Annals of Fuzzy Mathematics and Informatics Volume 9, No. 1, (January 2015), pp. 111–123 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Rough interval-valued intuitionistic fuzzy sets

Anjan Mukherjee, Mithun Datta

Received 20 March 2014; Revised 30 June 2014; Accepted 22 July 2014

ABSTRACT. Theories of fuzzy sets and rough sets are powerful mathematical tools for modeling various types of uncertainty. Dubois and Prade investigated the problem of combining fuzzy sets with rough sets. In this paper we define the notion of rough interval-valued intuitionistic fuzzy sets. The lower and upper approximations of interval-valued intuitionistic fuzzy sets with respect to Pawlak's approximation space are first defined. Properties of interval-valued intuitionistic fuzzy approximation operators are examined.

2010 AMS Classification: 03E72, 03E02

Keywords: Fuzzy set, rough set, Rough fuzzy set, Intuitionistic fuzzy set, Rough intuitionistic fuzzy set, Interval-valued intuitionistic fuzzy set, Rough interval-valued intuitionistic fuzzy set.

Corresponding Author: Anjan Mukherjee (anjan2002_m@yahoo.co.in)

1. INTRODUCTION

Hybrid models combining fuzzy sets with rough sets have arisen in various guises in different settings. Based on an equivalence relation Dubois and Prade [4] introduced the lower and upper approximations of fuzzy sets in a pawlak's approximation space to obtain an extended notion called rough fuzzy sets in 1990. Interval-valued intuitionistic fuzzy set was introduced by Atanassov and Gargov [2] in 1989. It is characterized by an interval-valued membership degree and an interval-valued nonmembership degree. The theory of rough sets, proposed by Pawlak [7] in 1982 is a new mathematical tool for the data reasoning.

Based on a Pawlak's approximation space, the approximation of interval-valued intuitionistic fuzzy set is proposed by us to obtain a hybrid model called rough interval-valued intuitionistic fuzzy sets.

While trying to combine rough set theory and interval-valued intuitionistic fuzzy set theory we find our self at a complicated cross rounds with an abundance of possible ways to proceed. The aim of this paper is to provide the reader with a road map.

In section 3, we introduce the notion of Rough interval-valued intuitionistic fuzzy sets (RIVIFS) along with their properties. In theorem 3.10, it is seen that (3), (4), (5) and (6) are not true in general. Some examples are given in support of the answer.

2. Preliminaries

In this section we recall some basic notions relevant to fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets, interval-valued intuitionistic fuzzy sets and rough sets.

Definition 2.1 ([9]). Let X be a non empty set. Then a fuzzy set (FS in short) A is a set having the form $A = \{(x, \mu_A(x)) : x \in X\}$, where the function $\mu_A : X \to [0, 1]$ is called the membership function and $\mu_A(x)$ is called the degree of membership of each element $x \in X$.

Definition 2.2 ([7]). Let U be a universe of discourse and R be an equivalence relation on U. The pair (U, R) is called Pawlak approximation space. R will generate a partition $U/R = \{[x]_R : x \in U\}$ on U, where $[x]_R$ is the equivalence class with respect to R containing x. For each $X \subseteq U$, the lower approximation $\underline{R}(X)$ and upper approximation $\overline{R}(X)$ of X with respect to (U, R) are defined as $\underline{R}(X) = \{x \in U : [x]_R \cap X \neq \phi\}$ is called definable in (U, R) if $\underline{R}(A) = \overline{R}(A)$, otherwise X is called a rough set.

Definition 2.3 ([4]). Let (U, R) be a Pawlak approximation space and $A = \{(x, \mu_A(x) : x \in X\}$ be a fuzzy set. The lower and upper rough approximations of A in (U, R) are denoted by $\underline{R}(A)$ and $\overline{R}(A)$ respectively which are fuzzy subsets of U defined by $\underline{R}(A) = \{(x, \wedge \{\mu_A(y) : y \in [x]_R\}) : x \in U\}$ and $\overline{R}(A) = \{(x, \vee \{\mu_A(y) : y \in [x]_R\}) : x \in U\}$ and $\overline{R}(A) = \{(x, \vee \{\mu_A(y) : y \in [x]_R\}) : x \in U\}$ and \overline{R} are called the lower and upper rough approximation operators on fuzzy sets. A is called definable in (U, R) if $\underline{R}(A) = \overline{R}(A)$, otherwise A is called a rough fuzzy set.

Definition 2.4 ([5]). An interval-valued fuzzy set A over X is given by a function $\mu_A(x)$ where $\mu_A : X \to Int[0, 1]$, the set of all sub-intervals of the unit interval i.e. for every $x \in X$, $\mu_A(x)$ is an interval within [0,1].

Definition 2.5 ([1]). Let X be a non empty set. An intuitionistic fuzzy set (*IFS* in short) A in X is an object having the form $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Definition 2.6 ([8]). Let (U, R) be a Pawlak approximation space and $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$ be an intuitionistic fuzzy set. The lower and upper rough approximations of A in (U, R) are denoted by $\underline{R}(A)$ and $\overline{R}(A)$ respectively which are intuitionistic fuzzy subsets of U defined by $\underline{R}(A) = \{(x, \wedge \{\mu_A(y) : y \in [x]_R\}, \vee \{\gamma_A(y) : y \in [x]_R\}) : x \in U\}$ and $\overline{R}(A) = \{(x, \vee \{\mu_A(y) : y \in [x]_R\}, \wedge \{\gamma_A(y) : y \in [x]_R\}) : x \in U\}$ and $\overline{R}(A) = \{(x, \vee \{\mu_A(y) : y \in [x]_R\}, \wedge \{\gamma_A(y) : y \in [x]_R\}) : x \in U\}$ where A and A are called the lower and upper rough A and A are called the lower and A and A are called the lower and A are called the lower and A and A are called the lower and A and A are called the lower and

approximation operators on intuitionistic fuzzy sets. A is called definable in (U, R)if $R(A) = \overline{R}(A)$, otherwise A is called a rough intuitionistic fuzzy set.

Remark 2.7 ([6]). If A is an intuitionistic fuzzy set such that $\mu_A(x) + \gamma_A(X) = 1$ for all $x \in U$ then it is easy to observe that (R(A), R(A)) is a rough fuzzy set.

Definition 2.8 ([2]). An interval-valued intuitionistic fuzzy set (*IVIFS* in short) A over a universe set X is defined as the object of the form $A = \{(x, \mu_A(x), \gamma_A(x)) :$ $x \in X$, where $\mu_A : X \to Int[0,1]$ and $\gamma_A : X \to Int[0,1]$ (where Int[0,1] is the set of all closed intervals of [0,1]) are functions such that the condition: $\forall x \in X$ $0 \leq \sup \mu_A(x) + \sup \gamma_A(x) \leq 1$ is satisfied.

Definition 2.9 ([2, 3]). Let $A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\}$ and $B = \{(x, \mu_B(x), \gamma_A(x)) : x \in X\}$ $\gamma_B(x)$: $x \in X$ be two interval-valued intuitionistic fuzzy sets then

• $A \subset B$ iff $inf\mu_A(x) \leq inf\mu_B(x)$, $sup\mu_A(x) \leq sup\mu_B(x)$ and $inf\gamma_A(x) \geq sup\mu_B(x)$ $inf\gamma_B(x), sup\gamma_A(x) \ge sup\gamma_B(x).$

• The union of A and B is denoted by $A \cup B$ where

 $A \cup B = \{ \langle x, [\lor \{ inf \mu_A(x), inf \mu_B(x) \}, \lor \{ sup \mu_A(x), sup \mu_B(x) \} \},$ $\left| \wedge \{ inf \gamma_A(x), inf \gamma_B(x) \}, \wedge \{ sup \gamma_A(x), sup \gamma_B(x) \} \right| \rangle : x \in X \}.$

• The intersection of A and B is denoted by $A \cap B$ where $A \cap B = \{ \langle x, [\land \{ inf \mu_A(x), inf \mu_B(x) \}, \land \{ sup \mu_A(x), sup \mu_B(x) \} \},$

 $\left[\forall \{ inf \gamma_A(x), inf \gamma_B(x) \}, \forall \{ sup \gamma_A(x), sup \gamma_B(x) \} \right] \rangle : x \in X \}.$

• The complement of A is denoted by A^c where $A^c = \{(x, \gamma_A(x), \mu_A(x)) : x \in X\}$.

• $\Box A = \{(x, \mu_A(x), [inf\gamma_A(x), 1 - sup\mu_A(x)]) : x \in X\}.$

• $\Diamond A = \{(x, [inf\mu_A(x), 1 - sup\gamma_A(x)], \gamma_A(x)) : x \in X\}.$

• $A + B = \{(x, [inf\mu_A(x) + inf\mu_B(x) - inf\mu_A(x) \cdot inf\mu_B(x), sup\mu_A(x) + inf\mu_B(x), sup\mu_A(x), sup\mu_A(x),$ $sup\mu_B(x) - sup\mu_A(x) \cdot sup\mu_B(x)], [inf\gamma_A(x) \cdot inf\gamma_B(x), sup\gamma_A(x) \cdot sup\gamma_B(x)]) : x \in \mathbb{R}$ X.

