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Abstract. In the present paper, we have proposed new similarity mea-
sures for intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy
sets based on ‘NTV’ metric along with their weighted form. The pro-
posed similarity measures have been analogously extended to obtain new
entropies for intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy
sets along with their proofs of validity. A new algorithm for multi-criteria
group decision making has been provided using the proposed weighted sim-
ilarity measure in which the weights have been calculated using the pro-
posed entropies. Further, numerical example for illustrating the proposed
methodology has also been provided by taking interval-valued intuitionistic
fuzzy sets.
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1. Introduction

Intuitionistic fuzzy set (IFS), developed by Atanassov [1] is a controlling tool to
deal with vagueness and uncertainty. A prominent characteristic of IFS is that it
assigns to each element a membership degree and a non-membership degree with
certain amount of hesitation degree, and thus, the IFS constitutes an extension of
Zadeh’s fuzzy set [40], which only assigns to each element a membership degree.
Intuitionistic fuzzy sets can be useful in situations when description of a problem
by a (fuzzy) linguistic variable, given in terms of a membership function only, seems
insufficient to give best result. Atanassov [2, 3] and many other researchers [22, 8]
studied different properties of IFSs in decision making problems, particularly in the
case of medical diagnosis, sales analysis, new product marketing, financial services,
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etc. Further, Atanassov and Gargov [4] introduced the concept of interval-valued
intuitionistic fuzzy sets (IVIFS) and studied various properties. It may be noted that
the entropy and similarity measures are two important concepts in the field of fuzzy
set theory and are widely investigated by many researchers from different point of
view. The similarity measure of IFSs indicates the degree of similarity between two
IFSs and plays a significant role in many applications such as pattern recognition,
approximate reasoning and decision making.

Vlachos and Sergiadis [25] extended the De Luca and Termini’s [9] non-probabilistic
entropy for fuzzy sets in the study of the intuitionistic fuzzy information measure.
Burillo and Bustince [6] introduced the notions of entropy of IFSs and interval-valued
fuzzy sets (IVFS) to measure the degree of intuitionism of an IFS and IVFS, respec-
tively. Hung and Yang [13] gave their axiomatic definitions and characterization of
entropy of IFSs and IVFSs with the help of probability theory. Li and Cheng [10]
proposed some similarity measures on IFSs and applied them in pattern recognition
problems. Further, Liang and Shi [16] pointed out the drawbacks of Li and Cheng’s
methods and to overcome them, they proposed several new similarity measures and
also discussed relationships between these measures. Further, Szmidt and Kacprzyk
[24] defined a similarity measure using distance measure of IFSs and applied these
measures in group decision making problems and medical diagnostic reasoning. Xu
[29] defined some similarity measures for IVIFSs and applied these similarity mea-
sures in pattern recognitions. Hung and Yang [12] presented a similarity measure
of IFSs based on Hausdorff metric and applied it to pattern recognition problems.
In the study of fuzzy sets, Wang [26] defined two similarity measures and Pappis
and Karacapilidis [19] defined three kinds of similarity measures. Hung and Yang
[14] extend these similarity measures from the fuzzy sets to IFSs. Further, Xu [35]
generalized some formulas of similarity measures of IFSs to IVIFSs. Zeng and Guo
[41] proved that some similarity measures and entropies of IVFSs can be deduced
by normalized distances of IVFSs based on their axiomatic definitions. Zeng and
Li [42], Zhang et al. [44] showed that similarity measures and entropies of IVFSs
can be obtained by the transformation from each other. Zeng et al. [43] put for-
ward some entropy formulas of IFSs according to the relationship between entropies
and similarity measures of IFSs. Later on, Cui-Ping Wei et al. [27] proposed the
entropy for the IVIFSs and obtained the similarity measure for the IVIFSs on the
basis of proposed entropy. Xu and Yager [37] developed some geometric aggrega-
tion operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator,
the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator and the in-
tuitionistic fuzzy hybrid geometric (IFHG) operator, and gave an application of
the IFHG operator to multi-criteria decision-making problems with intuitionistic
fuzzy information. Xu [30] developed some arithmetic aggregation operators, such
as the intuitionistic fuzzy weighted averaging (IFWA) operator, the intuitionistic
fuzzy ordered weighted averaging (IFOWA) operator and the intuitionistic fuzzy
hybrid aggregation (IFHA) operator (for more detail we refer [32]). Xu [31] de-
fined the concept of interval-valued intuitionistic fuzzy number (IVIFN), and gave
some basic operational laws of IVIFNs. He put forward an interval-valued intuition-
istic fuzzy weighted averaging operator and an interval-valued intuitionistic fuzzy
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weighted geometric operator, and defines the score function and the accuracy func-
tion of IVIFNs. Xu and Chen [33] developed some arithmetic aggregation operators,
such as the interval-valued intuitionistic fuzzy weighted averaging (IIFWA) opera-
tor, the interval-valued intuitionistic fuzzy ordered weighted averaging (IIFOWA)
operator and the interval-valued intuitionistic fuzzy hybrid aggregation (IIFHA)
operator, and gave an application of the IIFHA operator to multi-criteria decision-
making problems with interval-valued intuitionistic fuzzy information by using the
score function and accuracy function of interval-valued intuitionistic fuzzy numbers.
Xu and Chen [34] investigate an interval-valued intuitionistic fuzzy ordered weighted
geometric operator and an interval-valued intuitionistic fuzzy hybrid geometric oper-
ator. Xu and Yager [38] extended the intuitionistic fuzzy Bonferroni means (IFBMs)
to accommodate interval-valued intuitionistic fuzzy environments.

