of fuzzy subnear-rings was initiated by S. Abou-Zaid [1] in 1991 and thoroughly
discussed and evaluated fuzzy left(right) ideals of near-rings and discovered some
prominent characteristics of fuzzy prime ideals of a near-rings. In this discourse, we
have thoroughly thrashed prime bi-ideals, semiprime bi-ideals and not further re-
ducible bi-ideals in near-rings. We have further meditated and research fuzzification
of prime bi-ideals, semiprime bi-ideals and irreducible bi-ideals in near-rings inspired
from [10].

2. Preliminaries

A near-ring is a set N together with two binary operations addition and multi-
plication such that (N,+) is a group ( not necessarily abilian), (N, ·) is a semigroup
and for all n1, n2, n3 ∈ N, (n1+n2) · n3 = n1·n2 + n2·n3 (right distributive law).

In a near-ring only one distributive law holds (left or right). If (N,+) is abelian, we
call N an abelian near-ring. If (N, ·) is commutative we call N itself a commutative
near-ring. The set N0 = {n ∈ N | n0 = 0} is called the zero- symetric part of N .
Nc = {n ∈ N | n0 = n} = {n ∈ N | for all n′ ∈ N : nn′ = n} is called the constant
part of N. A near-ring N is regular if for each element a in N there exist an element
x in N such that a = axa. A near-ring N is strongly regular if for every element
a there is an x in N such that a = xa2. A subgroup M of N with MM ⊆ M is
called subnear-ring of N and is denoted by M ≤ N (see [6]). A subnear-ring M of
N is called invariant if MN ⊆ M and NM ⊆ M. A normal subgroup I of (N,+) is
called ideal of N if

(i) IN ⊆ I
(ii) For all n, n′ ∈ N and for all i ∈ I, n (n′ + i)− nn′ ∈ I. This ideal is denoted

by (I E N) .
Normal subgroups R of (N,+) with (i) are called right ideals of N denoted by

(R Er N), while normal subgroups L of (N,+) with (ii) are said to be left ideals
of N denoted by (L El N) . A non-empty subset I of N is called an invariant N -
subgroup of N , if I is a subgroup of (N,+), IN ⊆ I and NI ⊆ I. An ideal P E N
is called prime if for all ideals I, J E N such that IJ ⊆ P implies that eitherI ⊆ P
or J ⊆ P. Let (Pα)α∈A be a family of prime ideals totally orderd by inclusion. Then
∩

α∈A
Pα = P is also a prime ideal. If I E N is a direct summand and P E N is prime

then P ∩ I is prime ideal in I. An ideal S E N is semiprime if and only if for all
ideals I E N such that I2 ⊆ S this implies I ⊆ S. Each prime ideal is semiprime.
If (Sα)α∈A is a family of semiprime ideals, then ∩

α∈A
Sα is again semiprime. Let

I E N be a direct summand and S E N be semiprime then S ∩ I is semiprime
in I ([8]). Let N be a near-ring. Given two subsets A and B of N, the product
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AB = {ab| a ∈ A, b ∈ B}. Also we define another operation ‘∗’ on the class of
subsets of N given by A ∗ B = {a (a′ + b)− aa′| a, a′ ∈ A, b ∈ B}. A subgroup B
of (N,+) is said to be a bi-ideal of N if BNB ∩ (BN) ∗ B ⊆ B. A subgroup Q of
(N,+) satisfying QN ∩ NQ ∩ N ∗ Q ⊆ Q is called a quasi-ideal of N ([11]). Note
that

Remark 2.1 ([11]). Every quasi ideal is a bi-ideal in a near-ring but the converse
is not true. For this, let N = {0, a, b, c} be the near-ring defined by the caleys
tabels

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 b 0 b
b 0 0 0 0
c 0 b 0 b

Here {0, a} is a bi-ideal but not a quasi-ideal. Note that one sided ideals, N sub-
groups and invariant subnear-ring are quasi-ideals and so they are also bi-ideals.

Proposition 2.2 ([11]). The intersection of all bi-ideals of a near-ring N is a bi-
ideal of N .

Proposition 2.3 ([11]). If B be bi-ideal of a near-ring N and S is a subnear-ring
of N , then B ∩ S is a bi-ideal of S.

Proposition 2.4 ([11]). Let N be a zero-symetric near-ring. A subgroup B of N is
a bi-ideal if and only if BNB ⊆ B.

Proposition 2.5 ([11]). Let N be a zero-symetric near-ring. If B is a bi-ideal of N
then Bn and n′B are bi-ideals of N , where n, n′ ∈ N and n′ is distributive element
in N .

Corollary 2.6 ([11]). If B is a bi-ideal of a zero symetric near-ring N and b is a
distributive element in N . Then bBc is a bi-ideal of N , where c ∈ N.

A function f from the non-empty set N to the unit interval [0, 1] of real numbers
is called a fuzzy subset of N , that is f : N → [0, 1]. A fuzzy subset f : N → [0, 1]
is non-empty if f is not the constant map which assumes the value 0. For fuzzy
subsets f and g of N , f ≤ g means that for all a ∈ N , f (a) ≤ g (a).

Definition 2.7 ([4]). If f and g are fuzzy subsets of a near-ring N . Then f ∩ g,
f ∪ g, f + g, fg and f ∗ g are fuzzy subsets of N defined by

(f ∩ g) (x) = min {f (x) , g (x)}

(f ∪ g) (x) = max {f (x) , g (x)}

(f + g) (x) =

{
sup

x=y+z
{min {f (y) , g (y)}} if x is expressible as x = y + z

0 otherwise

(fg) =

{
sup
x=yz

{min {f (y) , g (y)}} if x is expressible as x = yz

0 otherwise
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(f ∗ g) =

{
sup

x=a(b+c)−ab

{min {f (a) , g (c)}} if x is expressible as x = a(b + c)− ab

0 otherwise

Definition 2.8 ([4]). Let f be a fuzzy subset of N . Then f is called a fuzzy
left(right) N -subgroup of N if for all x, y ∈ N

(1) f(x− y) ≥ min{f(x), f(y)}
(2) f(xy) ≥ f(y) (f(xy) ≥ f(x))
If f is both left and right fuzzy N -subgroup of N , then it is called a fuzzy N -

subgroup of N .

