Annals of Fuzzy Mathematics and Informatics Volume 9, No. 1, (January 2015), pp. 125–140 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Prime bi-ideals and strongly prime fuzzy bi-ideals in near rings

Shahida Bashir, Ansa Kanwal

Received 22 April 2014; Accepted 28 June 2014

ABSTRACT. The analysis of prime bi-ideals in near-rings is the primary focus of our research. The concept of strongly prime, semiprime, irreducible and strongly irreducible bi-ideals in near-rings N have been dilated upon by our research team. Now we are taking up the significant concept of fuzzification in prime bi-ideals of near-rings and exploring its behaviour and its operations. Prime, strongly prime and semiprime fuzzy bi-ideals in nearrings have been attempted to be defined systemotically. We have further made a very minute and meticulous study of the process of irreducible and strongly irreducible fuzzy bi-ideals in near-rings.

2010 AMS Classification: 16Y30, 16Y99, 16D25, 03E72

Keywords: Prime bi-ideals, Strongly prime, Semiprime, Irreducible and strongly irreducible bi-ideals in Near-rings, Fuzzy prime bi-ideals, Fuzzy semiprime, Fuzzy irreducible and strongly fuzzy irreducible bi-ideals in Near-rings.

Corresponding Author: Shahida Bashir (shahida.bashir@uog.edu.pk)

1. INTRODUCTION

Generalized rings may be nomenclated as near-rings. We could describe them as rings (N, +, *) which needs no additions as abelian and sufficies with only one distributive law. In the historical perspective, a leading role was initiated toward near-rings as an axiomatic research by Dickson in 1905 in [3]. He broughtout that, there are certain fields which exist with only one distributive law called near-fields. After a laps of few years these near-fields re-emerged and proved their utility in co-ordinatizing some significant types of geometric plans.

Zassenhaus [13] was the one who enabled to distinguish and fixate all finite nearfields. Presently near-fields happened to be a very effective tool in discovering and determining bi-transtive, incidence and Ferobenious groups. Whereas it is assumed that two endomorphisms of a non-abelian group (G, +) can not be termed in general usage as endomorphisms. The set E(G) of all finite sums and differences of endomorphisms of G were taken in to consideration. E(G) are near-rings related to the class of the distributely generated near-rings as regards, the addition and composition of these structures.

LA Zadeh in 1965 in [14] launched the theory of fuzzy set as a general abstraction of set theory. The concept of Quasi-ideals in integrative near-rings was poineered by Yakabe [12]. Similarly, the notion of bi-ideals in near-rings was broughtforth by Tamizh Chelvam and N. Ganesan [11]. S. J. Abbassi and Ambreen Zahra Rizvi [2] meditated and research upon the prime ideals in near-rings in 2008. The ideas of fuzzy subnear-rings was initiated by S. Abou-Zaid [1] in 1991 and thoroughly discussed and evaluated fuzzy left(right) ideals of near-rings and discovered some prominent characteristics of fuzzy prime ideals of a near-rings. In this discourse, we have thoroughly thrashed prime bi-ideals, semiprime bi-ideals and not further reducible bi-ideals in near-rings. We have further meditated and research fuzzification of prime bi-ideals, semiprime bi-ideals and irreducible bi-ideals in near-rings inspired from [10].

2. Preliminaries

A near-ring is a set N together with two binary operations addition and multiplication such that (N, +) is a group (not necessarily abilian), (N, \cdot) is a semigroup and for all $n_1, n_2, n_3 \in N$, $(n_{1+}n_2) \cdot n_3 = n_1 \cdot n_2 + n_2 \cdot n_3$ (right distributive law).

In a near-ring only one distributive law holds (left or right). If (N, +) is abelian, we call N an abelian near-ring. If (N, \cdot) is commutative we call N itself a commutative near-ring. The set $N_0 = \{n \in N \mid n0 = 0\}$ is called the zero- symetric part of N. $N_c = \{n \in N \mid n0 = n\} = \{n \in N \mid n0 = 0\}$ is called the zero- symetric part of N. A near-ring N is regular if for each element a in N there exist an element x in N such that a = axa. A near-ring N is strongly regular if for every element a there is an x in N such that $a = xa^2$. A subgroup M of N with $MM \subseteq M$ is called subnear-ring of N and is denoted by $M \leq N$ (see [6]). A subnear-ring M of N is called invariant if $MN \subseteq M$ and $NM \subseteq M$. A normal subgroup I of (N, +) is called ideal of N if

(i) $IN \subseteq I$

(ii) For all $n, n' \in N$ and for all $i \in I$, $n(n'+i) - nn' \in I$. This ideal is denoted by $(I \leq N)$.

Normal subgroups R of (N, +) with (i) are called right ideals of N denoted by $(R \leq_r N)$, while normal subgroups L of (N, +) with (ii) are said to be left ideals of N denoted by $(L \leq_l N)$. A non-empty subset I of N is called an invariant N-subgroup of N, if I is a subgroup of (N, +), $IN \subseteq I$ and $NI \subseteq I$. An ideal $P \leq N$ is called prime if for all ideals $I, J \leq N$ such that $IJ \subseteq P$ implies that either $I \subseteq P$ or $J \subseteq P$. Let $(P_{\alpha})_{\alpha \in A}$ be a family of prime ideals totally orderd by inclusion. Then $\bigcap_{\alpha \in A} P_{\alpha} = P$ is also a prime ideal. If $I \leq N$ is a direct summand and $P \leq N$ is prime ideal in I. An ideal $S \leq N$ is semiprime if and only if for all ideals $I \leq N$ such that $I^2 \subseteq S$ this implies $I \subseteq S$. Each prime ideal is semiprime. If $(S_{\alpha})_{\alpha \in A}$ is a family of semiprime ideals, then $\bigcap_{\alpha \in A} S_{\alpha}$ is again semiprime. Let $I \leq N$ be a direct summand and $S \leq N$ be semiprime then $S \cap I$ is semiprime in I ([8]). Let N be a near-ring. Given two subsets A and B of N, the product

 $AB = \{ab | a \in A, b \in B\}$. Also we define another operation '*' on the class of subsets of N given by $A * B = \{a (a' + b) - aa' | a, a' \in A, b \in B\}$. A subgroup B of (N, +) is said to be a bi-ideal of N if $BNB \cap (BN) * B \subseteq B$. A subgroup Q of (N, +) satisfying $QN \cap NQ \cap N * Q \subseteq Q$ is called a quasi-ideal of N ([11]). Note that

Remark 2.1 ([11]). Every quasi ideal is a bi-ideal in a near-ring but the converse is not true. For this, let $N = \{0, a, b, c\}$ be the near-ring defined by the caleys tabels

+	0	a	b	c	•	0	a	b	0
0	0	a	b	c	0	0	0	0	(
a	a	0	c	b	a	0	b	0	ł
b	b	c	0	a	b	0	0	0	(
c	c	b	a	0	c	0	b	0	ł

Here $\{0, a\}$ is a bi-ideal but not a quasi-ideal. Note that one sided ideals, N subgroups and invariant subnear-ring are quasi-ideals and so they are also bi-ideals.