In the present paper, we study some basic definitions related to the intuitionistic
fuzzy sets and the interval-valued intuitionistic fuzzy sets in section 2. New similarity
measures for intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets
based on ‘NTV’ metric along with their weighted form have been proposed in section
3. The proposed similarity measures have also been analogously extended to obtain
new intuitionistic fuzzy entropies for intuitionistic fuzzy sets and interval-valued
intuitionistic fuzzy sets with the proof of their validity in section 4. Further, a
new algorithm for multi-criteria group decision making has been provided using the
proposed weighted similarity measures in which the weights have been calculated
using the proposed entropies in section 5. Numerical example by taking interval-
valued intuitionistic fuzzy sets has been illustrated in section 6. Finally, the paper
has been concluded in section 7.

2. Preliminaries

In this section, we present some axiomatic definitions of the intuitionistic fuzzy
set, interval-valued intuitionistic fuzzy set, similarity measure and entropy measure
which are well known in literature.

Definition 2.1 ([1]). Let X be the universe of discourse, then an IFS Ã in X is
given by

Ã = {〈x, µÃ(x), νÃ(x)〉 : x ∈ X},(2.1)

where µÃ : X → [0, 1] and νÃ : X → [0, 1] with the condition 0 ≤ µÃ(x)+νÃ(x) ≤
1, ∀x ∈ X. The numbers µÃ(x) and νÃ(x) denote the degree of membership and non-
membership of an element x in Ã, respectively. For each element x ∈ X, the amount
πÃ(x) = 1 − µÃ(x) − νÃ(x) is called the degree of indeterminacy (hesitation part).
It is the degree of uncertainty whether x belongs to Ã or not. We denote IFS(X)
the set of all the IFSs on X.

Definition 2.2 ([1]). For two IFSs Ã and B̃ the following relations and operations
have been defined as
(P1) Ã ∪ B̃ = {〈x, max{µÃ(x), µB̃(x)}, min{νÃ(x), νB̃(x)}〉|x ∈ X};
(P2) Ã ∩ B̃ = {〈x, min{µÃ(x), µB̃(x)}, max{νÃ(x), νB̃(x)}〉|x ∈ X};
(P3) Ãc = {〈x, νB̃(x), µÃ(x)〉|x ∈ X};
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(P4) Ã ⊆ B̃ ⇔ µÃ(x) ≤ µB̃(x), νÃ(x) ≥ νB̃(x), ∀x ∈ X;
(P5) Ã = B̃ ⇔ µÃ(x) = νB̃(x), νÃ(x) = µB̃(x), ∀x ∈ X.