• $A \cdot B = \{(x, [inf\mu_A(x) \cdot inf\mu_B(x), sup\mu_A(x) \cdot sup\mu_B(x)], [inf\gamma_A(x) + inf\gamma_B(x) - (inf\gamma_B(x) - (inf\gamma_B(x))), (inf\gamma_B(x) - (inf\gamma_B(x))), (inf\gamma_B(x) - (inf\gamma_B(x))), (inf\gamma_B(x) - (inf\gamma_B(x))), (inf\gamma_B(x)), (i$ $inf\gamma_A(x) \cdot inf\gamma_B(x), sup\gamma_A(x) + sup\gamma_B(x) - sup\gamma_A(x) \cdot sup\gamma_B(x)]) : x \in X\}.$

• $A@B = \{(x, [\frac{inf\mu_A(x) + inf\mu_B(x)}{2}, \frac{sup\mu_A(x) + sup\mu_B(x)}{2}], [\frac{inf\gamma_A(x) + inf\gamma_B(x)}{2}, \frac{sup\mu_A(x) + sup\mu_B(x)}{2}], \frac{sup\mu_A(x) + sup\mu_B(x)}{2}, \frac{sup\mu_B(x) + sup\mu_B(x)}{2$

•
$$A\$B = \{(x, [\sqrt{inf\mu_A(x) \cdot inf\mu_B(x)}, \sqrt{sup\mu_A(x) \cdot sup\mu_B(x)}]) : x \in X\}.$$

- $\begin{array}{l} [\sqrt{inf\gamma_A(x)\cdot inf\gamma_B(x)},\sqrt{sup\gamma_A(x)\cdot sup\gamma_B(x)}]):x\in X\}.\\ \bullet \ A\#B=\{(x,[\frac{2\cdot inf\mu_A(x)\cdot inf\mu_B(x)}{inf\mu_A(x)+inf\mu_B(x)},\frac{2\cdot sup\mu_A(x)\cdot sup\mu_B(x)}{sup\mu_A(x)+sup\mu_B(x)}],[\frac{2\cdot inf\gamma_A(x)\cdot inf\gamma_B(x)}{inf\gamma_A(x)+inf\gamma_B(x)},\frac{2\cdot sup\gamma_A(x)\cdot sup\gamma_B(x)}{sup\gamma_A(x)+sup\gamma_B(x)}]):x\in X\}. \end{array}$

The unit and null interval-valued intuitionistic fuzzy sets are defined by I = $\{(x, [1, 1], [0, 0]) : x \in X\}, \phi = \{(x, [0, 0], [1, 1]) : x \in X\}.$

3. Rough interval-valued intuitionistic fuzzy set

In this section we introduce the lower and upper rough approximation of an interval-valued intuitionistic fuzzy sets and study their basic properties.

Definition 3.1. Let (U, R) be a Pawlak approximation space and $A = \{(x, \mu_A(x), \dots, \mu_R)\}$ $\gamma_A(x)$: $x \in U$ be an interval-valued intuitionistic fuzzy set. The lower and upper rough approximations of A in (U, R) are denoted by R(A) and $\overline{R}(A)$ respectively which are interval-valued intuitionistic fuzzy subsets of U defined by
$$\begin{split} &\underline{R}(A) = \{(x, [\wedge\{inf\mu_A(y) : y \in [x]_R\}, \wedge\{sup\mu_A(y) : y \in [x]_R\}], [\vee\{inf\gamma_A(y) : y \in [x]_R\}, \vee\{sup\gamma_A(y) : y \in [x]_R\}]) : x \in U\} \text{ and } \overline{R}(A) = \{(x, [\vee\{inf\mu_A(y) : y \in [x]_R\}], \vee\{sup\mu_A(y) : y \in [x]_R\}], [\wedge\{inf\gamma_A(y) : y \in [x]_R\}, \wedge\{sup\gamma_A(y) : y \in [x]_R\}]) : x \in U\} \\ &\text{Now it is easy to show that} \\ &[\wedge\{inf\mu_A(y) : y \in [x]_R\}, \wedge\{sup\mu_A(y) : y \in [x]_R\}] \subseteq [0,1] \text{ and } [\vee\{inf\gamma_A(y) : y \in [x]_R\}] \\ &[nf\mu_A(y) : y \in [x]_R\}, \wedge\{sup\mu_A(y) : y \in [x]_R\}] \subseteq [0,1] \text{ and } [\vee\{inf\gamma_A(y) : y \in [x]_R\}, \vee\{sup\gamma_A(y) : y \in [x]_R\}] \subseteq [0,1] \\ &\text{Also,} \\ &sup\mu_A(y) + sup\gamma_A(y) \leq 1 \\ &\Rightarrow sup\mu_A(y) : y \in [x]_R\} \leq \wedge\{1 - sup\gamma_A(y) : y \in [x]_R\} \\ &\Rightarrow \wedge\{sup\mu_A(y) : y \in [x]_R\} \leq 1 - \vee\{sup\gamma_A(y) : y \in [x]_R\} \\ &\Rightarrow \wedge\{sup\mu_A(y) : y \in [x]_R\} + \vee\{sup\gamma_A(y) : y \in [x]_R\} \\ &\Rightarrow \wedge\{sup\mu_A(y) : y \in [x]_R\} + \vee\{sup\gamma_A(y) : y \in [x]_R\} \leq 1 \\ &\therefore \underline{R}(A) \text{ is an interval-valued intuitionistic fuzzy set.} \\ \end{split}$$

If $\underline{R}(A) = \overline{R}(A)$ then A is called definable, otherwise A is called a rough intervalvalued intuitionistic fuzzy set (*RIVIFS* in short). The rough interval-valued intuitionistic fuzzy set R(A) is given by the pair $R(A) = (\underline{R}(A), \overline{R}(A))$ or simply $A = (\underline{A}, \overline{A}).$

Example 3.2. Let $U = \{1, 2, 3, 4, 5\}$ and R be an equivalence relation defined by ${}_{x}R_{y}$ iff (x + y) is divisible by 2.

 $\therefore R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,3), (3,1), (1,5), (5,1), (3,5), (5,3), (2,4), (4,2), (2,6), (6,2), (4,6), (6,4)\}$

 $[1]_R = \{1, 3, 5\} = [3]_R = [5]_R, [2]_R = \{2, 4, 6\} = [4]_R = [6]_R.$

Let $A = \{(1, [.2, .3], [.3, .4]), (2, [.3, .7], [.2, .3]), (3, [.1, .4], [.2, .5]), (4, [.5, .6], [.1, .3]), (5, [.4, .5], [.2, .4])\}$ then

 $\underline{R}(A) = \{(1, [.1, .3], [.3, .5]), (2, [.3, .6], [.2, .3]), (3, [.1, .3], [.3, .5]), (4, [.3, .6], [.2, .3]), (5, [.1, .3], [.3, .5])\}$

 $\overline{R}(A) = \{(1, [.4, .5], [.2, .4]), (2, [.5, .7], [.1, .3]), (3, [.4, .5], [.2, .4]), (4, [.5, .7], [.1, .3]), (5, [.4, .5], [.2, .4])\}$

Here, $\underline{R}(A) \neq R(A)$, therefore A is a rough interval-valued intuitionistic fuzzy set.

Definition 3.3. Let $R(A) = (\underline{R}(A), \overline{R}(A))$ and $R(B) = (\underline{R}(B), \overline{R}(B))$ be two rough interval-valued intuitionistic fuzzy sets of the interval-valued intuitionistic fuzzy sets A and B respectively. Let us denote $\underline{R}(A), \overline{R}(A), \underline{R}(B)$ and $\overline{R}(B)$ by

 $\underline{R}(A) = \{(x, \mu_{\underline{R}(A)}(x), \gamma_{\underline{R}(A)}(x)) : x \in U\}, \ \overline{R}(A) = \{(x, \mu_{\overline{R}(A)}(x), \gamma_{\overline{R}(A)}(x)) : x \in U\}, \\ \underline{R}(B) = \{(x, \mu_{\underline{R}(B)}(x), \gamma_{\underline{R}(B)}(x)) : x \in U\} \text{ and } \overline{R}(B) = \{(x, \mu_{\overline{R}(B)}(x), \gamma_{\overline{R}(B)}(x)) : x \in U\}.$

Then the following relations, operations and operators are valid

1. $\sim R(A) = ((R(A))^c, (\underline{R}(A))^c)$

where $(\overline{R}(A))^c$ and $(\underline{R}(A))^c$ are the complements of the interval-valued intuitionistic fuzzy sets $\overline{R}(A)$ and $\underline{R}(A)$ respectively. $\sim R(A)$ is called the rough complement of R(A).