Proposition 2.2 ([11]). The intersection of all bi-ideals of a near-ring N is a biideal of N.

Proposition 2.3 ([11]). If B be bi-ideal of a near-ring N and S is a subnear-ring of N, then $B \cap S$ is a bi-ideal of S.

Proposition 2.4 ([11]). Let N be a zero-symmetric near-ring. A subgroup B of N is a bi-ideal if and only if $BNB \subseteq B$.

Proposition 2.5 ([11]). Let N be a zero-symmetric near-ring. If B is a bi-ideal of N then Bn and n'B are bi-ideals of N, where $n, n' \in N$ and n' is distributive element in N.

Corollary 2.6 ([11]). If B is a bi-ideal of a zero symetric near-ring N and b is a distributive element in N. Then bBc is a bi-ideal of N, where $c \in N$.

A function f from the non-empty set N to the unit interval [0, 1] of real numbers is called a fuzzy subset of N, that is $f : N \to [0, 1]$. A fuzzy subset $f : N \to [0, 1]$ is non-empty if f is not the constant map which assumes the value 0. For fuzzy subsets f and g of N, $f \leq g$ means that for all $a \in N$, $f(a) \leq g(a)$.

Definition 2.7 ([4]). If f and g are fuzzy subsets of a near-ring N. Then $f \cap g$, $f \cup g$, f + g, fg and f * g are fuzzy subsets of N defined by

$$\begin{split} (f \cap g) \left(x \right) &= \min \left\{ f \left(x \right), g \left(x \right) \right\} \\ (f \cup g) \left(x \right) &= \max \left\{ f \left(x \right), g \left(x \right) \right\} \\ (f + g) \left(x \right) &= \left\{ \begin{array}{c} \sup_{\substack{x = y + z \\ 0}} \left\{ \min \left\{ f \left(y \right), g \left(y \right) \right\} \right\} & \text{if } x \text{ is expressible as } x = y + z \\ 0 & \text{otherwise} \end{array} \right. \\ (fg) &= \left\{ \begin{array}{c} \sup_{\substack{x = y z \\ 0}} \left\{ \min \left\{ f \left(y \right), g \left(y \right) \right\} \right\} & \text{if } x \text{ is expressible as } x = yz \\ 0 & \text{otherwise} \\ 127 \end{array} \right. \end{split}$$

 $(f * g) = \begin{cases} \sup_{\substack{x=a(b+c)-ab}} \{\min\{f(a), g(c)\}\} \text{ if } x \text{ is expressible as } x = a(b+c) - ab \\ 0 & \text{otherwise} \end{cases}$

Definition 2.8 ([4]). Let f be a fuzzy subset of N. Then f is called a fuzzy left(right) N-subgroup of N if for all $x, y \in N$

(1) $f(x - y) \ge \min\{f(x), f(y)\}\$

(2) $f(xy) \ge f(y) \ (f(xy) \ge f(x))$

If f is both left and right fuzzy N-subgroup of N, then it is called a fuzzy N-subgroup of N.

Definition 2.9 ([7]). Let N be a near-ring and f be a fuzzy subset of N. We say f a fuzzy subnear-ring of N if

(1) $f(x-y) \ge \min\{f(x), f(y)\}$ (2) $f(xy) \ge \min\{f(x), f(y)\}$ for all $x, y \in N$.

Definition 2.10 ([4]). Let f be a non-empty fuzzy subset of N. f is a fuzzy ideal of N, if for all $x, y, i \in N$ and

- (1) $f(x y) \ge \min\{f(x), f(y)\}$
- (2) f(x) = f(y + x y)
- $(3) f(xy) \ge f(x)$
- (4) $(f(x(y+i) xy) \ge f(i))$ for any $x, y, i \in N$.

If f satisfies (1), (2) and (3), then it is called a fuzzy right ideal of N. If f satisfies (1), (2) and (4), then it is called a fuzzy left ideal of N, If f is both fuzzy right as well as fuzzy left ideal of N, then f is called a fuzzy ideal of N.

Example 2.11 ([3]). Let $N = \{a, b, c, d\}$ be a set with two binary operations as follows,

+	a	b	c	d	Γ	•	a	b	c	
a	a	b	С	d	Γ	a	a	a	a	
b	b	a	d	c	Γ	b	a	a	a	
c	c	d	b	a	Γ	c	a	a	a	
d	d	c	a	b	Γ	d	a	a	b	

Then $(N, +, \cdot)$ is a (left) near-ring. Define a fuzzy subset $f : N \to [0, 1]$ by f(c) = f(d) < f(b) < f(a). Then f is a fuzzy ideal of N.

Lemma 2.12 ([3]). If a fuzzy subset of N satisfies the property

 $f(x-y) \ge \min\left\{f(x), f(y)\right\},\$

then

(1)
$$f(0_N) \ge f(x)$$

(2) $f(-x) = f(x)$ for all $x, y \in N$.

Definition 2.13 ([5]). Let X be a non-empty fuzzy subset of N, then the characteristic function of X is denoted by f_X and is defined as:

$$f_X(a) = \begin{cases} 1 & \text{if } a \in X \\ 0 & \text{otherwise} \\ 128 \end{cases}$$

Lemma 2.14 ([1]). Let I be a subset of N. Then I is a left(right) ideal of N if and only if f_I is a fuzzy left(right) ideal of N.

Definition 2.15 ([5]). A fuzzy set f of a near-ring N is called a fuzzy bi-ideal of N if

(1) $f(x-y) \ge \min\{f(x), f(y)\}$ for all $x, y, z \in N$.

(2) $f(xyz) \ge \min\{f(x), f(z)\}$ for all $x, y, z \in N$.

Definition 2.16 ([4]). A fuzzy subgroup f of N is called a fuzzy quasi-ideal of N if $(f \circ f_N) \cap (f_N \circ f) \cap (f_N * f) \leq f$

A fuzzy subgroup f of N is called a fuzzy bi-ideal of N if $(f \circ f_N \circ f) \cap (f \circ f_N * f) \leq f$

Lemma 2.17 ([4]). For any non-empty subsets X and Y of near-ring N, we have (1) $f_X \circ f_Y = f_{XY}$

(2) $f_X \cap f_Y = f_{X \cap Y}$ (3) $f_X * f_Y = f_{X * Y}$.

Lemma 2.18 ([4]). Let Q be a subgroup of (N, +)

(1) Q is a quasi-ideal of N if and only if f_Q is a fuzzy quasi-ideal of N (2) Q is a bi-ideal of N if and only if f_Q is a fuzzy bi-ideal of N.

Lemma 2.19 ([4]). Let f and g be two fuzzy bi-ideals of a near-ring N. Then $f \wedge g$ is a fuzzy bi-ideal of N.

3. PRIME, STRONGLY PRIME AND SEMIPRIME BI-IDEALS

Definition 3.1. A bi-ideal *B* of a near-ring *N* is called a prime bi-ideal of *N* if $B_1B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi-ideals B_1 , B_2 of *N*.