In many real-world decision problems, the values of the membership function and
the non-membership function in an IFS are difficult to express as exact numbers.
Instead, the ranges of their values can usually be specified. In order to deal such
cases, Atanassov and Gargov [4] generalized the concept of IFS to interval-valued
intuitionistic fuzzy set (IVIFS), and define some basic operational laws of IVIFSs.

Definition 2.3 ([4]). Let X be a universe of discourse and int (0, 1) be the set of
all closed subintervals of the interval [0, 1]. An interval-valued intuitionistic fuzzy
set (IVIFS) Ã∗ in X is an object having the form:

Ã∗ =
{〈

x, mµ

Ã∗
(x), nν

Ã∗
(x)

〉
|x ∈ X

}
where mµ

Ã∗
: X → int (0, 1), nν

Ã∗
: X → int (0, 1), with the condition

0 ≤ sup
(
mµ

Ã∗
(x)

)
+ sup

(
nν

Ã∗
(x)

)
≤ 1, ∀x ∈ X.

Here, the intervals mµ

Ã∗
(x) = [µL

Ã∗
(x), µU

Ã∗
(x)] and nν

Ã∗
= [νL

Ã∗
(x), νU

Ã∗
(x)] de-

note the degree of the membership and the non-membership of an element x be-
longing to IVIFS Ã∗, respectively. For each IVIFS Ã∗ in X, the amount πÃ∗

(x) =[
1− µU

Ã∗
(x)− νU

Ã∗
(x), 1− νL

Ã∗
(x)− νL

Ã∗
(x)

]
, is called the interval-valued intuition-

istic index of x in Ã∗, which is a hesitancy degree of x to Ã∗. It is the degree of
uncertainty whether an element x belongs to Ã∗ or not. We denote IVIFS(X) the
set of all the IVIFSs on X.

Definition 2.4 ([4]). For all x ∈ X and Ã∗, B̃∗ ∈ IVIFS(X), the following rela-
tions and operations have been defined as follows:

(P1) Ã∗ ∪ B̃∗ =
{〈

x, mµ

Ã∗∪B̃∗
(x), nν

Ã∗∪B̃∗
(x)|x ∈ X

〉
|x ∈ X

}
, where

m
µ

Ã∗∪B̃∗
(x) =

[
min

{
inf

(
m

µ

Ã∗
(x)

)
, inf

(
m

µ

B̃∗
(x)

)}
, max

{
sup

(
m

µ

Ã∗
(x)

)
, sup

(
m

µ

B̃∗
(x)

)}]
,

n
ν
Ã∗∪B̃∗

(x) =
[
max

{
inf

(
n

ν
Ã∗

(x)
)

, inf
(

n
ν
B̃∗

(x)
)}

, min
{

sup
(

n
ν
Ã∗

(x)
)

, sup
(

n
ν
B̃∗

(x)
)}]

;

(P2) Ã∗ ∩ B̃∗ =
{〈

x, mµ

Ã∗∩B̃∗
(x), nν

Ã∗∩B̃∗
(x)

〉
|x ∈ X

}
, where

m
µ

Ã∗∩B̃∗
(x) =

[
max

{
inf

(
m

µ

Ã∗
(x)

)
, inf

(
m

µ

B̃∗
(x)

)}
, min

{
sup

(
m

µ

Ã∗
(x)

)
, sup

(
m

µ

B̃∗
(x)

)}]
,

n
ν
Ã∗∩B̃∗

(x) =
[
min

{
inf

(
n

ν
Ã∗

(x)
)

, inf
(

n
ν
B̃∗

(x)
)}

, max
{

sup
(

n
ν
Ã∗

(x)
)

, sup
(

n
ν
B̃∗

(x)
)}]

.