2. $\Box R(A) = (\Box \underline{R}(A), \Box \overline{R}(A)).$

3. $\Diamond R(A) = (\Diamond \underline{R}(A), \Diamond \overline{R}(A)).$

4. $R(A) \subseteq R(B)$ iff $\underline{R}(A) \subseteq \underline{R}(B)$ and $\overline{R}(A) \subseteq \overline{R}(B)$. 5. R(A) = R(B) iff $R(A) \subseteq R(B)$ and $R(B) \subseteq R(A)$. 6. $R(A) \cup R(B) = (\underline{R}(A) \cup \underline{R}(B), R(A) \cup R(B)).$ 7. $R(A) \cap R(B) = (\underline{R}(A) \cap \underline{R}(B), \overline{R}(A) \cap \overline{R}(B)).$ 8. $R(A) + R(B) = (\underline{R}(A) + \underline{R}(B), \overline{R}(A) + \overline{R}(B)).$ 9. $R(A) \cdot R(B) = (R(A) \cdot R(B), \overline{R}(A) \cdot \overline{R}(B)).$ 10. $R(A)@R(B) = (R(A)@R(B), \overline{R}(A)@\overline{R}(B)).$ 11. R(A) R(B) = (R(A) R(B), R(A) R(B)).12. $R(A) \# R(B) = (\underline{R}(A) \# \underline{R}(B), \overline{R}(A) \# \overline{R}(B)).$ Example 3.4. Let us consider example 3.2. Let us consider another RIVIFS $B = \{(1, [.4, .5], [.1, .3]), (2, [.4, .8], [.1, .2]), (3, [.1, .5], [.2, .3]), (4, [.5, .7], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2),$ (5, [.4, .7], [.1, .3]) then $\underline{R}(B) = \{(1, [.1, .5], [.2, .3]), (2, [.4, .7], [.1, .2]), (3, [.1, .5], [.2, .3]), (4, [.4, .7], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1$ (5, [.1, .5], [.2, .3]) $\overline{R}(B) = \{(1, [.4, .7], [.1, .3]), (2, [.5, .8], [.1, .2]), (3, [.4, .7], [.1, .3]), (4, [.5, .8], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1$ (5, [.4, .7], [.1, .3]). Let $\sim R(A) = ((\overline{R}(A))^c, (\underline{R}(A))^c)$ then $(\overline{R}(A))^{c} = \{(1, [.2, .4], [.4, .5]), (2, [.1, .3], [.5, .7]), (3, [.2, .4], [.4, .5]), (4, [.1, .3], [.5, .7]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, [.4, .5]), (.4, .5)), (.4, [.4, .5]), (.4, .5), (.4, .5), (.4, .5)), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), (.4, .5), ($ (5, [.2, .4], [.4, .5]) $(\underline{R}(A))^{c} = \{(1, [.3, .5], [.1, .3]), (2, [.2, .3], [.3, .6]), (3, [.3, .5], [.1, .3]), (4, [.2, .3], [.3, .6]), (.1, .2, .3), (.2, .2, .3), (.3, .6], (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5), (.3, .5),$ (5, [.3, .5], [.1, .3]). Let $\Box R(A) = (\Box R(A), \Box \overline{R}(A))$ then $\Box \underline{R}(A) = \{(1, [.1, .3], [.3, .7]), (2, [.3, .6], [.2, .4]), (3, [.1, .3], [.3, .7]), (4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.3, .6]), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4,$ (5, [.1, .3], [.3, .7]) $\Box \overline{R}(A) = \{(1, [.4, .5], [.2, .5]), (2, [.5, .7], [.1, .3]), (3, [.4, .5], [.2, .5]), (4, [.5, .7], [.1, .3]), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), ($ (5, [.4, .5], [.2, .5]). Let $\Diamond R(A) = (\Diamond R(A), \Diamond \overline{R}(A))$ then $\Diamond \underline{R}(A) = \{(1, [.1, .5], [.3, .5]), (2, [.3, .7], [.2, .3]), (3, [.1, .5], [.3, .5]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.3, .7], [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7], [.3, .7]), (4, [.3, .7$ (5, [.1, .5], [.3, .5]) $\Diamond \overline{R}(A) = \{(1, [.4, .6], [.2, .4]), (2, [.5, .7], [.1, .3]), (3, [.4, .6], [.2, .4]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.$ (5, [.4, .6], [.2, .4]). Let $R(A) \subseteq R(B)$, now we have to show $\underline{R}(A) \subseteq \underline{R}(B)$ and $\overline{R}(A) \subseteq \overline{R}(B)$ which holds in this example. Let $R(A) \cup R(B) = (\underline{R}(A) \cup \underline{R}(B), \overline{R}(A) \cup \overline{R}(B))$ then $\underline{R}(A) \cup \underline{R}(B) = \{(1, [.1, .5], [.2, .3]), (2, [.4, .7], [.1, .2]), (3, [.1, .5], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3]), (4, [.4, .7], [.2, .3])$ $[.1, .2]), (5, [.1, .5], [.2, .3])\}$ $\overline{R}(A) \cup \overline{R}(B) = \{(1, [.4, .7], [.1, .3]), (2, [.5, .8], [.1, .2]), (3, [.4, .7], [.1, .3]), (4, [.5, .8], [.1, .2]), (3, [.4, .7], [.1, .3]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8], [.1, .2]), (4, [.5, .8]), (4, [.5, .8]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5, .2]), (4, [.5,$ $[.1, .2]), (5, [.4, .7], [.1, .3])\}.$ Let $R(A) \cap R(B) = (\underline{R}(A) \cap \underline{R}(B), \overline{R}(A) \cap \overline{R}(B))$ then $\underline{R}(A) \cap \underline{R}(B) = \{(1, [.1, .3], [.3, .5]), (2, [.3, .6], [.2, .3]), (3, [.1, .3], [.3, .5]), (4, [.3, .6], [.3, .6]), (4, [.3, .6], [.3, .6]), (4, [.3, .6], [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6]), (4, [.3, .6])$ $[.2, .3]), (5, [.1, .3], [.3, .5])\}$ $\overline{R}(A) \cap \overline{R}(B) = \{(1, [.4, .5], [.2, .4]), (2, [.5, .7], [.1, .3]), (3, [.4, .5], [.2, .4]), (4, [.5, .7], [.4, .5]), (.4, [.5, .7], [.4, .5]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5, .7]), (.4, [.5,$ $[.1, .3]), (5, [.4, .5], [.2, .4])\}.$ Let $R(A) + R(B) = (\underline{R}(A) + \underline{R}(B), \overline{R}(A) + \overline{R}(B))$ then $\underline{R}(A) + \underline{R}(B) = \{(1, [.19, .65], [.06, .15]), (2, [.58, .88], [.02, .06]), (3, [.19, .65], [.06, .15]), (.10, .15], (.10, .15], (.10, .15], (.10, .15]), (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.10, .15], (.1$ 115

(4, [.58, .88], [.02, .06]), (5, [.19, .65], [.06, .15]) $\overline{R}(A) + \overline{R}(B) = \{(1, [.64, .85], [.02, .12]), (2, [.75, .94], [.01, .06]), (3, [.64, .85], [.02, .12]), (3, [.64, .85], [.64, .8$ $(4, [.75, .94], [.01, .06]), (5, [.64, .85], [.02, .12])\}.$ Let $R(A) \cdot R(B) = (\underline{R}(A) \cdot \underline{R}(B), \overline{R}(A) \cdot \overline{R}(B))$ then $\underline{R}(A) \cdot \underline{R}(B) = \{(1, [.01, .15], [.44, .65]), (2, [.12, .42], [.28, .44]), (3, [.01, .15], [.44, .65]), (.44, .65], (.44$ $(4, [.12, .42], [.28, .44]), (5, [.01, .15], [.44, .65])\}$ $\overline{R}(A) \cdot \overline{R}(B) = \{(1, [.16, .35], [.28, .58]), (2, [.25, .56], [.19, .44]), (3, [.16, .35], [.28, .58]), (2, [.25, .56], [.28, .58]), (2, [.28, .58]), (2, [.28, .58]), (2, [.28, .58]), (2, [.28, .58]), (3,$ $(4, [.25, .56], [.19, .44]), (5, [.16, .35], [.28, .58])\}.$ Let R(A)@R(B) = (R(A)@R(B), R(A)@R(B)) then $\underline{R}(A)@\underline{R}(B) = \{(1, [.1, .4], [.25, .4]), (2, [.35, .65], [.15, .25]), (3, [.1, .4], [.25, .4]), (4, .4), (.4,$ $[.35, .65], [.15, .25]), (5, [.1, .4], [.25, .4])\}$ $\overline{R}(A) @ \overline{R}(B) = \{ (1, [.4, .6], [.15, .35]), (2, [.5, .75], [.1, .25]), (3, [.4, .6], [.15, .35]), (.15, .35] \}$ (4, [.5, .75], [.1, .25]), (5, [.4, .6], [.15, .35])Let R(A) $R(B) = (\underline{R}(A) \underline{R}(B), \overline{R}(A) \underline{R}(B))$ then $\underline{R}(A) \$ \underline{R}(B) = \{ (1, [.1, .39], [.24, .39]), (2, [.35, .65], [.14, .24]), (3, [.1, .39], [.24, .39]), (.1, .39], [.24, .39] \}$ (4, [.35, .65], [.14, .24]), (5, [.1, .39], [.24, .39]) $\overline{R}(A)$ $\overline{R}(B) = \{(1, [.4, .59], [.14, .35]), (2, [.5, .75], [.1, .24]), (3, [.4, .59], [.14, .35]), (.14, .35], (.14, .35], (.14, .35]), (.14, .35], (.14, .$ (4, [.5, .75], [.1, .24]), (5, [.4, .59], [.14, .35])Let $R(A) \# R(B) = (\underline{R}(A) \# \underline{R}(B), \overline{R}(A) \# \overline{R}(B))$ then $\underline{R}(A) \# \underline{R}(B) = \{ (1, [.1, .38], [.24, .38]), (2, [.34, .65], [.13, .24]), (3, [.1, .38], [.24, .38]), (.1, .38], [.24, .38] \} \}$ (4, [.34, .65], [.13, .24]), (5, [.1, .38], [.24, .38]) $\overline{R}(A) \# \overline{R}(B) = \{ (1, [.4, .58], [.13, .34]), (2, [.5, .75], [.1, .24]), (3, [.4, .58], [.13, .34]), (.4, .58), [.13, .34] \} \}$ $(4, [.5, .75], [.1, .24]), (5, [.4, .58], [.13, .34])\}.$