Definition 2.9 ([7]). Let N be a near-ring and f be a fuzzy subset of N . We say
f a fuzzy subnear-ring of N if

(1) f (x− y) ≥ min{f (x) , f (y)}
(2) f (xy) ≥ min{f (x) , f (y)} for all x, y ∈ N .

Definition 2.10 ([4]). Let f be a non-empty fuzzy subset of N. f is a fuzzy ideal
of N , if for all x, y, i ∈ N and

(1) f (x− y) ≥ min{f (x) , f (y)}
(2) f (x) = f (y + x− y)
(3) f (xy) ≥ f (x)
(4) (f (x(y + i)− xy) ≥ f (i)) for any x, y, i ∈ N .
If f satisfies (1), (2) and (3), then it is called a fuzzy right ideal of N. If f satisfies

(1), (2) and (4), then it is called a fuzzy left ideal of N , If f is both fuzzy right as
well as fuzzy left ideal of N, then f is called a fuzzy ideal of N.

Example 2.11 ([3]). Let N = {a, b, c, d} be a set with two binary operatipns as
follows,

+ a b c d
a a b c d
b b a d c
c c d b a
d d c a b

· a b c d
a a a a a
b a a a a
c a a a a
d a a b b

Then (N,+, ·) is a (left) near-ring. Define a fuzzy subset f : N → [0, 1] by
f (c) = f (d) < f (b) < f (a). Then f is a fuzzy ideal of N .

Lemma 2.12 ([3]). If a fuzzy subset of N satisfies the property

f(x− y) ≥ min {f(x), f(y)} ,

then
(1) f (0N ) ≥ f (x)
(2) f (−x) = f (x) for all x, y ∈ N .

Definition 2.13 ([5]). Let X be a non-empty fuzzy subset of N , then the charac-
teristic function of X is denoted by fX and is defined as:

fX(a) =
{

1 if a ∈ X
0 otherwise
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Lemma 2.14 ([1]). Let I be a subset of N . Then I is a left(right) ideal of N if and
only if fI is a fuzzy left(right) ideal of N .

Definition 2.15 ([5]). A fuzzy set f of a near-ring N is called a fuzzy bi-ideal of
N if

(1) f (x− y) ≥ min{f (x) , f (y)} for all x, y, z ∈ N .
(2) f (xyz) ≥ min{f (x) , f (z)} for all x, y, z ∈ N .

Definition 2.16 ([4]). A fuzzy subgroup f of N is called a fuzzy quasi-ideal of N
if (f ◦ fN ) ∩ (fN ◦ f) ∩ (fN ∗ f) ≤ f

A fuzzy subgroup f of N is called a fuzzy bi-ideal of N if (f◦fN◦f)∩(f◦fN∗f) ≤ f

Lemma 2.17 ([4]). For any non-empty subsets X and Y of near-ring N , we have
(1) fX ◦ fY = fXY

(2) fX ∩ fY = fX∩Y

(3) fX ∗ fY = fX∗Y .

Lemma 2.18 ([4]). Let Q be a subgroup of (N,+)
(1) Q is a quasi-ideal of N if and only if fQ is a fuzzy quasi-ideal of N
(2) Q is a bi-ideal of N if and only if fQ is a fuzzy bi-ideal of N .

Lemma 2.19 ([4]). Let f and g be two fuzzy bi-ideals of a near-ring N . Then f ∧ g
is a fuzzy bi-ideal of N .

3. Prime, strongly prime and semiprime bi-ideals

Definition 3.1. A bi-ideal B of a near-ring N is called a prime bi-ideal of N if
B1B2 ⊆ B implies B1 ⊆ B or B2 ⊆ B for any bi-ideals B1, B2 of N .

Example 3.2. If N = {0, 1, 2}. Define addition and Multiplication on N as

+ 0 1 2
0 0 1 2
1 1 0 1
2 2 1 0

· 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

then N is a commutative near-ring and {0}, {0, 1} and {0, 1, 2} are prime bi-ideals
of N .

Definition 3.3. A bi-ideal B of a near-ring N is called a strongly prime bi-ideal of
N if B1B2 ∩B2B1 ⊆ B implies B1 ⊆ B or B2 ⊆ B for any bi-ideals B1, B2 of N .

Definition 3.4. A bi-ideal B of a near-ring N is called a semiprime bi-ideal of N
if B2

1 ⊆ B implies B1 ⊆ B for any bi-ideal B1 of N .

Proposition 3.5. Every strongly prime bi-ideal of a near-ring N is a prime bi-ideal
of N .

Proof. Let B be a strongly prime bi-ideal of a near-ring N . Now let B1, B2 be
two bi-ideals of N such that B1B2 ⊆ B. Then B1B2 ∩ B2B1 ⊆ B1B2 ⊆ B implies
B1B2 ∩ B2B1 ⊆ B. Thus by hypothesis, B1 ⊆ B or B2 ⊆ B. Hence B is a prime
bi-ideal of N . �
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Proposition 3.6. Every prime bi-ideal of a near-ring N is a semiprime bi-ideal of
N .

Proof. Let B be a prime bi-ideal of a near-ring N . Now let B1 be a bi-ideal of N
such that B2

1 ⊆ B. This implies B1B1 ⊆ B implies B1 ⊆ B, as B is a prime bi-ideal
of a near-ring N . Hence B is a semiprime bi-ideal of N . �

Remark 3.7. A prime bi-ideal of a near-ring N is not necessarily a strongly prime
bi-ideal of N .