(P3) Ãc
∗ =

{〈
x, [νL

Ã∗
(x), νR

Ã∗
(x)], [µL

Ã∗
(x), µR

Ã∗
(x)]

〉}
;

(P4) Ã∗ ⊆ B̃∗ ⇔ µL
Ã∗

(x) ≤ µL
B̃∗

(x), µU
Ã∗

(x) ≤ µU
B̃∗

, νL
Ã∗

(x) ≥ νL
B̃∗

(x) and
νU

Ã∗
(x) ≥ νU

B̃∗
;

(P5) Ã∗ = B̃∗ ⇔ µL
Ã∗

(x) = µL
B̃∗

(x), µU
Ã∗

(x) = µU
B̃∗

, νL
Ã∗

(x) = νL
B̃∗

(x) and
νU

Ã∗
(x) = νU

B̃∗
.
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Definition 2.5 ([12]). A real-valued function S : IFS(X) × IFS(X) → [0, 1],
is called the similarity measure on IFS(X), if S satisfies the following axiomatic
requirements:

(S1) If Ã is a crisp set, then S(Ã, Ãc) = 0;
(S2) S(Ã, B̃) = 1 ⇔ Ã = B̃ i.e., µÃ(x) = µB̃(x) & νÃ(x) = νB̃(x);
(S3) S(Ã, B̃) = S(B̃, Ã);
(S4) If Ã ⊆ B̃ ⊆ C̃, then S(Ã, C̃) ≤ S(Ã, B̃) and S(Ã, C̃) ≤ S(B̃, C̃).

Definition 2.6 ([29, 35]). A real-valued function S : IVIFS(X)× IVIFS(X) →
[0, 1], is called the similarity measure on IVIFS(X), if S satisfies the following
axiomatic requirements:

(S1) 0 ≤ S(Ã∗, B̃∗) ≤ 1;
(S2) S(Ã∗, B̃∗) = 1 ⇔ Ã∗ = B̃∗;
(S3) S(Ã∗, B̃∗) = S(B̃∗, Ã∗);
(S4) If Ã∗ ⊆ B̃∗ ⊆ C̃∗, thenS(Ã∗, C̃∗) ≤ S(Ã∗, B̃∗) and S(Ã∗, C̃∗) ≤ S(B̃∗, C̃∗).

Apart from similarity measures for IFSs, we have the entropies (information mea-
sures) for intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets. These
entropies play an important role in many fields of research such as pattern recogni-
tion, approximate reasoning, decision making etc.

Definition 2.7 ([23]). A real-valued function E : IFS(X) → [0, 1] is called the
entropy measure on IFS(X), if E satisfies the following properties:

(E1) E(Ã) = 0 ⇔ Ã is crisp set;
(E2) E(Ã) = 1 ⇔ µÃ(x) = νÃ(x), ∀x ∈ X;
(E3) E(Ã) ≤ E(B̃) if Ã is less fuzzy than B̃, i.e., µÃ(x) ≤ µB̃(x) and

νÃ(x) ≥ νB̃(x) for µB̃(x) ≤ νB̃(x) or µÃ(x) ≥ µB̃(x) and νÃ(x) ≤ νB̃(x) for
µB̃(x) ≥ νB̃(x), ∀x ∈ X;

(E4) E(Ã) = E(Ãc), where Ãc is the complement of Ã.