Theorem 3.5. Let A, B and C are three interval-valued intuitionistic fuzzy sets in (X, U) then

- 1. $\underline{R}(A) \subseteq A \subseteq \overline{R}(A)$.
- 2. $\overline{R}(A \cup B) = \overline{R}(A) \cup \overline{R}(B).$
- 3. $\underline{R}(A \cap B) = \underline{R}(A) \cap \underline{R}(B).$
- $4. \quad \overline{R}(A \cap B) \subseteq \overline{R}(A) \cap \overline{R}(B).$
- 5. $R(A \cup B) \supseteq R(A) \cup \overline{R}(B)$.
- 6. $\overline{R}(A^c) = (\underline{R}(A))^c$.
- 7. $\underline{R}(A^c) = (\overline{R}(A))^c$.
- 8. $\overline{RR}(A) = R\overline{R}(A) = \overline{R}(A)$.
- 9. $\underline{RR}(A) = \overline{RR}(A) = \underline{R}(A).$

10.
$$\underline{R}(I) = I = \overline{R}(I)$$
 $\underline{R}(\phi) = I = \overline{R}(\phi).$

Proof. Straight forward. 3.5.

From 6 and 7 of theorem 3.5, we can say rough complement of a rough intervalvalued intuitionistic fuzzy set is the rough interval-valued intuitionistic fuzzy set of its complement.

i.e.
$$\sim R(A) = R(A^c)$$
.

Theorem 3.6. If $R(A) = (\underline{R}(A), \overline{R}(A))$, $R(B) = (\underline{R}(B), \overline{R}(B))$ and $R(C) = (\underline{R}(C), \overline{R}(C))$ are three rough interval-valued intuitionistic fuzzy sets of interval-valued intuitionistic fuzzy sets A, B and C in (X, U) respectively then

1. $\sim (\sim R(A)) = R(A)$.

2. $R(A) \cup R(B) = R(B) \cup R(A)$. 3. $R(A) \cap R(B) = R(B) \cap R(A)$. 4. $(R(A) \cup R(B)) \cup R(C) = R(A) \cup (R(B) \cup R(C)).$ 5. $(R(A) \cap R(B)) \cap R(C) = R(A) \cap (R(B) \cap R(C)).$ 6. $(R(A) \cup R(B)) \cap R(C) = (R(A) \cap R(C)) \cup (R(B) \cap R(C)).$ 7. $(R(A) \cap R(B)) \cup R(C) = (R(A) \cup R(C)) \cap (R(B) \cup R(C)).$ 8. $\sim (R(A) \cup R(B)) = (\sim R(A)) \cap (\sim R(B)).$ 9. $\sim (R(A) \cap R(B)) = (\sim R(A)) \cup (\sim R(B)).$ Proof. 1. $\sim (\sim R(A)) = \sim ((\overline{R}(A))^c, (\underline{R}(A))^c)$ $=(((\underline{R}(A))^{c})^{c},((\overline{R}(A))^{c})^{c})$ $=(\underline{R}(A), \overline{R}(A))$ =R(A)2. $R(A) \cup R(B) = (\underline{R}(A) \cup \underline{R}(B), \overline{R}(A) \cup \overline{R}(B))$ $= (\underline{R}(B) \cup \underline{R}(A), \overline{R}(B) \cup \overline{R}(A))$ $=R(B) \cup R(A)$ 3. Similar to 2. 4. $(R(A) \cup R(B)) \cup R(C) = (R(A) \cup R(B), \overline{R}(A) \cup \overline{R}(B)) \cup (R(C), \overline{R}(C))$ $=((\underline{R}(A)\cup\underline{R}(B))\cup\underline{R}(C),(\overline{R}(A)\cup\overline{R}(B))\cup\overline{R}(C))$ $=(\underline{R}(A)\cup(\underline{R}(B)\cup\underline{R}(C)),\overline{R}(A)\cup(\overline{R}(B)\cup\overline{R}(C)))$ $=(\underline{R}(A)\cup\overline{R}(A))\cup(\underline{R}(B)\cup\underline{R}(C),\overline{R}(B)\cup\overline{R}(C))$ $=R(A) \cup (R(B) \cup R(C))$ 5. Similar to 4. 6. $(R(A) \cup R(B)) \cap R(C) = (\underline{R}(A) \cup \underline{R}(B), \overline{R}(A) \cup \overline{R}(B)) \cap (\underline{R}(C), \overline{R}(C))$ $=((\underline{R}(A)\cup\underline{R}(B))\cap\underline{R}(C),(\overline{R}(A)\cup\overline{R}(B))\cap\overline{R}(C))$ $=((\underline{R}(A) \cap \underline{R}(C)) \cup (\underline{R}(B) \cap \underline{R}(C))), ((\overline{R}(A) \cap \overline{R}(C)) \cup$ $(\overline{R}(B) \cap \overline{R}(C)))$ $= (R(A) \cap R(C), \overline{R}(A) \cap \overline{R}(C)) \cup (R(B) \cap R(C), \overline{R}(B) \cap \overline{R}(C))$ $= (R(A) \cap (R(C))) \cup (R(B) \cap (R(C)))$ 7. Similar to 6. 8. ~ $(R(A) \cup R(B)) = (R(A) \cup R(B), \overline{R}(A) \cup \overline{R}(B))$ $=((\overline{R}(A)\cup\overline{R}(B))^{c},(\underline{R}(A)\cup\underline{R}(B))^{c})$ $=((R(A))^{c} \cap (R(B))^{c}, (R(A))^{c} \cap (R(B))^{c})$ $=((\overline{R}(A))^{c},(\underline{R}(A))^{c})\cap((\overline{R}(B))^{c},(\underline{R}(B))^{c})$ $= (\sim R(A)) \cap (\sim R(B))$ 9. Similar to 8. 3.6.

Theorem 3.7. If A and B be two interval valued-intuitionistic fuzzy sets suct that $A \subseteq B$ then $R(A) \subseteq R(B)$.

 $\begin{array}{l} Proof. \ \text{Let} \ A = \{(x, \mu_A(x), \gamma_A(x)) : x \in X\} \ \text{and} \ B = \{(x, \mu_B(x), \gamma_B(x)) : x \in X\}.\\ \text{We have} \ inf \mu_A(x) \leq inf \mu_B(x), \ sup\mu_A(x) \leq sup\mu_B(x), \ inf \gamma_A(x) \geq inf \gamma_B(x) \ \text{and} \ sup\gamma_A(x) \geq sup\gamma_B(x)\\ \text{Let} \ R(A) = (\underline{R}(A), \overline{R}(A)), \ R(B) = (\underline{R}(B), \overline{R}(B))\\ \text{where} \ \underline{R}(A) = \{(x, [\wedge\{inf \mu_A(y) : y \in [x]_R\}, \wedge\{sup\mu_A(y) : y \in [x]_R\}], [\vee\{inf \gamma_A(y) : y \in [x]_R\}], \forall\{sup\gamma_A(y) : y \in [x]_R\}]) : x \in U\}\\ \underline{R}(B) = \{(x, [\wedge\{inf \mu_B(y) : y \in [x]_R\}, \wedge\{sup\mu_B(y) : y \in [x]_R\}], [\vee\{inf \gamma_B(y) : y \in [x]_R], [\vee\{inf \gamma_B(y) : y \in [x]_$

$$\begin{split} & [x]_R\}, \lor \{sup\gamma_B(y) : y \in [x]_R\}]) : x \in U\} \\ & \text{Now } inf\mu_A(x) \leq inf\mu_B(x) \\ & \Rightarrow \land \{inf\mu_A(y) : y \in [x]_R\} \leq \land \{inf\mu_B(y) : y \in [x]_R\} \\ & \text{and } sup\mu_A(x) \leq sup\mu_B(x) \\ & \Rightarrow \land \{sup\mu_A(y) : y \in [x]_R\} \leq \land \{sup\mu_B(y) : y \in [x]_R\} \\ & \text{Similarly, } \lor \{inf\gamma_A(y) : y \in [x]_R\} \geq \lor \{inf\gamma_B(y) : y \in [x]_R\} \\ & \text{ and } \lor \{sup\gamma_A(y) : y \in [x]_R\} \leq \lor \{sup\gamma_B(y) : y \in [x]_R\} \\ & \therefore \underline{R}(A) \subseteq \underline{R}(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \therefore R(A) \subseteq R(B) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \subseteq \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \\ & \text{Similarly it can be shown that } \overline{R}(A) \\ & \text{Similarly it can be shown that }$$