Example 3.8. Consider N = {0, a, b}. Define addition and multiplication on N
as

+ 0 a b
0 0 a b
a a 0 b
b b b 0

. 0 a b
0 0 0 0
a 0 a a
b 0 b b

Then (N,+, .) is near-ring and its bi-ideals are {0}, {0, a}, {0, b}, {0, a, b}. Now
{0} is a prime bi-ideal of N but not a strongly prime bi-ideal. As {0, a}{0, b} ∩
{0, b}{0, a} = {0, a}∩{0, b} = {0} ⊆ {0}. But neither {0, a} nor {0, b} contained in
{0}. This example shows that every prime bi-ideal of a near-ring is not a strongly
prime bi-ideal.

Lemma 3.9. Intersection of any family of prime bi-ideals of a near-ring N is a
semiprime bi-ideal of N .

Proof. Let {Bi : i ∈ I} be any family of prime bi-ideals of a near-ring N . We have
to show that ∩

i∈I
Bi is a semiprime bi-ideal of N . Now ∩

i∈I
Bi being the intersection of

any family of bi-ideals of a near-ring N is a bi-ideal of N , by Proposition 2.2. Now
let B be any bi-ideal of N such that B2 ⊆ ∩

i∈I
Bi implies BB = B2 ⊆ Bi for all i ∈ I.

Thus B ⊆ Bi for all i ∈ I, because each Bi is a prime bi-ideal of N . So B ⊆ ∩
i∈I

Bi.

Hence ∩
i∈I

Bi is a semiprime bi-ideal of N . �

Theorem 3.10. Let X be an arbitrary subset of a near-ring N and B is a bi-ideal
of N , then BX is a bi-ideal of N .

Proof. To show that BX is a bi ideal of N , we have to show that,
(i) BX is a subgroup of (N,+)
(ii) BXNBX ∩BXN ∗BX ⊆ BX

Since 0 ∈ B so 0x1 + 0x2 + 0x3 + ... + 0xn ∈ BX. Implies BX 6= φ. Let
n∑

i=1

bixi,
m∑

j=1

b´jx
´
j ∈ BX, then

n∑
i=1

bixi −
m∑

j=1

b´jx
´
j =

n∑
i=1

bixi +
m∑

j=1

(−b´j)x
´
j ∈ BX because its

again a finite sum. So BX is a subgroup of N.
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(ii) Now consider

BXNBX ∩BXN ∗BX = (BXNB ∩BXN ∗B)X by right distributive law
⊆ (BNNB ∩BNN ∗B)X as X ⊆ N

⊆ (BNB ∩BN ∗B)X as N2 ⊆ N

⊆ BX as B is a bi-ideal of N

BXNBX ∩BXN ∗BX ⊆ BX

Hence BX is a bi-ideal of N . �

Corollary 3.11. Product of two bi-ideals of near-ring N is a bi-ideal of N .

Proof. Let B1 and B2 be two bi-ideals of N . In Theorem 3.10, if we take a bi-ideal
B1 of N and B2 as an arbitrary subset of N. Then B1B2 is a bi-ideal of N . �

4. Irreducible and strongly irreducible bi-ideals

Definition 4.1. A bi-ideal B of a near-ring N is called an irreducible bi-ideal of N
if B1 ∩B2 = B, implies either B1 = B or B2 = B for any bi-ideals B1, B2 of N .

Definition 4.2. A bi-ideal B of a near-ring N is called a strongly irreducible bi-
ideal of N if B1 ∩B2 ⊆ B implies either B1 ⊆ B or B2 ⊆ B for any bi-ideals B1, B2

of N .

Definition 4.3. A bi-ideal B of a near-ring N is called a strongly irreducible
semiprime bi-ideal of N if (B1 ∩B2)

2 ⊆ B implies either B1 ⊆ B or B2 ⊆ B
for any bi-ideals B1, B2 of N .

Proposition 4.4. Every strongly irreducible semiprime bi-ideal of N is a strongly
prime bi-ideal of N .

Proof. Let B be a strongly irreducible semiprime bi-ideal of a near-ring N . Let B1

and B2 be two bi-ideals of N such that B1B2 ∩ B2B1 ⊆ B...(i). Then we have to
show that either B1 ⊆ B or B2 ⊆ B. As B1 ∩ B2 ⊆ B1 and B1 ∩ B2 ⊆ B2, implies
(B1 ∩B2)

2 ⊆ B1B2 and (B1 ∩B2)
2 ⊆ B2B1. Thus (B1 ∩B2)

2 ⊆ B1B2∩B2B1 ⊆ B
(using (i)). B1 ∩ B2 being the intersection of bi-ideals of N is also a bi-ideal of
N , by Proposition 2.2. So (B1 ∩B2)

2 ⊆ B implies (B1 ∩B2) ⊆ B, because B is a
semiprime bi-ideal of N. Also B1 ⊆ B or B2 ⊆ B, because B is a strongly irreducible
bi-ideal of N . Hence B is a strongly prime bi-ideal of N . �

Proposition 4.5. Let B be a bi-ideal of a near-ring N and a ∈ N such that a /∈ B,
then there exists an irreducible bi-ideal I of N such that B ⊆ I and a /∈ I.

Proof. Let X be the collection of all bi-ideals of N which contain B but do not
contain a, that is X = {Yi : Yi is a bi-ideal of N , B ⊆ Yi and a /∈ Yi}. Then X is a
non-empty as B ∈ X. The collection X is a partially orderd set under inclusion.
If {Yi : i ∈ I} be any totally orderd subset (chain) of X, Then ∪

i∈I
Yi = Y is also a

bi-ideal of N containing B and a /∈ Y . So Y is an upper bound of {Yi : i ∈ I}. Thus
every chain in X has an upper bound in X. Hence by Zorn’s lemma, there exists a
maximal element I (say) in X. This implies B ⊆ I and a /∈ I. Now we show that
I is an irreducible bi-ideal of N . For this let C, D be two bi-ideals of N such that
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I = C ∩ D. If both C and D properly contain I, then a ∈ C and a ∈ D. Thus
a ∈ C ∩D = I, which is a contradiction to the fact that a /∈ I. So either I = C or
I = D. �

Theorem 4.6. For a near-ring N , the following assertions are equivalent:

(1) B2 = B for every bi-ideal B of N .
(2) B1B2 ∩B2B1 = B1 ∩B2 for any bi-ideals B1, B2 of N .
(3) Each bi-ideal of N is semiprime.
(4) Each proper bi-ideal of N is the intersection of irreducible semiprime bi-ideal

of N which contain it.