Definition 2.8 ([17]). A real-valued function E : IVIFS(X) → [0, 1] is called the
entropy measure on IVIFS(X), if E satisfies the following properties:

(E1) E(Ã∗) = 0 ⇔ Ã∗ is crisp set;
(E2) E(Ã∗) = 1 ⇔ µL

Ã∗
(x) = µU

Ã∗
(x) and νL

Ã∗
(x) = νU

Ã∗
(x), ∀x ∈ X;

(E3) E(Ã∗) ≤ E(B̃∗) if Ã∗ is less fuzzy than B̃∗, i.e., Ã∗ ⊆ B̃∗, for
µL

B̃∗
(x) ≤ νL

B̃∗
(x) and µU

B̃∗
(x) ≤ νU

B̃∗
(x), or B̃∗ ⊆ Ã∗ for µL

B̃∗
(x) ≥ νL

B̃∗
(x) and

µU
B̃∗

(x) ≥ νU
B̃∗

(x),∀x ∈ X;

(E4) E(Ã∗) = E(Ãc
∗), where Ãc

∗ is the complement of Ã∗.

3. Similarity measures for IFSs and IVIFSs

In this section, we propose similarity measures for IFSs and IVIFSs along with
their weighted form based on the ‘NTV’ metric defined by Neito et al. [18] in a
natural way on In (n-dimensional unit hypercube):
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Consider two n-dimensional vectors p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn)
in In, the distance dNTV (p, q) of p and q is given by

(3.1) dNTV (p, q) =

n∑
i=1

|pi − qi|
n∑

i=1

max {pi, qi}
.

Let Ã = {〈x, µÃ(x), νÃ(x)〉} and B̃ = {〈x, µB̃(x), νB̃(x)〉} are two single-element
IFSs, then we use the distance measure (3.1) to propose a new similarity measure
between Ã and B̃ as follows:

(3.2) S1
NTV (Ã, B̃) = 1−

∣∣µÃ(x)− µB̃(x)
∣∣+ ∣∣νÃ(x)− νB̃(x)

∣∣+ ∣∣πÃ(x)− πB̃(x)
∣∣

max
{
µÃ(x), µB̃(x)

}
+ max

{
νÃ(x), νB̃(x)

}
+ max

{
πÃ(x), πB̃(x)

} .

Also, we know that

|µÃ(x)− µB̃(x)| = max {µÃ(x), µB̃(x)} −min {µÃ(x), µB̃(x)},

|νÃ(x)− νB̃(x)| = max {νÃ(x), νB̃(x)} −min {νÃ(x), νB̃(x)},

|πÃ(x)− πB̃(x)| = max {πÃ(x), πB̃(x)} −min {πÃ(x), πB̃(x)}.
Hence, the similarity measure (3.2) reduces to

(3.3) S1
NTV (Ã, B̃) =

min
{
µÃ(x), µB̃(x)

}
+ min

{
νÃ(x), νB̃(x)

}
+ min

{
πÃ(x), πB̃(x)

}
max

{
µÃ(x), µB̃(x)

}
+ max

{
νÃ(x), νB̃(x)

}
+ max

{
πÃ(x), πB̃(x)

} .

The similarity measure (3.3) is defined for single-element IFS. Further, we de-
fine similarity measure of two IFSs Ã and B̃ under the universe of discourse X =
{x1, x2, . . . , xn}.

Let Ã = {〈xi, µÃ(xi), νÃ(xi)〉|xi ∈ X} and B̃ = {〈xi, µB̃(xi), νB̃(xi)〉|xi ∈ X}
are two IFSs, then similarity measure between Ã and B̃ is defined as
(3.4)

SNTV (Ã, B̃) =
1

n

n∑
i=1

(
min

{
µÃ(xi), µB̃(xi)

}
+ min

{
νÃ(xi), νB̃(xi)

}
+ min

{
πÃ(xi), πB̃(xi)

}
max

{
µÃ(xi), µB̃(xi)

}
+ max

{
νÃ(xi), νB̃(xi)

}
+ max

{
πÃ(xi), πB̃(xi)

}).

Theorem 3.1. The similarity measure between two IFS Ã and B̃ given by (3.4) is
a valid similarity measure.

Proof. In order to prove that (3.4) is a valid similarity measure, we prove the four
properties (S1) to (S4) as listed in definition 2.5.

(S1) By the definition of equality of two IFSs, it is easy to show that
SNTV (Ã, B̃) = 1 if and only if Ã = B̃.