Example 3.2. If $N = \{0, 1, 2\}$. Define addition and Multiplication on N as

+	0	1	2		•	0	1	2
0	0	1	2	-	0	0	0	0
1	1	0	1	-	1	0	1	1
2	2	1	0	-	2	0	1	2

then N is a commutative near-ring and $\{0\}, \{0, 1\}$ and $\{0, 1, 2\}$ are prime bi-ideals of N.

Definition 3.3. A bi-ideal B of a near-ring N is called a strongly prime bi-ideal of N if $B_1B_2 \cap B_2B_1 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi-ideals B_1, B_2 of N.

Definition 3.4. A bi-ideal *B* of a near-ring *N* is called a semiprime bi-ideal of *N* if $B_1^2 \subseteq B$ implies $B_1 \subseteq B$ for any bi-ideal B_1 of *N*.

Proposition 3.5. Every strongly prime bi-ideal of a near-ring N is a prime bi-ideal of N.

Proof. Let B be a strongly prime bi-ideal of a near-ring N. Now let B_1 , B_2 be two bi-ideals of N such that $B_1B_2 \subseteq B$. Then $B_1B_2 \cap B_2B_1 \subseteq B_1B_2 \subseteq B$ implies $B_1B_2 \cap B_2B_1 \subseteq B$. Thus by hypothesis, $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence B is a prime bi-ideal of N.

Proposition 3.6. Every prime bi-ideal of a near-ring N is a semiprime bi-ideal of N.

Proof. Let B be a prime bi-ideal of a near-ring N. Now let B_1 be a bi-ideal of N such that $B_1^2 \subseteq B$. This implies $B_1B_1 \subseteq B$ implies $B_1 \subseteq B$, as B is a prime bi-ideal of a near-ring N. Hence B is a semiprime bi-ideal of N.

Remark 3.7. A prime bi-ideal of a near-ring N is not necessarily a strongly prime bi-ideal of N.

Example 3.8. Consider $N = \{0, a, b\}$. Define addition and multiplication on N as

+	0	a	b		0	a	b
0	0	a	b	0	0	0	0
a	a	0	b	a	0	a	a
b	b	b	0	b	0	b	b

Then (N, +, .) is near-ring and its bi-ideals are $\{0\}, \{0, a\}, \{0, b\}, \{0, a, b\}$. Now $\{0\}$ is a prime bi-ideal of N but not a strongly prime bi-ideal. As $\{0, a\}\{0, b\} \cap \{0, b\}\{0, a\} = \{0, a\} \cap \{0, b\} = \{0\} \subseteq \{0\}$. But neither $\{0, a\}$ nor $\{0, b\}$ contained in $\{0\}$. This example shows that every prime bi-ideal of a near-ring is not a strongly prime bi-ideal.

Lemma 3.9. Intersection of any family of prime bi-ideals of a near-ring N is a semiprime bi-ideal of N.

Proof. Let $\{B_i : i \in I\}$ be any family of prime bi-ideals of a near-ring N. We have to show that $\bigcap_{i \in I} B_i$ is a semiprime bi-ideal of N. Now $\bigcap_{i \in I} B_i$ being the intersection of any family of bi-ideals of a near-ring N is a bi-ideal of N, by Proposition 2.2. Now let B be any bi-ideal of N such that $B^2 \subseteq \bigcap_{i \in I} B_i$ implies $BB = B^2 \subseteq B_i$ for all $i \in I$. Thus $B \subseteq B_i$ for all $i \in I$, because each B_i is a prime bi-ideal of N. So $B \subseteq \bigcap_{i \in I} B_i$. Hence $\bigcap_{i \in I} B_i$ is a semiprime bi-ideal of N.

Theorem 3.10. Let X be an arbitrary subset of a near-ring N and B is a bi-ideal of N, then BX is a bi-ideal of N.

Proof. To show that BX is a bi ideal of N, we have to show that,

- (i) BX is a subgroup of (N, +)
- (ii) $BXNBX \cap BXN * BX \subseteq BX$

Since $0 \in B$ so $0x_1 + 0x_2 + 0x_3 + \dots + 0x_n \in BX$. Implies $BX \neq \phi$. Let $\sum_{i=1}^n b_i x_i$,

 $\sum_{j=1}^{m} \dot{b_j} x_j \in BX, \text{ then } \sum_{i=1}^{n} b_i x_i - \sum_{j=1}^{m} \dot{b_j} x_j = \sum_{i=1}^{n} b_i x_i + \sum_{j=1}^{m} (-\dot{b_j}) x_j \in BX \text{ because its again a finite sum. So } BX \text{ is a subgroup of } N.$

(ii) Now consider

Hence BX is a bi-ideal of N.

Corollary 3.11. Product of two bi-ideals of near-ring N is a bi-ideal of N.

Proof. Let B_1 and B_2 be two bi-ideals of N. In Theorem 3.10, if we take a bi-ideal B_1 of N and B_2 as an arbitrary subset of N. Then B_1B_2 is a bi-ideal of N. \Box

4. IRREDUCIBLE AND STRONGLY IRREDUCIBLE BI-IDEALS

Definition 4.1. A bi-ideal *B* of a near-ring *N* is called an irreducible bi-ideal of *N* if $B_1 \cap B_2 = B$, implies either $B_1 = B$ or $B_2 = B$ for any bi-ideals B_1, B_2 of *N*.

Definition 4.2. A bi-ideal B of a near-ring N is called a strongly irreducible biideal of N if $B_1 \cap B_2 \subseteq B$ implies either $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi-ideals B_1, B_2 of N.

Definition 4.3. A bi-ideal B of a near-ring N is called a strongly irreducible semiprime bi-ideal of N if $(B_1 \cap B_2)^2 \subseteq B$ implies either $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi-ideals B_1, B_2 of N.

Proposition 4.4. Every strongly irreducible semiprime bi-ideal of N is a strongly prime bi-ideal of N.

Proof. Let *B* be a strongly irreducible semiprime bi-ideal of a near-ring *N*. Let B_1 and B_2 be two bi-ideals of *N* such that $B_1B_2 \cap B_2B_1 \subseteq B...(\mathbf{i})$. Then we have to show that either $B_1 \subseteq B$ or $B_2 \subseteq B$. As $B_1 \cap B_2 \subseteq B_1$ and $B_1 \cap B_2 \subseteq B_2$, implies $(B_1 \cap B_2)^2 \subseteq B_1B_2$ and $(B_1 \cap B_2)^2 \subseteq B_2B_1$. Thus $(B_1 \cap B_2)^2 \subseteq B_1B_2 \cap B_2B_1 \subseteq B$ (using (**i**)). $B_1 \cap B_2$ being the intersection of bi-ideals of *N* is also a bi-ideal of *N*, by Proposition 2.2. So $(B_1 \cap B_2)^2 \subseteq B$ implies $(B_1 \cap B_2) \subseteq B$, because B is a semiprime bi-ideal of N. Also $B_1 \subseteq B$ or $B_2 \subseteq B$, because B is a strongly irreducible bi-ideal of *N*. Hence *B* is a strongly prime bi-ideal of *N*.

Proposition 4.5. Let B be a bi-ideal of a near-ring N and $a \in N$ such that $a \notin B$, then there exists an irreducible bi-ideal I of N such that $B \subseteq I$ and $a \notin I$.