Proof. (1) ⇒ (2): Let B1 and B2 be any two bi-ideals of N . Then B1 ∩B2 is also a
bi-ideal of N , by Proposition 2.2. By hypothesis, we have (B1 ∩B2) = (B1 ∩B2)

2 =
(B1 ∩B2) (B1 ∩B2) ⊆ B1B2. Similarly B1∩B2 ⊆ B2B1. So B1∩B2 ⊆ B1B2∩B2B1.
Now B1B2 and B2B1, being the product of two bi-ideals of N , are bi-ideals of N
by Corollary 3.11. Also B1B2 ∩ B2B1 is a bi-ideal of N , by Proposition 2.2. Then
by hypothesis B1B2 ∩ B2B1 = (B1B2 ∩B2B1) (B1B2 ∩B2B1) ⊆ B1B2 · B2B1 =
B1B

2
2B1 ⊆ B1B2B1

⊆ B1NB1 ⊆ B1. Similarly, B1B2 ∩ B2B1 ⊆ B2. Thus B1B2 ∩ B2B1 ⊆ B1 ∩ B2.
Hence B1B2 ∩B2B1 = B1 ∩B2.

(2) ⇒ (3) : Let B be a bi-ideal of N such that B2
1 ⊆ B for any bi-ideals B1 of

N . Then by hypothesis, we have B1 = B1 ∩B1 = B1B1 ∩B1B1 = B2
1 ⊆ B. Which

shows that B is a semiprime bi-ideal of N . Hence every bi-ideal of N is a semiprime
bi-ideal of N .

(3) ⇒ (4) : Suppose each bi-ideal of N is semiprime. Now let B be a proper
bi-ideal of N . Then by Proposition 4.5, there exists an irreducible bi-ideal of N
containing B. If ∩

α
Iα be the intersection of all irreducible bi-ideals of N containing

B, then B ⊆ ∩
α
Iα, as B ⊆ Iα for all α. If this inclusion is proper, then there exists

a ∈ ∩
α
Iα such that a /∈ B. This implies a ∈ Iα for all α. As a /∈ B, Then by

Proposition 4.5, there exists an irreducible bi-ideal I (say) of N such that B ⊆ I
and a /∈ I. Which is the contradiction to the fact that a ∈ Iα for all α. So B = ∩

α
Iα.

By hypothesis, each bi-ideal of N is semiprime. Thus each proper bi-ideal of N is
the intersection of irreducible semiprime bi-ideals of N which contain it.

(4) ⇒ (1): Let each proper bi-ideal of N is the intersection of irreducible
semiprime bi-ideals of N which contain it. Now if B is a bi-ideal of N , then
BB = B2, being the product of two bi-ideals is also a bi-ideal of N . If B2 = N
(improper bi-ideal), then N ⊆ B2 implies B ⊆ N ⊆ B2. Also B2 ⊆ B, so B2 = B
for each bi-ideal B of N . Now if B2 is a proper bi-ideal of N , B2 6= N , then B2 =
∩
α

{
Bα : Bα is an irreducible semiprime bi-ideal of N such that B2 ⊆ Bα for all α

}
.

Implies B ⊆ Bα for all α, because each Bα is a semiprime bi-ideal of N . Thus
B ⊆ ∩Bα = B2. Also B2 ⊆ B as B is closed under multiplication. Hence B2 = B
for each bi-ideal B of N . �

Theorem 4.7. If each bi-ideal of a near-ring N is idempotent then the following
assertions are equivalent
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(1) B is strongly irreducible.
(2) B is strongly prime.

Proof. (1) ⇒ (2) : Let B be a strongly irreducible bi-ideal of N . Then we have to
show that B is a strongly prime bi-ideal of N . For this let B1 and B2 be any two
bi-ideals of N such that B1B2∩B2B1 ⊆ B. As each bi-ideal of N is idempotent then
by Theorem 4.6, we have B1 ∩ B2 = B1B2 ∩ B2B1 ⊆ B, this implies B1 ∩ B2 ⊆ B.
But B is a strongly irreducible bi-ideal of N . Thus we have B1 ⊆ B or B2 ⊆ B.
Hence B is a strongly prime bi-ideal of N .

(2) ⇒ (1) : Let B be a strongly prime bi-ideal of N . To show that B is a
strongly irreducible bi-ideal of N , let B1, B2 be any two bi-ideals of N such that
B1 ∩B2 ⊆ B. By Theorem 4.6, we have B1B2 ∩B2B1 = B1 ∩B2 ⊆ B, this implies
B1B2 ∩B2B1 ⊆ B. But B is strongly prime bi-ideal of N , thus we have B1 ⊆ B or
B2 ⊆ B. Hence B is a strongly irreducible bi-ideal of N . �

Theorem 4.8. Each bi-ideal of a near-ring N is strongly prime if and only if each
bi-ideal of N is idempotent and the set of bi-ideals of N is totally orderd by inclusion.

Proof. Suppose that each bi-ideal of N is strongly prime. This implies that each
bi-ideal of N is semiprime. Then by Theorem 4.6, each bi-ideal of N is idempotent.
Now we show that the set of bi-ideals of N is totally orderd by inclusion. For this let
B1, B2 be two bi-ideals of N , by Theorem 4.6, we have

B1B2 ∩B2B1 = B1 ∩B2... (i)

By hypothesis, B1 and B2 are strongly prime bi-ideals of N , so is B1 ∩B2. Then
(i) implies

B1 ⊆ B1 ∩B2 or B2 ⊆ B1 ∩B2.