(S2) If Ã is a crisp set, then either µÃ(xi) = 1, νÃ(xi) = 0, πÃ(xi) = 0 or
µÃ(xi) = 0, νÃ(xi) = 1, πÃ(xi) = 0, ∀xi ∈ X.

Moreover, for Ãc, either µÃc(xi) = 0, νÃc(xi) = 1, πÃc(xi) = 0
or µÃc(xi) = 1, νÃc(xi) = 0, πÃc(xi) = 0,∀xi ∈ X;
⇒ SNTV (Ã, Ãc) = 0.

(S3) Let Ã ⊆ B̃ ⊆ C̃, then by the definition 2.2, we have
µÃ(xi) ≤ µB̃(xi) ≤ µC̃(xi), νÃ(xi) ≥ νB̃(xi) ≥ νC̃(xi) and
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πÃ(xi) ≤ πB̃(xi) ≤ πC̃(xi), ∀xi ∈ X which implies
min

{
µÃ(xi), µB̃(xi)

}
= min

{
µÃ(xi), µC̃(xi)

}
;

max
{
µÃ(xi), µB̃(xi)

}
≤ max

{
µÃ(xi), µC̃(xi)

}
;

min
{
νÃ(xi), νB̃(xi)

}
≥ min

{
νÃ(xi), νC̃(xi)

}
;

max
{
νÃ(xi), νB̃(xi)

}
= max

{
νÃ(xi), νC̃(xi)

}
;

min
{
πÃ(xi), πB̃(xi)

}
= min

{
πÃ(xi), πC̃(xi)

}
;

max
{
πÃ(xi), πB̃(xi)

}
≤ max

{
πÃ(xi), πC̃(xi)

}
,

which further implies that
min

{
µÃ(xi), µB̃(xi)

}
max

{
µÃ(xi), µB̃(xi)

} ≥ min
{
µÃ(xi), µC̃(xi)

}
max

{
µÃ(xi), µC̃(xi)

} ;

min
{
νÃ(xi), νB̃(xi)

}
max

{
νÃ(xi), νB̃(xi)

} ≥ min
{
νÃ(xi), νC̃(xi)

}
max

{
νÃ(xi), νC̃(xi)

} ;

min
{
πÃ(xi), πB̃(xi)

}
max

{
πÃ(xi), πB̃(xi)

} ≥ min
{
πÃ(xi), πC̃(xi)

}
max

{
πÃ(xi), πC̃(xi)

} .

Hence, we have
min {µ

Ã
(xi), µ

B̃
(xi)}+min {ν

Ã
(xi), ν

B̃
(xi)}+min {π

Ã
(xi), π

B̃
(xi)}

max {µ
Ã

(xi), µ
B̃

(xi)}+max {ν
Ã

(xi), ν
B̃

(xi)}+max {π
Ã

(xi), π
B̃

(xi)}

≥ min {µ
Ã

(xi), µ
C̃

(xi)}+min {ν
Ã

(xi), ν
C̃

(xi)}+min {π
Ã

(xi), π
C̃

(xi)}
max {µ

Ã
(xi), µ

C̃
(xi)}+max {ν

Ã
(xi), ν

C̃
(xi)}+max {π

Ã
(xi), π

C̃
(xi)} .(3.5)

Similarly,
min

{
µB̃(xi), µC̃(xi)

}
≥ min

{
µÃ(xi), µC̃(xi)

}
;

max
{
µB̃(xi), µC̃(xi)

}
= max

{
µÃ(xi), µC̃(xi)

}
;

min
{
νB̃(xi), νC̃(xi)

}
= min

{
νÃ(xi), νC̃(xi)

}
;

max
{
νB̃(xi), νC̃(xi)

}
≤ max

{
νÃ(xi), νC̃(xi)

}
;

min
{
πB̃(xi), πC̃(xi)

}
≥ min

{
πÃ(xi), πC̃(xi)

}
;

max
{
πB̃(xi), πC̃(xi)