Proof. Let X be the collection of all bi-ideals of N which contain B but do not contain a, that is $X = \{Y_i : Y_i \text{ is a bi-ideal of } N, B \subseteq Y_i \text{ and } a \notin Y_i\}$. Then X is a non-empty as $B \in X$. The collection X is a partially orderd set under inclusion. If $\{Y_i : i \in I\}$ be any totally orderd subset (chain) of X, Then $\bigcup Y_i = Y$ is also a bi-ideal of N containing B and $a \notin Y$. So Y is an upper bound of $\{Y_i : i \in I\}$. Thus every chain in X has an upper bound in X. Hence by Zorn's lemma, there exists a maximal element I (say) in X. This implies $B \subseteq I$ and $a \notin I$. Now we show that I is an irreducible bi-ideal of N. For this let C, D be two bi-ideals of N such that

 $I = C \cap D$. If both C and D properly contain I, then $a \in C$ and $a \in D$. Thus $a \in C \cap D = I$, which is a contradiction to the fact that $a \notin I$. So either I = C or I = D.

Theorem 4.6. For a near-ring N, the following assertions are equivalent:

(1) $B^2 = B$ for every bi-ideal B of N.

(2) $B_1B_2 \cap B_2B_1 = B_1 \cap B_2$ for any bi-ideals B_1 , B_2 of N.

(3) Each bi-ideal of N is semiprime.

(4) Each proper bi-ideal of N is the intersection of irreducible semiprime bi-ideal of N which contain it.

Proof. (1) \Rightarrow (2): Let B_1 and B_2 be any two bi-ideals of N. Then $B_1 \cap B_2$ is also a bi-ideal of N, by Proposition 2.2. By hypothesis, we have $(B_1 \cap B_2) = (B_1 \cap B_2)^2 = (B_1 \cap B_2) (B_1 \cap B_2) \subseteq B_1 B_2$. Similarly $B_1 \cap B_2 \subseteq B_2 B_1$. So $B_1 \cap B_2 \subseteq B_1 B_2 \cap B_2 B_1$. Now $B_1 B_2$ and $B_2 B_1$, being the product of two bi-ideals of N, are bi-ideals of N by Corollary 3.11. Also $B_1 B_2 \cap B_2 B_1$ is a bi-ideal of N, by Proposition 2.2. Then by hypothesis $B_1 B_2 \cap B_2 B_1 = (B_1 B_2 \cap B_2 B_1) (B_1 B_2 \cap B_2 B_1) \subseteq B_1 B_2 \cdot B_2 B_1 = B_1 B_2^2 B_1 \subseteq B_1 B_2 B_1$

 $\subseteq B_1NB_1 \subseteq B_1$. Similarly, $B_1B_2 \cap B_2B_1 \subseteq B_2$. Thus $B_1B_2 \cap B_2B_1 \subseteq B_1 \cap B_2$. Hence $B_1B_2 \cap B_2B_1 = B_1 \cap B_2$.

 $(2) \Rightarrow (3)$: Let *B* be a bi-ideal of *N* such that $B_1^2 \subseteq B$ for any bi-ideals B_1 of *N*. Then by hypothesis, we have $B_1 = B_1 \cap B_1 = B_1 B_1 \cap B_1 B_1 = B_1^2 \subseteq B$. Which shows that *B* is a semiprime bi-ideal of *N*. Hence every bi-ideal of *N* is a semiprime bi-ideal of *N*.

 $(3) \Rightarrow (4)$: Suppose each bi-ideal of N is semiprime. Now let B be a proper bi-ideal of N. Then by Proposition 4.5, there exists an irreducible bi-ideal of Ncontaining B. If $\bigcap I_{\alpha}$ be the intersection of all irreducible bi-ideals of N containing B, then $B \subseteq \bigcap I_{\alpha}$, as $B \subseteq I_{\alpha}$ for all α . If this inclusion is proper, then there exists $a \in \bigcap I_{\alpha}$ such that $a \notin B$. This implies $a \in I_{\alpha}$ for all α . As $a \notin B$, Then by Proposition 4.5, there exists an irreducible bi-ideal I (say) of N such that $B \subseteq I$ and $a \notin I$. Which is the contradiction to the fact that $a \in I_{\alpha}$ for all α . So $B = \bigcap I_{\alpha}$. By hypothesis, each bi-ideal of N is semiprime. Thus each proper bi-ideal of N is the intersection of irreducible semiprime bi-ideals of N which contain it.

(4) \Rightarrow (1): Let each proper bi-ideal of N is the intersection of irreducible semiprime bi-ideals of N which contain it. Now if B is a bi-ideal of N, then $BB = B^2$, being the product of two bi-ideals is also a bi-ideal of N. If $B^2 = N$ (improper bi-ideal), then $N \subseteq B^2$ implies $B \subseteq N \subseteq B^2$. Also $B^2 \subseteq B$, so $B^2 = B$ for each bi-ideal B of N. Now if B^2 is a proper bi-ideal of N, $B^2 \neq N$, then $B^2 = \bigcap_{\alpha} \{B_{\alpha} : B_{\alpha} \text{ for all } \alpha, \text{ because each } B_{\alpha} \text{ is a semiprime bi-ideal of } N$. Thus $B \subseteq \cap B_{\alpha} = B^2$. Also $B^2 \subseteq B$ as B is closed under multiplication. Hence $B^2 = B$ for each bi-ideal B of N.

Theorem 4.7. If each bi-ideal of a near-ring N is idempotent then the following assertions are equivalent

(1) B is strongly irreducible.

(2) B is strongly prime.

Proof. $(1) \Rightarrow (2)$: Let *B* be a strongly irreducible bi-ideal of *N*. Then we have to show that *B* is a strongly prime bi-ideal of *N*. For this let B_1 and B_2 be any two bi-ideals of *N* such that $B_1B_2 \cap B_2B_1 \subseteq B$. As each bi-ideal of *N* is idempotent then by Theorem 4.6, we have $B_1 \cap B_2 = B_1B_2 \cap B_2B_1 \subseteq B$, this implies $B_1 \cap B_2 \subseteq B$. But *B* is a strongly irreducible bi-ideal of *N*. Thus we have $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence *B* is a strongly prime bi-ideal of *N*.

 $(2) \Rightarrow (1)$: Let *B* be a strongly prime bi-ideal of *N*. To show that *B* is a strongly irreducible bi-ideal of *N*, let B_1, B_2 be any two bi-ideals of *N* such that $B_1 \cap B_2 \subseteq B$. By Theorem 4.6, we have $B_1B_2 \cap B_2B_1 = B_1 \cap B_2 \subseteq B$, this implies $B_1B_2 \cap B_2B_1 \subseteq B$. But *B* is strongly prime bi-ideal of *N*, thus we have $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence B is a strongly irreducible bi-ideal of *N*.

Theorem 4.8. Each bi-ideal of a near-ring N is strongly prime if and only if each bi-ideal of N is idempotent and the set of bi-ideals of N is totally orderd by inclusion.