Thus B1 ⊆ B2 or B2 ⊆ B1. Hence the set of bi-ideals of N is totally orderd by
inclusion.

Conversely, assume that each bi-ideal of N is idempotent and the set of bi-ideals
of N is totally orderd by inclusion. We have to show that each bi-ideal of N is
strongly prime. For this let B be an arbitrary bi-ideal of N and B1 and B2 be any
two bi-ideals of N such that

B1B2 ∩B2B1 ⊆ B ... (ii)

By Theorem 4.6, we have B1B2 ∩ B2B1 = B1 ∩ B2. Thus (ii) can be written
as

B1 ∩B2 ⊆ B ... (iii)

Also the set of bi-ideals of N is totally orderd by inclusion, then either B1 ⊆ B2

or B2 ⊆ B1. If B1 ⊆ B2, then B1 ∩ B2 = B1. Thus (iii) implies B1 ⊆ B. And if
B2 ⊆ B1, then B1 ∩ B2 = B2. Thus (iii) implies B2 ⊆ B. So either B1 ⊆ B or
B2 ⊆ B. Thus B is strongly prime. Hence each bi-ideal of N is strongly prime. �

Theorem 4.9. If the set of bi-ideals of a near-ring N is totally orderd, then each
bi-ideal of N is idempotent if and only if each bi-ideal of N is prime.

133



S. Bashir et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 1, 125–140

Proof. Let each bi-ideal of N is idempotent, B is an arbitrary bi-ideal of N and B1,
B2 be any two bi-ideals of N such that B1B2 ⊆ B. As the set of bi-ideals of N is
totally orderd, then either B1 ⊆ B2 or B2 ⊆ B1. If B1 ⊆ B2, then B1B1 = B2

1 ⊆
B1B2 ⊆ B, by Theorem 4.6, B is a semiprime bi-ideal of N . Then B2

1 ⊆ B implies
B1 ⊆ B, similarly, if B2 ⊆ B1, then B2B2 = B2

2 ⊆ B1B2 ⊆ B. Implies B2 ⊆ B, as
B is a semiprime bi-ideal of N . Thus B is a prime bi-ideal of N .

Conversely, suppose that each bi-ideal of N is prime, so is semiprime, by Propo-
sition 3.6. Thus by Theorem 4.6, each bi-ideal of N is idempotent. �

Proposition 4.10. If the set of bi-ideals of a near-ring N is totally orderd, then
the concepts of primeness and strongly primeness coincide.

Proof. Let B be a prime bi-ideal of N . To show that B is a strongly prime bi-ideal
of N , let B1, B2 be any two bi-ideals of N such that B1B2 ∩ B2B1 ⊆ B. As the
set of bi-ideals of near-ring N is totally orderd, then either B1 ⊆ B2 or B2 ⊆ B1. If
B1 ⊆ B2, then

B1B1 = B2
1 = B2

1 ∩B2
1 ⊆ B1B2 ∩B2B1 ⊆ B.

Implies B1 ⊆ B, as B is a prime bi-ideal of N . Similarly, if B2 ⊆ B1, then

B2B2 = B2
2 = B2

2 ∩B2
2 ⊆ B1B2 ∩B2B1 ⊆ B.

Implies B2 ⊆ B, as B is a prime bi-ideal of N . This shows that B is a strongly
prime bi-ideal of N . Thus every prime bi-ideal of N is strongly prime. Now let B be
a strongly prime bi-ideal of N . To show that B is a prime bi-ideal of N , let B1, B2

be any two bi-ideals of N such that B1B2 ⊆ B. Implies B1B2 ∩B2B1 ⊆ B. Implies
either B1 ⊆ B or B2 ⊆ B, as B is a strongly prime bi-ideal of N . This shows that B
is a prime bi-ideal of N . Thus every strongly prime bi-ideal of N is a prime bi-ideal
of N . �

Theorem 4.11. For a near-ring N , the following assertions are equivalent:

(1) The set of bi-ideals of a near-ring N is totally orderd by inclusion.
(2) Each bi-ideal of N is strongly irreducible .
(3) Each bi-ideal of N is irreducible.

Proof. (1)⇒(2): Let the set of bi-ideals of a near-ring N is totally orderd by set
inclusion. To show that each bi-ideal of N is strongly irreducible, let B be an
arbitrary bi-ideal of N and B1 and B2 be any two bi-ideals of N such that B1∩B2 ⊆
B. By hypothesis, we have either B1 ⊆ B2 or B2 ⊆ B1. If B1 ⊆ B2, then B1 =
B1 ∩B1 ⊆ B1 ∩B2 ⊆ B. Similarly, if B2 ⊆ B1, then B2 = B2 ∩B2 ⊆ B1 ∩B2 ⊆ B.
So B is strongly irreducible.

(2)⇒(3): Suppose each bi-ideal of N is strongly irreducible. To show that each
bi-ideal of N is irreducible, let B be an arbitrary bi-ideal of N and B1, B2 be any two
bi-ideals of N such that B1 ∩B2 = B. This implies B1 ∩B2 ⊆ B and B ⊆ B1 ∩B2.
B1 ∩ B2 ⊆ B implies B1 ⊆ B or B2 ⊆ B, by hypothesis, and B ⊆ B1 ∩ B2 implies
B ⊆ B1 and B ⊆ B2. Hence either B1 = B or B2 = B. Thus B is an irreducible
bi-ideal of N . Hence each bi-ideal of N is irreducible.

(3)⇒(1): Let each bi-ideal of N is irreducible. To show that the set of bi-ideals
of N is totally orderd by set inclusion, let B1, B2 be any two bi-ideals of N . Then
B1∩B2, being the intersection of bi-ideals is also a bi-ideal of N , by Proposition 2.2.
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Now B1 ∩B2 is a bi-ideal of N such that B1 ∩B2 = B1 ∩B2. Implies B1 = B1 ∩B2

or B2 = B1 ∩ B2, by hypothesis. Thus B1 ⊆ B2 or B2 ⊆ B1. Hence the set of
bi-ideals of N is totally orderd by set inclusion. �

5. Prime, strongly prime and semiprime fuzzy bi-ideals

Definition 5.1. A fuzzy bi-ideal f of a near-ring N is called a prime fuzzy bi-ideal
of N if for any fuzzy bi-ideals g, h of N , g ◦ h ≤ f implies g ≤ f or h ≤ f .