}
= max

{
πÃ(xi), πC̃(xi)

}
,

whcih implies that
min

{
µÃ(xi), µB̃(xi)

}
max

{
µÃ(xi), µB̃(xi)

} ≥ min
{
µÃ(xi), µC̃(xi)

}
max

{
µÃ(xi), µC̃(xi)

} ,

min
{
νÃ(xi), νB̃(xi)

}
max

{
νÃ(xi), νB̃(xi)

} ≥ min
{
νÃ(xi), νC̃(xi)

}
max

{
νÃ(xi), νC̃(xi)

} ,

min
{
πÃ(xi), πB̃(xi)

}
max

{
πÃ(xi), πB̃(xi)

} ≥ min
{
πÃ(xi), πC̃(xi)

}
max

{
πÃ(xi), πC̃(xi)

} .

Hence, we have
min {µ

Ã
(xi), µ

B̃
(xi)}+min {ν

Ã
(xi), ν

B̃
(xi)}+min {π

Ã
(xi), π

B̃
(xi)}

max {µ
Ã

(xi), µ
B̃

(xi)}+max {ν
Ã

(xi), ν
B̃

(xi)}+max {π
Ã

(xi), π
B̃

(xi)}(3.6)

≥ min {µ
Ã

(xi), µ
C̃

(xi)}+min {ν
Ã

(xi), ν
C̃

(xi)}+min {π
Ã

(xi), π
C̃

(xi)}
max {µ

Ã
(xi), µ

C̃
(xi)}+max {ν

Ã
(xi), ν

C̃
(xi)}+max {π

Ã
(xi), π

C̃
(xi)}

From equation (3.5) and (3.6),
SNTV (Ã, B̃) ≥ SNTV (Ã, C̃) and SNTV (B̃, C̃) ≥ SNTV (Ã, C̃).

Therefore, SNTV (Ã, B̃) is a valid similarity measure between IFSs Ã and B̃. �

We associate some weights depending upon importance of the elements of the
universal set to define the weighted form of the similarity measure (3.4). Let

7
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w = (w1, w2, . . . , wn) be the weight vector of the elements xi, i = 1, 2, . . . , n.
We propose the following weighted similarity measure:
(3.7)

SNTV (Ã, B̃) =
n∑

i=1

wi

(
min

{
µÃ(xi), µB̃(xi)

}
+ min

{
νÃ(xi), νB̃(xi)

}
+ min

{
πÃ(xi), πB̃(xi)

}
max

{
µÃ(xi), µB̃(xi)

}
+ max

{
νÃ(xi), νB̃(xi)

}
+ max

{
πÃ(xi), πB̃(xi)

}) ,

where wi ≥ 0 and
n∑

i=1

wi = 1.

Remark 3.2. If w = (1/n, 1/n, . . . , 1/n) , then the weighted similarity measure
(3.7) reduces to the similarity measure (3.4).

Let Ã∗ =
{〈

x,
[
µL

Ã∗
(x), µU

Ã∗
(x)
]
,
[
νL

Ã∗
(x), νU

Ã∗
(x)
]〉
|x ∈ X

}
and

B̃∗ =
{〈

x,
[
µL

B̃∗
(x), µU

B̃∗
(x)
]
,
[
νL

B̃∗
(x), νU

B̃∗
(x)
]〉
|x ∈ X

}
are two IVIFSs.

Analogous to the ‘NTV’ similarity measure for IFS in (3.4), we propose the fol-
lowing similarity measure for IVIFSs:

(3.8) SNTV (Ã∗, B̃∗) =
1
n

n∑
i=1

(
ML(µ, ν) + MU (µ, ν)
NL(µ, ν) + NU (µ, ν)

)
,

and the weighted form of the above similarity measure is given by

(3.9) SNTV (Ã∗, B̃∗) =
n∑

i=1

wi

(
ML(µ, ν) + MU (µ, ν)
NL(µ, ν) + NU (µ, ν)