Proof. Suppose that each bi-ideal of N is strongly prime. This implies that each bi-ideal of N is semiprime. Then by Theorem 4.6, each bi-ideal of N is idempotent. Now we show that the set of bi-ideals of N is totally orderd by inclusion. For this let B_1, B_2 be two bi-ideals of N, by Theorem 4.6, we have

$$B_1B_2 \cap B_2B_1 = B_1 \cap B_2...$$
 (i)

By hypothesis, B_1 and B_2 are strongly prime bi-ideals of N, so is $B_1 \cap B_2$. Then (i) implies

$$B_1 \subseteq B_1 \cap B_2$$
 or $B_2 \subseteq B_1 \cap B_2$.

Thus $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Hence the set of bi-ideals of N is totally orderd by inclusion.

Conversely, assume that each bi-ideal of N is idempotent and the set of bi-ideals of N is totally orderd by inclusion. We have to show that each bi-ideal of N is strongly prime. For this let B be an arbitrary bi-ideal of N and B_1 and B_2 be any two bi-ideals of N such that

$$B_1B_2 \cap B_2B_1 \subseteq B \dots$$
 (ii)

By Theorem 4.6, we have $B_1B_2 \cap B_2B_1 = B_1 \cap B_2$. Thus (ii) can be written as

$$B_1 \cap B_2 \subseteq B \dots$$
 (iii)

Also the set of bi-ideals of N is totally orderd by inclusion, then either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. If $B_1 \subseteq B_2$, then $B_1 \cap B_2 = B_1$. Thus (iii) implies $B_1 \subseteq B$. And if $B_2 \subseteq B_1$, then $B_1 \cap B_2 = B_2$. Thus (iii) implies $B_2 \subseteq B$. So either $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus B is strongly prime. Hence each bi-ideal of N is strongly prime. \Box

Theorem 4.9. If the set of bi-ideals of a near-ring N is totally orderd, then each bi-ideal of N is idempotent if and only if each bi-ideal of N is prime.

Proof. Let each bi-ideal of N is idempotent, B is an arbitrary bi-ideal of N and B_1 , B_2 be any two bi-ideals of N such that $B_1B_2 \subseteq B$. As the set of bi-ideals of N is totally orderd, then either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. If $B_1 \subseteq B_2$, then $B_1B_1 = B_1^2 \subseteq B_1B_2 \subseteq B$, by Theorem 4.6, B is a semiprime bi-ideal of N. Then $B_1^2 \subseteq B$ implies $B_1 \subseteq B$, similarly, if $B_2 \subseteq B_1$, then $B_2B_2 = B_2^2 \subseteq B_1B_2 \subseteq B$. Implies $B_2 \subseteq B$, as B is a semiprime bi-ideal of N.

Conversely, suppose that each bi-ideal of N is prime, so is semiprime, by Proposition 3.6. Thus by Theorem 4.6, each bi-ideal of N is idempotent.

Proposition 4.10. If the set of bi-ideals of a near-ring N is totally orderd, then the concepts of primeness and strongly primeness coincide.

Proof. Let B be a prime bi-ideal of N. To show that B is a strongly prime bi-ideal of N, let B_1 , B_2 be any two bi-ideals of N such that $B_1B_2 \cap B_2B_1 \subseteq B$. As the set of bi-ideals of near-ring N is totally orderd, then either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. If $B_1 \subseteq B_2$, then

$$B_1B_1 = B_1^2 = B_1^2 \cap B_1^2 \subseteq B_1B_2 \cap B_2B_1 \subseteq B.$$

Implies $B_1 \subseteq B$, as B is a prime bi-ideal of N. Similarly, if $B_2 \subseteq B_1$, then

$$B_2B_2 = B_2^2 = B_2^2 \cap B_2^2 \subseteq B_1B_2 \cap B_2B_1 \subseteq B.$$

Implies $B_2 \subseteq B$, as B is a prime bi-ideal of N. This shows that B is a strongly prime bi-ideal of N. Thus every prime bi-ideal of N is strongly prime. Now let B be a strongly prime bi-ideal of N. To show that B is a prime bi-ideal of N, let B_1, B_2 be any two bi-ideals of N such that $B_1B_2 \subseteq B$. Implies $B_1B_2 \cap B_2B_1 \subseteq B$. Implies either $B_1 \subseteq B$ or $B_2 \subseteq B$, as B is a strongly prime bi-ideal of N. This shows that B is a prime bi-ideal of N. This shows that B is a prime bi-ideal of N. This shows that B is a prime bi-ideal of N. Thus every strongly prime bi-ideal of N is a prime bi-ideal of N.

Theorem 4.11. For a near-ring N, the following assertions are equivalent:

- (1) The set of bi-ideals of a near-ring N is totally orderd by inclusion.
- (2) Each bi-ideal of N is strongly irreducible.
- (3) Each bi-ideal of N is irreducible.

Proof. (1) \Rightarrow (2): Let the set of bi-ideals of a near-ring N is totally orderd by set inclusion. To show that each bi-ideal of N is strongly irreducible, let B be an arbitrary bi-ideal of N and B_1 and B_2 be any two bi-ideals of N such that $B_1 \cap B_2 \subseteq B$. By hypothesis, we have either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. If $B_1 \subseteq B_2$, then $B_1 = B_1 \cap B_1 \subseteq B_1 \cap B_2 \subseteq B$. Similarly, if $B_2 \subseteq B_1$, then $B_2 = B_2 \cap B_2 \subseteq B_1 \cap B_2 \subseteq B$. So B is strongly irreducible.

 $(2) \Rightarrow (3)$: Suppose each bi-ideal of N is strongly irreducible. To show that each bi-ideal of N is irreducible, let B be an arbitrary bi-ideal of N and B_1, B_2 be any two bi-ideals of N such that $B_1 \cap B_2 = B$. This implies $B_1 \cap B_2 \subseteq B$ and $B \subseteq B_1 \cap B_2$. $B_1 \cap B_2 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$, by hypothesis, and $B \subseteq B_1 \cap B_2$ implies $B \subseteq B_1$ and $B \subseteq B_2$. Hence either $B_1 = B$ or $B_2 = B$. Thus B is an irreducible bi-ideal of N. Hence each bi-ideal of N is irreducible.

 $(3) \Rightarrow (1)$: Let each bi-ideal of N is irreducible. To show that the set of bi-ideals of N is totally orderd by set inclusion, let B_1 , B_2 be any two bi-ideals of N. Then $B_1 \cap B_2$, being the intersection of bi-ideals is also a bi-ideal of N, by Proposition 2.2.

Now $B_1 \cap B_2$ is a bi-ideal of N such that $B_1 \cap B_2 = B_1 \cap B_2$. Implies $B_1 = B_1 \cap B_2$ or $B_2 = B_1 \cap B_2$, by hypothesis. Thus $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Hence the set of bi-ideals of N is totally orderd by set inclusion.

5. PRIME, STRONGLY PRIME AND SEMIPRIME FUZZY BI-IDEALS

Definition 5.1. A fuzzy bi-ideal f of a near-ring N is called a prime fuzzy bi-ideal of N if for any fuzzy bi-ideals g, h of $N, g \circ h \leq f$ implies $g \leq f$ or $h \leq f$.