Definition 5.2. A fuzzy bi-ideal f of a near-ring N is called a strongly prime fuzzy
bi-ideal of N if for any fuzzy bi-ideals g, h of N , g ◦ h ∧ h ◦ g ≤ f implies g ≤ f or
h ≤ f .

Definition 5.3. A fuzzy bi-ideal g of a near-ring N is said to be idempotent if
g = g ◦ g = g2.

Definition 5.4. A fuzzy bi-ideal f of a near-ring N is said to be a semiprime fuzzy
bi-ideal of N if g ◦ g = g2 ≤ f implies g ≤ f for every fuzzy bi-ideal g of N .

Proposition 5.5. Every strongly prime fuzzy bi-ideal of a near-ring N is a prime
fuzzy bi-ideal of N .

Proof. Let f be a strongly prime fuzzy bi-ideal of a near-ring N . Now let g, h be
two fuzzy bi-ideals of N such that g ◦ h ≤ f . Then g ◦ h ∧ h ◦ g ≤ f . Thus by
hypothesis, g ≤ f or h ≤ f . Hence f is a prime fuzzy bi-ideal of N . �

Proposition 5.6. Every prime fuzzy bi-ideal of a near-ring N is a semiprime fuzzy
bi-ideal of N .

Proof. Let f be a prime fuzzy bi-ideal of a near-ring N . Now let g be any fuzzy bi-
ideal of N such that g ◦ g ≤ f . Then by hypothesis g ≤ f . Hence f is a semiprime
fuzzy bi- ideal of N . �

Remark 5.7. Every fuzzy bi-ideal of N is semiprime. But every fuzzy bi-ideal of
N is not prime.

Proof. Consider the fuzzy bi-ideals f, g and h of N given by

f (0) = ·7 f (1) = ·6 f (2) = ·4
g (0) = 1 g (1) = ·5 g (2) = ·3
h (0) = ·7 h (1) = ·65 h (2) = ·3

Then
g ◦ h (0) = ·7, g ◦ h (1) = ·5, g ◦ h (2) = ·3

Where g ◦ h ≤ f but neither g ≤ f nor h ≤ f . Hence f is not a prime fuzzy
bi-ideal of N . �

Lemma 5.8. Product of two fuzzy bi-ideals of N is a fuzzy bi-ideal of N .
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Proof. Let f and g be two fuzzy bi-ideals of N . We have to show that f ◦ g is a
fuzzy bi-ideal of N. For this let

(f ◦ g) (x− y) = f (g (x− y))
≥ f{min(g(x), g(y)}, as g is a fuzzy bi-ideal of N

= f{min(g(x)}, f{min(g(y)}
= min {(f ◦ g) (x) , (f ◦ g) (y)}

(f ◦ g) (x− y) ≥ min {(f ◦ g) (x) , (f ◦ g) (y)}

(f ◦ g) ◦ fN ◦ (f ◦ g) ∩ (f ◦ g) ◦ fN ∗ f ◦ g = [ (f ◦ g) ◦ fN ◦ f ∩ (f ◦ g) ◦ fN ∗ f ] g
≤ [ f ◦ fN ◦ fN ◦ f ∩ (f ◦ g) ◦ fN ∗ f ] g
≤ [ f ◦ fN ◦ f ∩ f ◦ fN ◦ fN ∗ f ] g
≤ f ◦ g

Hence f ◦ g is a fuzzy bi-ideal of N �

6. Irreducible and strongly irreducible fuzzy bi-ideals

Definition 6.1. A fuzzy bi-ideal f of a near-ring N is said to be an irreducible
fuzzy bi-ideal of N if for any fuzzy bi-ideals g and h of N , g ∧ h = f implies g = f
or h = f .

Definition 6.2. A fuzzy bi-ideal f of a near-ring N is said to be a strongly irre-
ducible fuzzy bi-ideal of N if for any fuzzy bi-ideals g and h of N , g∧h ≤ f implies
g ≤ f or h ≤ f .

Proposition 6.3. Every strongly irreducible semiprime fuzzy bi-ideal of a near-ring
N is a strongly prime fuzzy bi-ideal of N .

Proof. Let f be a strongly irreducible semiprime fuzzy bi-ideal of a near-ring N .
Let g, h be any fuzzy bi-ideals of N such that g ◦h∧h◦g ≤ f . As (g ∧ h)◦ (g ∧ h) =
(g ∧ h)2 ≤ g ◦ h and (g ∧ h) ◦ (g ∧ h) = (g ∧ h)2 ≤ h ◦ g, implies (g ∧ h)2 ≤ (g ◦ h) ∧
(h ◦ g) ≤ f . So g ∧ h ≤ f , as f is a semiprime fuzzy bi-ideal of N . Thus either
g ≤ f or h ≤ f , because f is a strongly irreducible fuzzy bi-ideal of N . Hence f is
a strongly prime fuzzy bi-ideal of N . �

Theorem 6.4. Let f be a fuzzy bi-ideal of a near-ring N with f(a) = α, where
a ∈ N and α ∈ [0, 1]. Then there exists an irreducible fuzzy bi-ideal g of N such that
f ≤ g and g(a) = α.

Proof. Let X={h : h is a fuzzy bi-ideal of N , h(a) = α and f ≤ h}, then X 6= φ(non-
empty), as f ∈ X. The collection X is a partially orderd under inclusion. If
Y = {hi : hi is a fuzzy bi-ideal of N , hi (a) = α and f ≤ hi for all i ∈ I} is any to-
tally orderd subset of X, then ∨

i∈I
hi is a fuzzy bi-ideal of N such that f ≤ ∨

i∈I
hi.
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Indeed, if a, b, x ∈ N , then(
∨

i∈I
hi

)
(a− b) = ∨

i∈I
(hi (a− b))

≥ ∨
i∈I

(hi (a) ∧ hi (b)) as each hi is a fuzzy bi-ideal of N .