4. $\Diamond \Diamond R(A) = \Diamond R(A)$ 5. $\Box \Diamond R(A) = \Diamond R(A)$ 6. $\Diamond \Box R(A) = \Box R(A)$ Proof. 1. $\sim (\Box(\sim R(A))) = \sim (\Box((\overline{R}(A))^c, (\underline{R}(A))^c))$ $= \sim (\Box(\overline{R}(A))^c, \Box(\underline{R}(A))^c)$ $= ((\Box(\underline{R}(A))^c)^c, (\Box(\overline{R}(A))^c)^c)$ $= (\Diamond(\underline{R}(A)), \Diamond(\overline{R}(A)))$ $= \Diamond R(A)$

2. Similar to 1.

3. $\Box \Box R(A) = \Box R(A)$

3.
$$\Box \Box R(A) = \Box (\Box \underline{R}(A), \Box \overline{R}(A))$$
$$= (\Box \Box \underline{R}(A), \Box \Box \overline{R}(A))$$
$$= (\Box \underline{R}(A), \Box \overline{R}(A))$$
$$= \Box R(A)$$

4. Similar to 3.

5.
$$\Box \Diamond R(A) = \Box (\Diamond \underline{R}(A), \Diamond R(A)) \\ = (\Box \Diamond \underline{R}(A), \Box \Diamond \overline{R}(A)) \\ = (\Diamond \underline{R}(A), \Diamond \overline{R}(A)) \\ = \Diamond R(A) \\ 6. \text{ Similar to 5. 3.8.}$$

Theorem 3.9. For any two rough interval-valued intuitionistic fuzzy sets $R(A) = (\underline{R}(A), \overline{R}(A))$ and $R(B) = (\underline{R}(B), \overline{R}(B))$ 1. $\Box(R(A) \cup R(B)) = \Box R(A) \cup \Box R(B)$

 $\begin{array}{ll} 1. & \Box(R(A) \cup R(B)) = \Box R(A) \cup \Box R(B) \\ 2. & \Box(R(A) \cap R(B)) = \Box R(A) \cap \Box R(B) \\ 3. & \Diamond(R(A) \cup R(B)) = \Diamond R(A) \cup \Diamond R(B) \\ 4. & \Diamond(R(A) \cap R(B)) = \Diamond R(A) \cap \Diamond R(B). \end{array}$ $Proof. 1. \quad \Box(R(A) \cup R(B)) = \Box(\underline{R}(A) \cup \underline{R}(B), \overline{R}(A) \cup \overline{R}(B))$

 $= (\Box(\underline{R}(A) \cup \underline{R}(B)), \Box(\overline{R}(A) \cup \overline{R}(B)))$ $= (\Box(\underline{R}(A) \cup \underline{R}(B)), \Box(\overline{R}(A) \cup \overline{R}(B)))$ $= (\Box(\underline{R}(A)) \cup \Box(\underline{R}(B)), \Box(\overline{R}(A)) \cup \Box(\overline{R}(B)))$ $= (\Box(\underline{R}(A), \Box(\overline{R}(A))) \cup (\Box(\underline{R}(B), \Box(\overline{R}(B)))$

 $= \Box R(A) \cup \Box R(B)$

2-4. Similar to 1. 3.9.

Theorem 3.10. For any two rough interval-valued intuitionistic fuzzy sets R(A) =(R(A), R(A)) and R(B) = (R(B), R(B))1. $\Box(R(A)@R(B)) = \Box R(A)@\Box R(B)$ 2. $\Diamond(R(A)@R(B)) = \Diamond R(A)@\Diamond R(B)$ provided $sup\mu_{\underline{R}(A)}(x) = sup\mu_{R(B)}(x)$ 3. $\Box(R(A)\$R(B)) = \Box R(A)\$\Box R(B)$ and $sup\mu_{\overline{R}(A)}(x) = sup\mu_{\overline{R}(B)}(x)$ 4. $\Diamond(R(A)\$R(B)) = \Diamond R(A)\$\Diamond R(B)$ provided $sup\mu_{\underline{R}(A)}(x) = sup\mu_{\underline{R}(B)}(x)$ and $sup\mu_{\overline{R}(A)}(x) = sup\mu_{\overline{R}(B)}(x)$ provided $sup\mu_{R(A)}(x) = sup\mu_{R(B)}(x)$ 5. $\Box(R(A)\#R(B)) = \Box R(A)\#\Box R(B)$ and $sup\mu_{\overline{R}(A)}(x) = sup\mu_{\overline{R}(B)}(x)$ 6. $\Diamond(R(A)\#R(B)) = \Diamond R(A)\#\Diamond R(B)$ provided $sup\mu_{R(A)}(x) = sup\mu_{R(B)}(x)$ and $sup\mu_{\overline{R}(A)}(x) = sup\mu_{\overline{R}(B)}(x)$ Proof. 1. $\Box(R(A)@R(B)) = \Box(R(A)@R(B), \overline{R}(A)@\overline{R}(B))$ $= (\Box(\underline{R}(A)@\underline{R}(B)), \Box(\overline{R}(A)@\overline{R}(B)))$ $\Box(\underline{R}(A)@\underline{R}(B)) = \Box\{(x, \lfloor \frac{inf\mu_{\underline{R}(A)}(x) + inf\mu_{\underline{R}(B)}(x)}{2}, \frac{sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}{2} \rfloor$ $= \{ (x, [\frac{2}{1-x}, \frac{2}{1-x}]), \\ [\frac{inf\gamma_{\underline{R}(A)}(x) + inf\gamma_{\underline{R}(B)}(x)}{2}, \frac{sup\gamma_{\underline{R}(A)}(x) + sup\gamma_{\underline{R}(B)}(x)}{2}]) : x \in X \} \\ = \{ (x, [\frac{inf\mu_{\underline{R}(A)}(x) + inf\mu_{\underline{R}(B)}(x)}{2}, \frac{sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}{2}], \\ [\frac{inf\gamma_{\underline{R}(A)}(x) + inf\gamma_{\underline{R}(B)}(x)}{2}, 1 - \frac{sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}{2}]) : x \in X \}$ $\Box R(A) @\Box R(B) = (\Box R(A), \Box \overline{R}(A)) @(\Box R(B), \Box \overline{R}(B))$ $= (\Box \underline{R}(A) @\Box \underline{R}(A)), (\Box \overline{R}(B) @\Box \overline{R}(B))$ Now $\Box \underline{R}(A) = \{(x, \mu_{R(A)}(x), [inf\gamma_{\underline{R}(A)}(x), 1 - sup\mu_{\underline{R}(A)}(x)]) : x \in X\}$ $\Box \underline{R}(B) = \{ (x, \mu_{R(B)}(x), [inf\gamma_{R(B)}(x), 1 - sup\mu_{R(B)}(x)]) : x \in X \}$ $\Box \underline{R}(A) @\Box \underline{R}(B) = \{ (x, [\underbrace{inf\mu_{\underline{R}(A)}(x) + inf\mu_{\underline{R}(B)}(x)}_{2}, \underbrace{sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}_{2}] \}$ $=\{(x, \lfloor \frac{2}{2} \rfloor, \frac{2}{1}): x \in X\}$ $=\{(x, \lfloor \frac{inf\gamma_{\underline{R}(A)}(x) + inf\gamma_{\underline{R}(B)}(x)}{2}, \frac{1 - sup\mu_{\underline{R}(A)}(x) + 1 - sup\mu_{\underline{R}(B)}(x)}{2}]): x \in X\}$ $=\{(x, \lfloor \frac{inf\mu_{\underline{R}(A)}(x) + inf\mu_{\underline{R}(B)}(x)}{2}, \frac{sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}{2}], \frac{1 - sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}{2}], \frac{1 - sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}{2}], \frac{1 - sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}{2}], x \in X\}$ $\therefore \Box(\underline{R}(A)@\underline{R}(B)) = \Box\underline{R}(A)@\Box\underline{R}(B)$ Similarly we can prove that $\Box(\overline{R}(A)@\overline{R}(B)) = \Box\overline{R}(A)@\Box\overline{R}(B)$ Consequently $\Box(R(A)@R(B)) = \Box R(A)@\Box R(B)$ 2. Similar to 1. 3. Let $sup\mu_{R(A)}(x) = sup\mu_{R(B)}(x)$ and $sup\mu_{\overline{R}(A)}(x) = sup\mu_{\overline{R}(B)}(x)$ $\Box(R(A)\$R(B)) = \Box(R(A)\$R(B), \overline{R}(A)\$\overline{R}(B))$ $= (\Box(\underline{R}(A) \$ \underline{R}(B)), \Box(\overline{R}(A) \$ \overline{R}(B)))$ $\Box(\underline{R}(A)\underline{\$R}(B)) = \Box\{(x, [\sqrt{inf\mu_{R(A)}(x)} \cdot inf\mu_{R(B)}(x), \sqrt{sup\mu_{R(A)}(x)} \cdot sup\mu_{R(B)}(x)], \sqrt{sup\mu_{R(A)}(x)} \cdot sup\mu_{R(B)}(x)\}, \sqrt{sup\mu_{R(A)}(x)} \cdot sup\mu_{R(B)}(x)], \sqrt{sup\mu_{R(B)}(x)} \cdot$ $\left[\sqrt{inf\gamma_{R(A)}(x)\cdot inf\gamma_{R(B)}(x)}, \sqrt{sup\gamma_{R(A)}(x)\cdot sup\gamma_{R(B)}(x)}\right]\right):$ $x \in X$ $=\{(x, [\sqrt{inf\mu_{R(A)}(x)} \cdot inf\mu_{R(B)}(x), \sqrt{sup\mu_{R(A)}(x)} \cdot sup\mu_{R(B)}(x)], (x, y) \in \mathbb{C}\}$ $\left[\sqrt{inf\gamma_{R(A)}(x)\cdot inf\gamma_{R(B)}(x)}, 1-\sqrt{sup\mu_{R(A)}(x)\cdot sup\mu_{R(B)}(x)}\right]\right):$ $x \in X$ $=\{(x, [\sqrt{inf\mu_{R(A)}(x)} \cdot inf\mu_{\underline{R}(B)}(x), \sqrt{sup\mu_{\underline{R}(A)}(x)} \cdot sup\mu_{\underline{R}(B)}(x)], (x, y) \in \mathbb{N}\}$