Definition 5.2. A fuzzy bi-ideal f of a near-ring N is called a strongly prime fuzzy bi-ideal of N if for any fuzzy bi-ideals g, h of $N, g \circ h \land h \circ g \leq f$ implies $g \leq f$ or $h \leq f$.

Definition 5.3. A fuzzy bi-ideal g of a near-ring N is said to be idempotent if $g = g \circ g = g^2$.

Definition 5.4. A fuzzy bi-ideal f of a near-ring N is said to be a semiprime fuzzy bi-ideal of N if $g \circ g = g^2 \leq f$ implies $g \leq f$ for every fuzzy bi-ideal g of N.

Proposition 5.5. Every strongly prime fuzzy bi-ideal of a near-ring N is a prime fuzzy bi-ideal of N.

Proof. Let f be a strongly prime fuzzy bi-ideal of a near-ring N. Now let g, h be two fuzzy bi-ideals of N such that $g \circ h \leq f$. Then $g \circ h \wedge h \circ g \leq f$. Thus by hypothesis, $g \leq f$ or $h \leq f$. Hence f is a prime fuzzy bi-ideal of N.

Proposition 5.6. Every prime fuzzy bi-ideal of a near-ring N is a semiprime fuzzy bi-ideal of N.

Proof. Let f be a prime fuzzy bi-ideal of a near-ring N. Now let g be any fuzzy bi-ideal of N such that $g \circ g \leq f$. Then by hypothesis $g \leq f$. Hence f is a semiprime fuzzy bi-ideal of N.

Remark 5.7. Every fuzzy bi-ideal of N is semiprime. But every fuzzy bi-ideal of N is not prime.

Proof. Consider the fuzzy bi-ideals f, g and h of N given by

Then

$$g \circ h(0) = .7, \ g \circ h(1) = .5, \ g \circ h(2) = .3$$

Where $g \circ h \leq f$ but neither $g \leq f$ nor $h \leq f$. Hence f is not a prime fuzzy bi-ideal of N.

Lemma 5.8. Product of two fuzzy bi-ideals of N is a fuzzy bi-ideal of N.

Proof. Let f and g be two fuzzy bi-ideals of N. We have to show that $f \circ g$ is a fuzzy bi-ideal of N. For this let

$$(f \circ g) (x - y) = f (g (x - y))$$

$$\geq f\{\min(g(x), g(y)\}, \text{ as } g \text{ is a fuzzy bi-ideal of } N$$

$$= f\{\min(g(x)\}, f\{\min(g(y)\}\}$$

$$= \min \{(f \circ g) (x), (f \circ g) (y)\}$$

$$(f \circ g) (x - y) \geq \min \{(f \circ g) (x), (f \circ g) (y)\}$$

$$\begin{aligned} (f \circ g) \circ f_N \circ (f \circ g) \cap (f \circ g) \circ f_N * f \circ g &= [(f \circ g) \circ f_N \circ f \cap (f \circ g) \circ f_N * f]g \\ &\leq [f \circ f_N \circ f_N \circ f \cap (f \circ g) \circ f_N * f]g \\ &\leq [f \circ f_N \circ f \cap f \circ f_N \circ f_N * f]g \\ &\leq f \circ g \end{aligned}$$

Hence $f \circ g$ is a fuzzy bi-ideal of N

6. IRREDUCIBLE AND STRONGLY IRREDUCIBLE FUZZY BI-IDEALS

Definition 6.1. A fuzzy bi-ideal f of a near-ring N is said to be an irreducible fuzzy bi-ideal of N if for any fuzzy bi-ideals g and h of N, $g \wedge h = f$ implies g = f or h = f.

Definition 6.2. A fuzzy bi-ideal f of a near-ring N is said to be a strongly irreducible fuzzy bi-ideal of N if for any fuzzy bi-ideals g and h of N, $g \wedge h \leq f$ implies $g \leq f$ or $h \leq f$.

Proposition 6.3. Every strongly irreducible semiprime fuzzy bi-ideal of a near-ring N is a strongly prime fuzzy bi-ideal of N.

Proof. Let f be a strongly irreducible semiprime fuzzy bi-ideal of a near-ring N. Let g, h be any fuzzy bi-ideals of N such that $g \circ h \land h \circ g \leq f$. As $(g \land h) \circ (g \land h) = (g \land h)^2 \leq g \circ h$ and $(g \land h) \circ (g \land h) = (g \land h)^2 \leq h \circ g$, implies $(g \land h)^2 \leq (g \circ h) \land (h \circ g) \leq f$. So $g \land h \leq f$, as f is a semiprime fuzzy bi-ideal of N. Thus either $g \leq f$ or $h \leq f$, because f is a strongly irreducible fuzzy bi-ideal of N. Hence f is a strongly prime fuzzy bi-ideal of N.

Theorem 6.4. Let f be a fuzzy bi-ideal of a near-ring N with $f(a) = \alpha$, where $a \in N$ and $\alpha \in [0, 1]$. Then there exists an irreducible fuzzy bi-ideal g of N such that $f \leq g$ and $g(a) = \alpha$.

Proof. Let $X = \{h : h \text{ is a fuzzy bi-ideal of } N, h(a) = \alpha \text{ and } f \leq h\}$, then $X \neq \phi(\text{non-empty})$, as $f \in X$. The collection X is a partially orderd under inclusion. If $Y = \{h_i : h_i \text{ is a fuzzy bi-ideal of } N, h_i(a) = \alpha \text{ and } f \leq h_i \text{ for all } i \in I\}$ is any totally orderd subset of X, then $\bigvee_{i \in I} h_i$ is a fuzzy bi-ideal of N such that $f \leq \bigvee_{i \in I} h_i$.

Indeed, if $a, b, x \in N$, then

$$\begin{pmatrix} \bigvee h_i \\ i \in I \end{pmatrix} (a-b) = \bigvee_{i \in I} (h_i (a-b))$$

$$\geq \bigvee_{i \in I} (h_i (a) \wedge h_i (b)) \text{ as each } h_i \text{ is a fuzzy bi-ideal of } N.$$

$$= \left(\bigvee_{i \in I} h_i (a) \right) \wedge \left(\bigvee_{i \in I} h_i (b) \right)$$

$$= \left(\bigvee_{i \in I} h_i \right) (a) \wedge \left(\bigvee_{i \in I} h_i \right) (b)$$

and

$$\begin{pmatrix} \bigvee h_i \\ i \in I \end{pmatrix} (ab) = \bigvee_{i \in I} (h_i (ab))$$

$$\geq \bigvee_{i \in I} (h_i (a) \wedge h_i (b)) \text{ as each } h_i \text{ is a fuzzy bi-ideal of } N.$$

$$= \left(\bigvee_{i \in I} h_i (a) \right) \wedge \left(\bigvee_{i \in I} h_i (b) \right)$$

$$= \left(\bigvee_{i \in I} h_i \right) (a) \wedge \left(\bigvee_{i \in I} h_i \right) (b)$$

Now

$$\begin{pmatrix} \bigvee h_i \\ i \in I \end{pmatrix} (axb) = \bigvee_{i \in I} (h_i (axb))$$