=
(
∨

i∈I
hi (a)

)
∧

(
∨

i∈I
hi (b)

)
=

(
∨

i∈I
hi

)
(a) ∧

(
∨

i∈I
hi

)
(b)

and (
∨

i∈I
hi

)
(ab) = ∨

i∈I
(hi (ab))

≥ ∨
i∈I

(hi (a) ∧ hi (b)) as each hi is a fuzzy bi-ideal of N .

=
(
∨

i∈I
hi (a)

)
∧

(
∨

i∈I
hi (b)

)
=

(
∨

i∈I
hi

)
(a) ∧

(
∨

i∈I
hi

)
(b)

Now(
∨

i∈I
hi

)
(axb) = ∨

i∈I
(hi (axb))

= ∨
i∈I

(hi (a) ∧ hi (b)) as each hi is a fuzzy bi-ideal of N .

=
(
∨

i∈I
hi (a)

)
∧

(
∨

i∈I
hi (b)

)
=

(
∨

i∈I
hi

)
(a) ∧

(
∨

i∈I
hi

)
(b)

Hence ∨
i∈I

hi is a fuzzy bi-ideal of N . As f ≤ hi for all i ∈ I. This implies f ≤ ∨
i∈I

hi.

Also (
∨

i∈I
hi

)
(a) = ∨

i∈I
hi (a) = α.

Thus ∨
i∈I

hi ∈ X and ∨
i∈I

hi is an upper bound of Y . Hence by Zorn’s lemma, there

exists a fuzzy bi-ideal g of N which is maximal with the property f ≤ g and g (a) = α.
Now we show that g is an irreducible fuzzy bi-ideal of N . For this, suppose that
for any fuzzy bi-ideals g1, g2 of N, we have g1 ∧ g2 = g. This implies g ≤ g1 and
g ≤ g2. We claim that g = g1 or g = g2. On contrary, suppose that g 6= g1 and
g 6= g2. This implies g l g1 and g l g2. So g1 (a) 6= α and g2 (a) 6= α, as g (a) = α.
Hence (g1 ∧ g2) (a) = g1 (a) ∧ g2 (a) 6= α. Which is a contradiction to the fact that
g1 (a) ∧ g2 (a) = g (a) = α. Hence either g = g1 or g = g2. Thus g is an irreducible
fuzzy bi-ideal of N . �

Theorem 6.5. For a near-ring N , the following assertions are equivalent:
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(1) f ◦ f = f for every fuzzy bi-ideal of N .
(2) g ∧ h = g ◦ h ∧ h ◦ g for all fuzzy bi-ideals g and h of N .
(3) Each fuzzy bi-ideal of N is fuzzy semiprime.
(4) Each proper fuzzy bi-ideal of N is the intersection of irreducible semiprime

fuzzy bi-ideals of N which contain it.

Proof. (1) ⇒(2) : Let g and h be two fuzzy bi-ideals of N . Then by Lemma
2.19, g ∧ h is also a fuzzy bi-ideal of N . Thus by hypothesis, we have g ∧ h =
(g ∧ h) ◦ (g ∧ h) ≤ g ◦ h. Similarly g ∧ h ≤ h ◦ g. Implies g ∧ h ≤ g ◦ h ∧ h ◦ g. Now
g ◦ h and h ◦ g, being the products of two fuzzy bi-ideals of N , are fuzzy bi-ideals of
N . Also g ◦ h ∧ h ◦ g is a fuzzy bi-ideal of N , by Lemma 2.19. Thus by hypothesis,
we have

g ◦ h ∧ h ◦ g = (g ◦ h ∧ h ◦ g) ◦ (g ◦ h ∧ h ◦ g)
≤ (g ◦ h) ◦ (h ◦ g)
= g ◦ h ◦ g as h ◦ h = h (by hypothesis)
≤ g ◦ f N ◦ g as h ≤ f N

≤ g as g is a fuzzy bi-ideal of N.

Similarly g ◦ h ∧ h ◦ g ≤ h. Thus g ◦ h ∧ h ◦ g ≤ g ∧ h. Hence g ◦ h ∧ h ◦ g =
g∧h.

(2) ⇒ (3) : Let g be a fuzzy bi-ideal of N such that f 2 ≤ g for any bi-ideal f
of N . Then by hypothsis,

f = f ∧ f = f ◦ f ∧ f ◦ f = f ◦ f = f 2 ≤ g.

This implies f ≤ g. Thus f is a semiprime fuzzy bi-ideal of N . Hence every fuzzy
bi-ideal of N is semiprime.

(3) ⇒ (4) : Let f be a proper fuzzy bi-ideal of N and { fi : i ∈ I} be the
collection of all irreducible fuzzy bi-ideals of N such that f ≤ f i for all i ∈ I. This
implies f ≤ ∧

i∈I
f i. Let a ∈ N then by Theorem 6.4, there exists an irreducible

fuzzy bi-ideal f α of N such that f ≤ f α and f (a) = f α (a). This implies fα

∈ { fi : i ∈ I}. Thus ∧
i∈I

f i ≤ f α. So ∧
i∈I

f i (a) ≤ f α (a) = f (a) for all a ∈ N .

This implies ∧
i∈I

fi ≤ f . Hence ∧
i∈I

f i = f . By hypothesis, each fuzzy bi-ideal of

N is semiprime. Thus each fuzzy bi-ideal of N is the intersection of all irreducible
semiprime fuzzy bi-ideals of N which contain it.