 $\left[\sqrt{inf\gamma_{R(A)}(x)\cdot inf\gamma_{R(B)}(x)}, 1-sup\mu_{R(A)}(x)\right]\right): x \in X\}$ $\Box R(A) \$ \Box R(B) = (\Box R(A), \Box \overline{R}(A)) \$ (\Box R(B), \Box \overline{R}(B))$ $=(\Box R(A) \ \square R(A), \Box \overline{R}(B) \ \square \overline{R}(B))$ Now $\Box \underline{R}(A) = \{(x, \mu_{R(A)}(x), [inf\gamma_{R(A)}(x), 1 - sup\mu_{R(A)}(x)]) : x \in X\}$ $\Box \underline{R}(B) = \{ (x, \mu_{R(B)}(x), [inf\gamma_{R(B)}(x), 1 - sup\mu_{R(B)}(x)]) : x \in X \}$ $\Box \underline{R}(A) \$ \Box \underline{R}(B) = \{ (x, [\sqrt{inf\mu_{R(A)}(x)} \cdot inf\mu_{R(B)}(x), \sqrt{sup\mu_{R(A)}(x)} \cdot sup\mu_{R(B)}(x)], \forall x \in \mathbb{N} \}$ $\left[\sqrt{inf\gamma_{R(A)}(x)\cdot inf\gamma_{R(B)}(x)},\sqrt{(1-sup\mu_{R(A)}(x))\cdot(1-sup\mu_{R(B)}(x))}\right]\right):x\in$ X $= \{(x, [\sqrt{inf\mu_{\underline{R}(A)}(x)} \cdot inf\mu_{\underline{R}(B)}(x), \sqrt{sup\mu_{\underline{R}(A)}(x)} \cdot sup\mu_{\underline{R}(B)}(x)], (x, y) \in [0, \infty)\}$ $\left[\sqrt{inf\gamma_{R(A)}(x)\cdot inf\gamma_{R(B)}(x)}, 1-sup\mu_{R(A)}(x)\right]\right): x \in X\}$ $\therefore \Box(\underline{R}(A) \$ \underline{R}(B)) = \Box \underline{R}(A) \$ \Box \underline{R}(B)$ Similarly we can prove that $\Box(\overline{R}(A) \$ \overline{R}(B)) = \Box \overline{R}(A) \$ \Box \overline{R}(B)$ Consequently $\Box(R(A)\$R(B)) = \Box R(A)\$\Box R(B)$ 4. Similar to 3. 5. Let $sup\mu_{\underline{R}(A)}(x) = sup\mu_{\underline{R}(B)}(x)$ and $sup\mu_{\overline{R}(A)}(x) = sup\mu_{\overline{R}(B)}(x)$ $\Box(R(A)\#R(B)) = \Box(\underline{R}(A)\#\underline{R}(B), \overline{R}(A)\#\overline{R}(B))$ $= (\Box(\underline{R}(A) \# \underline{R}(B)), \Box(\overline{R}(A) \# \overline{R}(B)))$ $\Box(\underline{R}(A) \# \underline{R}(B)) = \Box\{(x, [\frac{2 \cdot inf \mu_{\underline{R}(A)}(x) \cdot inf \mu_{\underline{R}(B)}(x)}{inf \mu_{\underline{R}(A)}(x) + inf \mu_{\underline{R}(B)}(x)}, \frac{2 \cdot sup \mu_{\underline{R}(A)}(x) \cdot sup \mu_{\underline{R}(B)}(x)}{sup \mu_{\underline{R}(A)}(x) + sup \mu_{\underline{R}(B)}(x)}],$ $=\{(x, \begin{bmatrix}\frac{2\cdot inf\mu_{\underline{R}(A)}(x) \cdot inf\gamma_{\underline{R}(B)}(x)}{inf\gamma_{\underline{R}(A)}(x) \cdot inf\gamma_{\underline{R}(B)}(x)}, \frac{2\cdot sup\gamma_{\underline{R}(A)}(x) \cdot sup\gamma_{\underline{R}(B)}(x)}{sup\gamma_{\underline{R}(A)}(x) + sup\gamma_{\underline{R}(B)}(x)}]): x \in X\}$ $=\{(x, \begin{bmatrix}\frac{2\cdot inf\mu_{\underline{R}(A)}(x) \cdot inf\mu_{\underline{R}(B)}(x)}{inf\mu_{\underline{R}(A)}(x) + inf\mu_{\underline{R}(B)}(x)}, \frac{2\cdot sup\mu_{\underline{R}(A)}(x) \cdot sup\mu_{\underline{R}(B)}(x)}{sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}],$ $\frac{2 \cdot inf \gamma_{\underline{R}(A)}(x) \cdot inf \gamma_{\underline{R}(B)}(x)}{inf \gamma_{\underline{R}(A)}(x) + inf \gamma_{\underline{R}(B)}(x)}, 1 - \frac{2 \cdot sup\mu_{\underline{R}(A)}(x) \cdot sup\mu_{\underline{R}(B)}(x)}{sup\mu_{\underline{R}(A)}(x) + sup\mu_{\underline{R}(B)}(x)}]) : x \in X \}$ $= \{ \left(x, \left[\frac{2 \cdot inf \mu_{\underline{R}(A)}(x) + inf \mu_{\underline{R}(B)}(x)}{inf \mu_{\underline{R}(A)}(x) + inf \mu_{\underline{R}(B)}(x)}, \frac{2 \cdot sup \mu_{\underline{R}(A)}(x) + sup \mu_{\underline{R}(B)}(x)}{sup \mu_{\underline{R}(A)}(x) + sup \mu_{\underline{R}(B)}(x)} \right]$ $[\frac{2\cdot inf\gamma_{\underline{R}(A)}(x)\cdot inf\gamma_{\underline{R}(B)}(x)}{inf\gamma_{\underline{R}(A)}(x)+inf\gamma_{\underline{R}(B)}(x)}, 1-sup\mu_{\underline{R}(A)}(x)]): x \in X\}$ $\Box R(A) \# \Box R(B) = (\Box \underline{R}(A), \Box \overline{R}(A)) \# (\Box \underline{R}(B), \Box \overline{R}(B))$ $= (\Box \underline{R}(A) \# \Box \underline{R}(A), \Box \overline{R}(B) \# \Box \overline{R}(B))$ Now $\Box \underline{R}(A) = \{(x, \mu_{R(A)}(x), [inf\gamma_{R(A)}(x), 1 - sup\mu_{R(A)}(x)]) : x \in X\}$ $\Box \underline{R}(B) = \{ (x, \mu_{R(B)}(x), [inf\gamma_{R(B)}(x), 1 - sup\mu_{R(B)}(x)]) : x \in X \}$ $\Box \underline{R}(D) = \{(x, \mu_{\underline{R}}(B)(x), (inf) | \underline{R}(D)(x), 1 \in \mathcal{S}_{FF}(\underline{R}(D)(x), 1 \in \mathcal{S}_{FF}(\underline$ $x \in X$ $= \big\{ \big(x, \big[\frac{2 \cdot inf \mu_{\underline{R}(A)}(x) \cdot inf \mu_{\underline{R}(B)}(x)}{inf \mu_{\underline{R}(A)}(x) + inf \mu_{\underline{R}(B)}(x)}, \frac{2 \cdot sup \mu_{\underline{R}(A)}(x) \cdot sup \mu_{\underline{R}(B)}(x)}{sup \mu_{\underline{R}(A)}(x) + sup \mu_{\underline{R}(B)}(x)} \big],$ $\frac{2 \cdot inf \gamma_{\underline{R}(A)}(x) \cdot inf \gamma_{\underline{R}(B)}(x)}{inf \gamma_{\underline{R}(A)}(x) + inf \gamma_{\underline{R}(B)}(x)}, 1 - sup \mu_{\underline{R}(A)}(x)]) : x \in X\}$ $\therefore \Box(R(A) \# R(B)) = \Box R(A) \# \Box R(B)$ Similarly we can prove that $\Box(\overline{R}(A)\#\overline{R}(B)) = \Box\overline{R}(A)\#\Box\overline{R}(B)$ Consequently $\Box(R(A)\#R(B)) = \Box R(A)\#\Box R(B)$ 6. Similar to 5. 3.10.