= $\bigvee_{i \in I} (h_i (a) \wedge h_i (b))$ as each h_i is a fuzzy bi-ideal of N .
= $\begin{pmatrix} \bigvee h_i (a) \\ i \in I \end{pmatrix} \wedge \begin{pmatrix} \bigvee h_i (b) \\ i \in I \end{pmatrix}$
= $\begin{pmatrix} \bigvee h_i (a) \end{pmatrix} \wedge \begin{pmatrix} \bigvee h_i (b) \\ i \in I \end{pmatrix} (b)$

Hence $\bigvee_{i \in I} h_i$ is a fuzzy bi-ideal of N. As $f \leq h_i$ for all $i \in I$. This implies $f \leq \bigvee_{i \in I} h_i$. Also

$$\left(\bigvee_{i\in I}h_i\right)(a)=\bigvee_{i\in I}h_i(a)=\alpha$$

Thus $\bigvee h_i \in X$ and $\bigvee h_i$ is an upper bound of Y. Hence by Zorn's lemma, there exists a fuzzy bi-ideal g of N which is maximal with the property $f \leq g$ and $g(a) = \alpha$. Now we show that g is an irreducible fuzzy bi-ideal of N. For this, suppose that for any fuzzy bi-ideals g_1, g_2 of N, we have $g_1 \wedge g_2 = g$. This implies $g \leq g_1$ and $g \leq g_2$. We claim that $g = g_1$ or $g = g_2$. On contrary, suppose that $g \neq g_1$ and $g \neq g_2$. This implies $g < g_1$ and $g < g_2$. So $g_1(a) \neq \alpha$ and $g_2(a) \neq \alpha$, as $g(a) = \alpha$. Hence $(g_1 \wedge g_2)(a) = g_1(a) \wedge g_2(a) \neq \alpha$. Which is a contradiction to the fact that $g_1(a) \wedge g_2(a) = g(a) = \alpha$. Hence either $g = g_1$ or $g = g_2$. Thus g is an irreducible fuzzy bi-ideal of N.

Theorem 6.5. For a near-ring N, the following assertions are equivalent:

(1) $f \circ f = f$ for every fuzzy bi-ideal of N.

(2) $g \wedge h = g \circ h \wedge h \circ g$ for all fuzzy bi-ideals g and h of N.

(3) Each fuzzy bi-ideal of N is fuzzy semiprime.

(4) Each proper fuzzy bi-ideal of N is the intersection of irreducible semiprime fuzzy bi-ideals of N which contain it.

Proof. $(1) \Rightarrow (2)$: Let g and h be two fuzzy bi-ideals of N. Then by Lemma 2.19, $g \land h$ is also a fuzzy bi-ideal of N. Thus by hypothesis, we have $g \land h = (g \land h) \circ (g \land h) \leq g \circ h$. Similarly $g \land h \leq h \circ g$. Implies $g \land h \leq g \circ h \land h \circ g$. Now $g \circ h$ and $h \circ g$, being the products of two fuzzy bi-ideals of N, are fuzzy bi-ideals of N. Also $g \circ h \land h \circ g$ is a fuzzy bi-ideal of N, by Lemma 2.19. Thus by hypothesis, we have

$$\begin{array}{lll} g \circ h \wedge h \circ g &=& (g \circ h \wedge h \circ g) \circ (g \circ h \wedge h \circ g) \\ &\leq& (g \circ h) \circ (h \circ g) \\ &=& g \circ h \circ g & \text{as } h \circ h = h \text{ (by hypothesis)} \\ &\leq& g \circ f_N \circ g & \text{as } h \leq f_N \\ &\leq& g & \text{as } g \text{ is a fuzzy bi-ideal of } N. \end{array}$$

Similarly $g \circ h \wedge h \circ g \leq h$. Thus $g \circ h \wedge h \circ g \leq g \wedge h$. Hence $g \circ h \wedge h \circ g = g \wedge h$.

 $(2) \Rightarrow (3)$: Let g be a fuzzy bi-ideal of N such that $f^{-2} \leq g$ for any bi-ideal f of N. Then by hypothsis,

$$f = f \wedge f = f \circ f \wedge f \circ f = f \circ f = f^2 \leq g.$$

This implies $f \leq g$. Thus f is a semiprime fuzzy bi-ideal of N. Hence every fuzzy bi-ideal of N is semiprime.

 $(3) \Rightarrow (4)$: Let f be a proper fuzzy bi-ideal of N and $\{f_i : i \in I\}$ be the collection of all irreducible fuzzy bi-ideals of N such that $f \leq f_i$ for all $i \in I$. This implies $f \leq \bigwedge_{i \in I} f_i$. Let $a \in N$ then by Theorem 6.4, there exists an irreducible fuzzy bi-ideal f_{α} of N such that $f \leq f_{\alpha}$ and $f(a) = f_{\alpha}(a)$. This implies $f_{\alpha} \in \{f_i : i \in I\}$. Thus $\bigwedge_{i \in I} f_i \leq f_{\alpha}$. So $\bigwedge_{i \in I} f_i(a) \leq f_{\alpha}(a) = f(a)$ for all $a \in N$. This implies $\bigwedge_{i \in I} f_i \leq f$. Hence $\bigwedge_{i \in I} f_i = f$. By hypothesis, each fuzzy bi-ideal of N is semiprime. Thus each fuzzy bi-ideal of N is the intersection of all irreducible semiprime fuzzy bi-ideals of N which contain it.

 $\begin{array}{ll} (4) \Rightarrow (1): & \text{Let } f \ \text{ be a fuzzy bi-ideal of } N. & \text{Then by the definition of fuzzy } \\ \text{bi-ideal we have, } f^{-2} = f \circ f \leq f \ . & \text{Also } f^{-2} = f \circ f \ , \text{ being the product of two fuzzy } \\ \text{bi-ideals of } N \ \text{is a fuzzy bi-ideal of } N. & \text{Then by hypothesis, } f^{-2} = \bigwedge_{i \in I} f_i, \text{ where each } \\ f_i \ \text{is an irreducible semiprime fuzzy bi-ideal of } N \ \text{such that } f^{-2} \leq f_i \ \text{for all } i \in I \ . \\ & \text{This implies } f \leq f_i \ \text{for all } i \in I, \text{ because each } f_i \ \text{is a semiprime fuzzy bi-ideal of } N. \\ & \text{Thus } f \leq \bigwedge_{i \in I} f_i = f^{-2}. \ \text{Hence } f^{-2} = f \ . \\ & \Box \end{array}$

Proposition 6.6. Let each fuzzy bi-ideal of a near-ring N is idempotent. Then the following assertions for a fuzzy bi-ideal of N are equivalent:

- (1) f is strongly irreducible.
- (2) f is strongly prime.

Proof. (1) \Rightarrow (2) : Let each fuzzy bi-ideal of a near-ring N is idempotent and f be a strongly irreducible fuzzy bi-ideal of N. Suppose that g and h be two fuzzy bi-ideals of N such that $g \circ h \land h \circ g \leq f$. By Theorem 6.5, $g \land h = g \circ h \land h \circ g \leq f$. Implies either $g \leq f$ or $h \leq f$, as f is strongly irreducible. So f is strongly prime fuzzy bi-ideal of N.