(4) ⇒ (1) : Let f be a fuzzy bi-ideal of N . Then by the definition of fuzzy
bi-ideal we have, f 2 = f ◦f ≤ f . Also f 2 = f ◦f , being the product of two fuzzy
bi-ideals of N is a fuzzy bi-ideal of N . Then by hypothesis, f 2 = ∧

i∈I
f i, where each

f i is an irreducible semiprime fuzzy bi-ideal of N such that f 2 ≤ f i for all i ∈ I .
This implies f ≤ f i for all i ∈ I, because each f i is a semiprime fuzzy bi-ideal of
N . Thus f ≤ ∧

i∈I
f i = f 2. Hence f 2 = f . �

Proposition 6.6. Let each fuzzy bi-ideal of a near-ring N is idempotent. Then the
following assertions for a fuzzy bi-ideal of N are equivalent:
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(1) f is strongly irreducible.
(2) f is strongly prime.

Proof. (1) ⇒ (2) : Let each fuzzy bi-ideal of a near-ring N is idempotent and f
be a strongly irreducible fuzzy bi-ideal of N . Suppose that g and h be two fuzzy
bi-ideals of N such that g ◦h∧h ◦ g ≤ f . By Theorem 6.5, g∧h = g ◦h∧h ◦ g ≤ f .
Implies either g ≤ f or h ≤ f , as f is strongly irreducible. So f is strongly prime
fuzzy bi-ideal of N .

(2) ⇒ (1) : Suppose f is a strongly prime fuzzy bi-ideal of N . Let g and h be any
fuzzy bi-ideals of N such that g ∧h ≤ f . By Theorem 6.5, g ◦h∧h ◦ g = g ∧h ≤ f
, so g ◦ h∧ h ◦ g ≤ f . Implies either g ≤ f or h ≤ f , as f is a strongly prime fuzzy
bi-ideal of N . Thus f is strongly irreducible. �

Theorem 6.7. Each fuzzy bi-ideal of a near-ring N is strongly prime if and only if
each fuzzy bi-ideal of N is idempotent and the set of fuzzy bi-ideals of N is totally
orderd by inclusion.

Proof. Suppose that each fuzzy bi-ideal of a near-ring N is strongly prime, then each
fuzzy bi-ideal of N is semiprime. Thus by Theorem 6.5, each fuzzy bi-ideal of N is
idempotent. Now we show that the set of fuzzy bi-ideals of N is totally orderd by
inclusion. For this let g and h be any two fuzzy bi-ideals of N . Then by Theorem
6.5, g ◦ h∧ h ◦ g = g ∧ h, implies g ◦ h∧ h ◦ g ≤ g ∧ h. As each fuzzy bi-ideal of N is
strongly prime, so is g ∧ h. Thus either g ≤ g ∧ h or h ≤ g ∧ h. If g ≤ g ∧ h, implies
g ≤ h and if h ≤ g ∧ h, implies h ≤ g. So the set of fuzzy bi-ideals of N is totally
orderd by inclusion.

Conversely, assume that each fuzzy bi-ideal of N is idempotent and the set of
fuzzy bi-ideals of N is totally orderd by inclusion. Let f be an arbitrary fuzzy bi-
ideal of N and g, h be any fuzzy bi-ideals of N such that g ◦ h ∧ h ◦ g ≤ f . By
Theorem 6.5 g ∧ h = g ◦ h ∧ h ◦ g ≤ f implies

g ∧ h ≤ f ... (i)

Since the set of fuzzy bi-ideals of N is totally orderd by inclusion. So either g ≤ h
or h ≤ g, implies either g ∧ h = g or g ∧ h = h. Then (i) implies either g ≤ f or
h ≤ f . �

Theorem 6.8. If the set of fuzzy bi-ideals of a near-ring N is totally orderd by
inclusion, then each fuzzy bi-ideal of N is idempotent if and only if each fuzzy bi-
ideal of N is prime.

Proof. Suppose each fuzzy bi-ideal of N is idempotent. Let f be an arbitrary fuzzy
bi-ideal and g, h be fuzzy bi-ideals of N such that g ◦ h ≤ f . Since the set of fuzzy
bi-ideals of N is totally orderd by inclusion, so either g ≤ h or h ≤ g. If g ≤ h then
g ◦ g ≤ g ◦ h ≤ f , implies g ≤ f as f is semiprime by Theorem 6.5. If h ≤ g then
h ◦ h ≤ g ◦ h ≤ f , implies h ≤ f as f is semiprime by Theorem 6.5. So each fuzzy
bi-ideal of N is prime.

Conversely, suppose that every fuzzy bi-ideal of N is prime. Since every prime
fuzzy bi-ideal of N is semiprime. So by Theorem 6.5, each fuzzy bi-ideal of N is
idempotent. �
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Theorem 6.9. For a near-ring N the following assertions are equivalent:

(1) Set of fuzzy bi-ideals of a near-ring N is totally orderd by inclusion.
(2) Each fuzzy bi-ideal of N is strongly irreducible.
(3) Each fuzzy bi-ideal of N is irreducible.

Proof. (1) ⇒ (2) : Let f be an arbitrary fuzzy bi-ideal of N and g, h be fuzzy
bi-ideals of N such that g ∧ h ≤ f . Since the set of fuzzy bi-ideals of N is totally
orderd by inclusion, so either g ≤ h or h ≤ g. Thus either g ∧ h = g or g ∧ h = h,
implies either g ≤ f or h ≤ f .

(2) ⇒ (3) : Let f be an arbitrary fuzzy bi-ideal of N and g, h be fuzzy bi-ideals
of N such that

g ∧ h = f ...(i)
Thus g ≥ f and h ≥ f . (i) implies g ∧ h ≤ f . So g ≤ f or h ≤ f , as f is

strongly irreducible. Hence either g = f or h = f .
(3) ⇒ (1) : Let g and h be two fuzzy bi-ideals of N . Then by Lemma 2.19, g ∧h

is also a fuzzy bi-ideal of N . Also g∧h = g∧h, implies either g = g∧h or h = g∧h.
Thus g ≤ h or h ≤ g. �
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