Now let us show by an example that in theorem 3.10 - (3) (4), (5) and (6) are not true in general. For this let us take two RIVIFS A and B as stated in examples 3.2 and 3.4, i.e.

 $A = \{(1, [.2, .3], [.3, .4]), (2, [.3, .7], [.2, .3]), (3, [.1, .4], [.2, .5]), (4, [.5, .6], [.1, .3]), \\120$

(5, [.4, .5], [.2, .4]) $\underline{R}(A) = \{(1, [.1, .3], [.3, .5]), (2, [.3, .6], [.2, .3]), (3, [.1, .3], [.3, .5]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.2, .3]), (4, [.3, .6], [.3, .3]), (4, [.3, .6], [.3, .3]), (4, [.3, .6], [.3, .3]), (4, [.3, .6], [.3, .3]), (4, [.3,$ (5, [.1, .3], [.3, .5]) $\overline{R}(A) = \{(1, [.4, .5], [.2, .4]), (2, [.5, .7], [.1, .3]), (3, [.4, .5], [.2, .4]), (4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.1, .3]), (.4, [.5, .7], [.4, .3]), (.4, [.5, .7], [.4, .3]), (.4, [.5, .7], [.4, .3]), (.4, .3]), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.4, .3), (.$ (5, [.4, .5], [.2, .4]) $B = \{(1, [.4, .5], [.1, .3]), (2, [.4, .8], [.1, .2]), (3, [.1, .5], [.2, .3]), (4, [.5, .7], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2),$ (5, [.4, .7], [.1, .3]) $\underline{R}(B) = \{(1, [.1, .5], [.2, .3]), (2, [.4, .7], [.1, .2]), (3, [.1, .5], [.2, .3]), (4, [.4, .7], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1$ (5, [.1, .5], [.2, .3]) $R(B) = \{(1, [.4, .7], [.1, .3]), (2, [.5, .8], [.1, .2]), (3, [.4, .7], [.1, .3]), (4, [.5, .8], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .$ (5, [.4, .7], [.1, .3]). $\Box \underline{R}(A) = \{(1, [.1, .3], [.3, .7]), (2, [.3, .6], [.2, .4]), (3, [.1, .3], [.3, .7]), (4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.2, .4]), (.4, [.3, .6], [.3, .6], [.3, .6]), (.4, .6], (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4, .4), (.4,$ (5, [.1, .3], [.3, .7]) $\Box \overline{R}(A) = \{(1, [.4, .5], [.2, .5]), (2, [.5, .7], [.1, .3]), (3, [.4, .5], [.2, .5]), (4, [.5, .7], [.1, .3]), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), (.1, .3), ($ (5, [.4, .5], [.2, .5]). $\Diamond \underline{R}(A) = \{(1, [.1, .5], [.3, .5]), (2, [.3, .7], [.2, .3]), (3, [.1, .5], [.3, .5]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.2, .3]), (4, [.3, .7], [.3, .3]), (4, [.3, .7], [.3, .3]), (4, [.3, .7], [.3, .3]), (4, [.3, .7], [.3, .3]), (4, [.3, .7], [.3, .3]), (4, [.$ (5, [.1, .5], [.3, .5]) $\Diamond \overline{R}(A) = \{(1, [.4, .6], [.2, .4]), (2, [.5, .7], [.1, .3]), (3, [.4, .6], [.2, .4]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.5, .7], [.1, .3]), (4, [.$ (5, [.4, .6], [.2, .4]). $\Box \underline{R}(B) = \{(1, [.1, .5], [.2, .5]), (2, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.1, .5], [.2, .5]), (4, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.1, .3]), (3, [.4, .7], [.4, .7], [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7], [.4, .7]), (3, [.4, .7$ (5, [.1, .5], [.2, .5]) $\Box \overline{R}(B) = \{(1, [[.4, .7], [.1, .3]), (2, [.5, .8], [.1, .2]), (3, [.4, .7], [.1, .3]), (4, [.5, .8], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2),$ (5, [.4, .7], [.1, .3]). $\Diamond \underline{R}(B) = \{(1, [.1, .7], [.2, .3]), (2, [.4, .8], [.1, .2]), (3, [.1, .7], [.2, .3]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .8], [.1, .2]), (4, [.4, .4]), (4, [.4, .4]), (4, [.4, .4]), (4, [.4, .4]), (4, [.4, .4]), (4, [.4, .4]), (4, [.4, .4]), (4, [.4, .4]), (4, [.4, .4$ (5, [.1, .7], [.2, .3]) $\Diamond \overline{R}(B) = \{(1, [.4, .7], [.1, .3]), (2, [.5, .8], [.1, .2]), (3, [.4, .7], [.1, .3]), (4, [.5, .8], [.1, .2]), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), (.1, .2), ($ (5, [.4, .7], [.1, .3]). For theorem 3 $\underline{R}(A)\$\underline{R}(B) = \{(1, [.1, .39], [.24, .39]), (2, [.35, .65], [.14, .24]), (3, [.1, .39], [.24, .39]), (.1, .39], [.24, .39], (.1, .39], [.24, .39], (.1, .39], [.24, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], ($ $\overline{(4, [.35, .65], [.14, .24])}, (5, [.1, .39], [.24, .39])\}$ $\Box(\underline{R}(A)\underline{\$R}(B)) = \{(1, [.1, .39], [.24, .61]), (2, [.35, .65], [.14, .35]), (3, [.1, .39], [.24, .61]), (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], [.24, .61], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1, .39], (.1,$ (4, [.35, .65], [.14, .35]), (5, [.1, .39], [.24, .61])(4, [.35, .65], [.14, .35]), (5, [.1, .39], [.24, .59]) $\overline{R}(A)$ $\overline{R}(B) = \{(1, [.4, .59], [.14, .35]), (2, [.5, .75], [.1, .24]), (3, [.4, .59], [.14, .35]), (.14, .35], (.14, .35], (.14, .35]), (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .35], (.14, .$ (4, [.5, .75], [.1, .24]), (5, [.4, .59], [.14, .35]) $\Box(\overline{R}(A)\$\overline{R}(B)) = \{(1, [.4, .59], [.14, .41]), (2, [.5, .75], [.1, .25]), (3, [.4, .59], [.14, .41]), (.14, .41], (.14, .41]), (.14, .41], (.14, .41]), (.14, .41], (.14, .41], (.14, .41]), (.14, .41], (.14, .41]), (.14, .41], (.14, .41]), (.14, .41], (.14, .41]), (.14, .41], (.14, .41]), (.14, .41], (.14, .41]), (.14, .41])$ (4, [.5, .75], [.1, .25]), (5, [.4, .59], [.14, .41]) $\Box(\overline{R}(A) \square \overline{R}(B)) = \{(1, [.4, .59], [.14, .39]), (2, [.5, .75], [.1, .24]), (3, [.4, .59], [.14, .39]), (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .39], (.4, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59], [.14, .59]$ (4, [.5, .75], [.1, .24]), (5, [.4, .59], [.14, .39]) $\therefore \Box(R(A)\$R(B)) \neq \Box R(A)\$\Box R(B)$ For theorem 4 $\Diamond(\underline{R}(A) \$ \underline{R}(B)) = \{(1, [.1, .61], [.24, .39]), (2, [.35, .76], [.14, .24]), (3, [.1, .61], [.24, .39]), (.1, .61], [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1, .61), [.24, .39], (.1$ (4, [.35, .76], [.14, .24]), (5, [.1, .61], [.24, .39]) $\Diamond(\underline{R}(A) \\ \exists \underline{R}(B)) = \{(1, [.1, .59], [.24, .39]), (2, [.35, .75], [.14, .24]), (3, [.1, .59], [.24, .39]), (.1, .59], [.24, .39], (.1, .59], [.24, .39], (.1, .59], [.24, .39], (.1, .59], [.24, .39], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1, .59], (.1,$