 $(2) \Rightarrow (1)$: Suppose f is a strongly prime fuzzy bi-ideal of N. Let g and h be any fuzzy bi-ideals of N such that $g \land h \leq f$. By Theorem 6.5, $g \circ h \land h \circ g = g \land h \leq f$, so $g \circ h \land h \circ g \leq f$. Implies either $g \leq f$ or $h \leq f$, as f is a strongly prime fuzzy bi-ideal of N. Thus f is strongly irreducible.

Theorem 6.7. Each fuzzy bi-ideal of a near-ring N is strongly prime if and only if each fuzzy bi-ideal of N is idempotent and the set of fuzzy bi-ideals of N is totally orderd by inclusion.

Proof. Suppose that each fuzzy bi-ideal of a near-ring N is strongly prime, then each fuzzy bi-ideal of N is semiprime. Thus by Theorem 6.5, each fuzzy bi-ideal of N is idempotent. Now we show that the set of fuzzy bi-ideals of N is totally orderd by inclusion. For this let g and h be any two fuzzy bi-ideals of N. Then by Theorem 6.5, $g \circ h \wedge h \circ g = g \wedge h$, implies $g \circ h \wedge h \circ g \leq g \wedge h$. As each fuzzy bi-ideal of N is strongly prime, so is $g \wedge h$. Thus either $g \leq g \wedge h$ or $h \leq g \wedge h$. If $g \leq g \wedge h$, implies $g \leq h$ and if $h \leq g \wedge h$, implies $h \leq g$. So the set of fuzzy bi-ideals of N is totally orderd by inclusion.

Conversely, assume that each fuzzy bi-ideal of N is idempotent and the set of fuzzy bi-ideals of N is totally orderd by inclusion. Let f be an arbitrary fuzzy bi-ideal of N and g, h be any fuzzy bi-ideals of N such that $g \circ h \wedge h \circ g \leq f$. By Theorem 6.5 $g \wedge h = g \circ h \wedge h \circ g \leq f$ implies

$$g \wedge h \leq f \dots$$
 (i)

Since the set of fuzzy bi-ideals of N is totally orderd by inclusion. So either $g \le h$ or $h \le g$, implies either $g \land h = g$ or $g \land h = h$. Then (i) implies either $g \le f$ or $h \le f$.

Theorem 6.8. If the set of fuzzy bi-ideals of a near-ring N is totally orderd by inclusion, then each fuzzy bi-ideal of N is idempotent if and only if each fuzzy bi-ideal of N is prime.

Proof. Suppose each fuzzy bi-ideal of N is idempotent. Let f be an arbitrary fuzzy bi-ideal and g, h be fuzzy bi-ideals of N such that $g \circ h \leq f$. Since the set of fuzzy bi-ideals of N is totally orderd by inclusion, so either $g \leq h$ or $h \leq g$. If $g \leq h$ then $g \circ g \leq g \circ h \leq f$, implies $g \leq f$ as f is semiprime by Theorem 6.5. If $h \leq g$ then $h \circ h \leq g \circ h \leq f$, implies $h \leq f$ as f is semiprime by Theorem 6.5. So each fuzzy bi-ideal of N is prime.

Conversely, suppose that every fuzzy bi-ideal of N is prime. Since every prime fuzzy bi-ideal of N is semiprime. So by Theorem 6.5, each fuzzy bi-ideal of N is idempotent.

Theorem 6.9. For a near-ring N the following assertions are equivalent:

- (1) Set of fuzzy bi-ideals of a near-ring N is totally orderd by inclusion.
- (2) Each fuzzy bi-ideal of N is strongly irreducible.
- (3) Each fuzzy bi-ideal of N is irreducible.

Proof. (1) \Rightarrow (2) : Let f be an arbitrary fuzzy bi-ideal of N and g, h be fuzzy bi-ideals of N such that $g \wedge h \leq f$. Since the set of fuzzy bi-ideals of N is totally orderd by inclusion, so either $g \leq h$ or $h \leq g$. Thus either $g \wedge h = g$ or $g \wedge h = h$, implies either $g \leq f$ or $h \leq f$.

 $(2) \Rightarrow (3)$: Let f be an arbitrary fuzzy bi-ideal of N and g,h be fuzzy bi-ideals of N such that

$$g \wedge h = f \dots(i)$$

Thus $g \ge f$ and $h \ge f$. (i) implies $g \land h \le f$. So $g \le f$ or $h \le f$, as f is strongly irreducible. Hence either g = f or h = f.

 $(3) \Rightarrow (1)$: Let g and h be two fuzzy bi-ideals of N. Then by Lemma 2.19, $g \wedge h$ is also a fuzzy bi-ideal of N. Also $g \wedge h = g \wedge h$, implies either $g = g \wedge h$ or $h = g \wedge h$. Thus $g \leq h$ or $h \leq g$.

References

- S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy Sets and Systems 44(1) (1991) 139– 146.
- [2] S. J. Abbassi and A. Z. Rizvi, Study of prime ideals in near-rings, Journal of Engineering and Sciences 2(1) (2008) 65–66.
- [3] L. E. Dickson, On finite algebras, Nachr. Akad. Wiss. Gottingen Math.Phys. Kl. II (1905) 358–393.
- [4] P. Dheena and S. Coumaressane, Generalization of (∈, ∈ ∨q)-fuzzy subnear-rings and ideals, Iran. J. Fuzzy Syst. 5(1) (2008) 79–97.
- [5] S. D. Kim and H. S. Kim, On fuzzy ideals of near-rings, Bull. Korean Math. Soc. 33(4) (1996) 593-601.
- [6] P. Nandakumar, Bi-regular near-rings, Southeast Asian Bull. Math. 33(3) (2009) 491-496.
- S. Narmada and V. M. Kumar, Intuitionistic fuzzy bi-ideals and regularity in near-rings, Int. J. Algebra 5(10) (2011) 483–490.
- [8] G. Pilz, Near-ring, The theory and its applications. Second edition. North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, 1983. xv+470 pp. ISBN: 0-7204-0566-1.
- B. Satyanarayana, Primary decomposition in Noetherian near-rings, Indian J. Pure Appl. Math. 15 (1984) 127–130.
- [10] R. Sultana, Semi rings characterized by the properties of their fuzzy quasi-ideals and fuzzy bi-ideals, M-Phil Dissertation, Q.A.U. Islamabad 2004.
- [11] T. T. Chelavam and N. Ganesan, On bi-ideals of near-rings, Indian J. Pure Appl. Math. 18(11) (1987) 1002–1005.
- [12] I. Yakabe, Quasi-ideals in near-rings, Math. Rep. Kyuschu Univ, 14 (1983), 41-46.
- [13] H. Zassenhaus, Uber endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11(1) (1935) 187– 220.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>S. BASHIR</u> (shahida.bashir@uog.edu.pk)

Department of Mathematics University of Gujrat, Gujrat, Pakistan

ANSA KANWAL (ansa.kanwal@gmail.com)

Department of Mathematics University of Gujrat, Gujrat, Pakistan