 $(4, [.35, .65], [.14, .35]), (5, [.1, .59], [.24, .39])\}$

 $\langle (\overline{R}(A) \$ \overline{R}(B)) = \{(1, [.4, .65], [.14, .35]), (2, [.5, .76], [.1, .24]), (3, [.4, .65], [.14, .35]), (2, [.5, .76], [.1, .24]), (3, [.4, .65], [.14, .35]), (2, [.5, .76], [.1, .24]), (3, [.4, .65], [.14, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .35]), (3, [.4, .$ (4, [.5, .76], [.1, .24]), (5, [.4, .65], [.14, .35]) $\Diamond(\overline{R}(A) \square \overline{R}(B)) = \{(1, [.4, .65], [.14, .35]), (2, [.5, .75], [.1, .24]), (3, [.4, .65], [.14, .35]), (.4, .65], [.14, .35], (.4, .65], [.14, .35], (.4, .65], [.14, .35], (.4, .65], [.14, .35], (.4, .65], [.14, .35], (.4, .65], [.14, .35], (.4, .65], [.14, .35], (.4, .65], [.14, .35], (.4, .65], (.4, .65], [.14, .35], (.4, .65], (.4$ (4, [.5, .75], [.1, .24]), (5, [.4, .65], [.14, .35]) $\therefore \Diamond (R(A) \$ R(B)) \neq \Diamond R(A) \$ \Diamond R(B)$ For theorem 5 $R(A) \# R(B) = \{ (1, [.1, .38], [.24, .38]), (2, [.34, .65], [.13, .24]), (3, [.1, .38], [.24, .38]), (.1, .38], [.24, .38] \} \}$ (4, [.34, .65], [.13, .24]), (5, [.1, .38], [.24, .38]) $\Box(\underline{R}(A) \# \underline{R}(B)) = \{(1, [.1, .38], [.24, .62]), (2, [.34, .65], [.13, .35]), (3, [.1, .38], [.24, .62]), (.1, .38], [.24, .62], (.1, .38], [.24, .62], (.1, .38], [.24, .62], (.1, .38], [.24, .62], (.1, .38], (.1, .$ $(4, [.34, .65], [.13, .35]), (5, [.1, .38], [.24, .62])\}$ $\Box \underline{R}(A) \# \Box \underline{R}(B) = \{ (1, [.1, .38], [.24, .58]), (2, [.34, .65], [.13, .34]), (3, [.1, .38], [.24, .58]), (.1, .38], [.24, .58] \} \}$ (4, [.34, .65], [.13, .34]), (5, [.1, .38], [.24, .58])) $\overline{R}(A) \# \overline{R}(B) = \{ (1, [.4, .58], [.13, .34]), (2, [.5, .75], [.1, .24]), (3, [.4, .58], [.13, .34]), (.4, .58), [.13, .34] \} \}$ (4, [.5, .75], [.1, .24]), (5, [.4, .58], [.13, .34]) $\Box(\overline{R}(A)\#\overline{R}(B)) = \{(1, [.4, .58], [.13, .42]), (2, [.5, .75], [.1, .25]), (3, [.4, .58], [.13, .42]), (.4, .58), [.13, .42], (.4, .58), [.13, .42], (.4, .58), [.13, .42], (.4, .58), [.13, .42], (.4, .58), [.13, .42], (.4, .58), [.13, .42], (.4, .58), [.4, .58), [.4, .58], [.4, .58], [.4, .58], [.4, .58], [.4, .58], [.4, .58], [.5, .57], [.4, .58], [.5, .57$ (4, [.5, .75], [.1, .25]), (5, [.4, .58], [.13, .42]) $\Box \overline{R}(A) \# \Box \overline{R}(B) = \{(1, [.4, .58], [.13, .38]), (2, [.5, .75], [.1, .24]), (3, [.4, .58], [.13, .38]), (2, [.5, .75], [.1, .24]), (3, [.4, .58], [.13, .38]), (2, [.5, .75], [.1, .24]), (3, [.4, .58], [.13, .38]), (3, [.4, .58], [.13, .58], [.13, .58]), (3, [.4, .58], [.13, .58], [.13, .58]), (3, [.4, .58], [.13, .58], [.13, .58]), (3, [.4, .58], [.13, .58], [.13, .58]), (3, [.4, .58], [.13, .$ (4, [.5, .75], [.1, .24]), (5, [.4, .58], [.13, .38]) $\therefore \Box(R(A) \# R(B)) \neq \Box R(A) \# \Box R(B)$ For theorem 6 $\Diamond(\underline{R}(A) \# \underline{R}(B)) = \{(1, [.1, .62], [.24, .38]), (2, [.34, .76], [.13, .24]), (3, [.1, .62], [.24, .38]), (3, [.24, .38])$ (4, [.34, .76], [.13, .24]), (5, [.1, .62], [.24, .38]) $\Diamond \underline{R}(A) \# \Box \underline{R}(B) = \{(1, [.1, .58], [.24, .38]), (2, [.34, .75], [.13, .24]), (3, [.1, .58], [.24, .38]), (.1, .58], [.24, .38], (.1, .58), [.24, .38], (.1, .58), [.24, .38], (.1, .58), [.24, .38], (.1, .58), (.1,$ (4, [.34, .75], [.13, .24]), (5, [.1, .58], [.24, .38]) $\langle (\overline{R}(A) \# \overline{R}(B)) = \{ (1, [.4, .66], [.13, .34]), (2, [.5, .76], [.1, .24]), (3, [.4, .66], [.13, .34]), (.4, .66), [.13, .34] \}$ (4, [.5, .76], [.1, .24]), (5, [.4, .66], [.13, .34]) $\langle \overline{R}(A) \# \Box \overline{R}(B) = \{ (1, [.4, .65], [.13, .34]), (2, [.5, .75], [.1, .24]), (3, [.4, .65], [.13, .34]), (.4, .65], [.13, .34] \} \}$ (4, [.5, .75], [.1, .24]), (5, [.4, .65], [.13, .34]) $\therefore \Diamond (R(A) \# R(B)) \neq \Diamond R(A) \# \Diamond R(B)$

Example 3.11. Let us give an example where interval-valued intutionistic fuzzy concept and rough concept appear together. Let us consider the universal set of all faculties in colleges in a state. We define $_xR_y$ if and only if x and y belong to the same college. Then obviously this is an equivalence relation and decomposes the set of faculties into equivalence classes, which are colleges in the state.

Let us now define two interval-valued intuitionistic fuzzy sets G and Y over the universe as the set of "good faculty" and "young faculty" respectively. These two concepts can be defined through interval-valued intuitionistic fuzzy sets. For example a faculty x can be considered as a member of G as (x, [.4, .6], [.2, .4]) and the same faculty can be defined as a member of Y as (x, [.2, .5], [.1, .4]). Then the following four cases arise.

Case I- If $\underline{R}(G) = \underline{R}(Y)$ then the colleges for which all the faculties are good also have all the faculties young.

Case II- Let $\underline{R}(G)$ and $\underline{R}(Y)$ are ϕ or not ϕ together then either there is no college which contain all good faculty or young faculty or there are some colleges which contain all good faculties or all young faculties. Unlike case-I, here the set of colleges may not be same.

Case III- If $\overline{R}(G) = \overline{R}(Y)$ then the set of colleges which have at least one good faculty is same as the set of colleges which have at least one young faculty.

Case IV- If $\underline{R}(G)$ and $\underline{R}(Y)$ are U or not U together. If both are U then all the colleges have at least one good faculty as well as at least one young faculty. If both are not U it implies there are some colleges which do not have any young faculty and there some colleges which do not have any good faculty. Unlike case- III, here the same colleges may not have this feature.

4. Conclusions

In this paper we combine two different theories rough set theory and intervalvalued intuitionistic fuzzy set theory and define the notion of rough interval-valued intuitionistic fuzzy sets. Just like rough set theory, interval-valued intuitionistic fuzzy set theory addresses the topic of dealing with imperfect knowledge. Recent investigations have shown how both theories can be combined into a more flexible, more impressive framework for modeling and processing incomplete information in information systems.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] K. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (1989) 343–349.
- M. Bhowmik and M. Pal, Some results on generalized interval-valued intuitionistic fuzzy sets, Int. J. Fuzzy Syst. 14(2) (2012) 193–203.
- [4] D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (1990) 191–209.
- [5] M. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987) 1–17.
- [6] E. Hesameddini, M. Jafarzadeh and H. Latifizadeh, Rough set theory for the intuitionistic fuzzy information systems, International Journal of Modern Mathematical Sciences 6(3) (2013) 132–143.
- [7] Z. Pawlak, Rough sets, International Journal of Computing and Information Sciences 11 (1982) 341–356.
- [8] S. Rizvi, H. J. Naqvi and D. Nadeem, Rough intuitionistic fuzzy sets, in Proceeding of the 6th Joint Conference on information Sciences, Durham, NC, JCTS (2002) 101–104.
- [9] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

$\underline{\text{Anjan Mukherjee}}$ (anjan2002_m@yahoo.co.in)

Department of Mathematics, Tripura University Suryamaninagar, Agartala-799022, Tripura, India

MITHUN DATTA (mithunagt007@gmail.com)

Department of Mathematics, Tripura University Suryamaninagar, Agartala-799022, Tripura, India