)
,

where

ML(µ, ν) = min
{

µL
Ã∗

(xi), µL
B̃∗

(xi)
}

+ min
{

νL
Ã∗

(xi), νL
B̃∗

(xi)
}

+ min
{

πL
Ã∗

(xi), πL
B̃∗

(xi)
}

,

NL(µ, ν) = max
{

µL
Ã∗

(xi), µL
B̃∗

(xi)
}

+ max
{

νL
Ã∗

(xi), νL
B̃∗

(xi)
}

+ max
{

πL
Ã∗

(xi), πL
B̃∗

(xi)
}

,

MU (µ, ν) = min
{

µU
Ã∗

(xi), µU
B̃∗

(xi)
}

+ min
{

νU
Ã∗

(xi), νU
B̃∗

(xi)
}

+ min
{

πU
Ã∗

(xi), πU
B̃∗

(xi)
}

,

NU (µ, ν) = max
{

µU
Ã∗

(xi), µU
B̃∗

(xi)
}

+ max
{

νU
Ã∗

(xi), νU
B̃∗

(xi)
}

+ max
{

πU
Ã∗

(xi), πU
B̃∗

(xi)
}

.

Theorem 3.3. The similarity measure between two IVIFSs Ã∗ and B̃∗ given by
(3.8) is a valid similarity measure.

Proof. The proof of the theorem follows on the similar lines as the proof of theorem
3.1. �

8
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4. Entropy measures based on proposed similarity measures

In this section, we introduce entropy measures based on the proposed similarity
measures for IFSs and IVIFSs, respectively. We first recall some entropy formulas
for IFSs.

For an IFS Ã = {〈xi, µÃ(xi), νÃ(xi)〉|xi ∈ X}, Szmidt et al. [23] defined two
kind of cardinalities of Ã. The least cardinality or min-sigma-count of Ã given by

(4.1) min
∑

count(Ã) =
n∑

i=1

µÃ(xi),

and the biggest cardinality or max-sigma-count of Ã given by

(4.2) max
∑

count(Ã) =
n∑

i=1

µÃ(xi)+πÃ(xi).

Using these two cardinalities, Szmidt et al. [23] proposed an entropy measure for Ã
as

(4.3) ESK(Ã) =
1
n

n∑
i=1

max count(Ãi ∩ Ãc
i )

max count(Ãi ∪ Ãc
i )

,

where for each i, Ãi denote the single-element IFS corresponding to the element xi

in X, and described as Ãi = {〈xi, µÃ(xi), νÃ(xi)〉}. Also,

(4.4) Ãi ∩ Ãc
i = {〈xi, min{µÃ(xi), νÃ(xi)}, max{µÃ(xi), νÃ(xi)}〉},

(4.5) Ãi ∪ Ãc
i = {〈xi, max{µÃ(xi), νÃ(xi)}, min{µÃ(xi), νÃ(xi)}〉}.

For an IFS Ã, Wang et al. [26] gave a different entropy formula

(4.6) EWL(Ã) =
1
n

n∑
i=1

min {µÃ(xi), νÃ(xi)}+ πA(xi)
max {νÃ(xi), µÃ(xi)}+ πA(xi)

.

Hung et al. in [11] introduced fuzzy entropy for a vague sets. Using the equivalence
of two theories of vague sets and IFSs [7], Ping Wei et al. [27] transform the fuzzy
entropy formula for a vague set in [11] to an entropy formula for an IFS Ã as

(4.7) EHL(Ã) =
1
n

n∑
i=1

1− |µÃ(xi)− νÃ(xi)|+ πA(xi)
1 + |µÃ(xi)− νÃ(xi|+ πA(xi)

.

Ping Wei et al. [27] also proved that all these entropies given by (4.3), (4.6) and (4.7)
are equivalent. In 1992, Liu [39] find various entropies from the similarity measures
for the fuzzy sets by using the following relation:

(4.8) E(Ã) = S(A, Ac)
9
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Similarly, we propose the entropies formula based on the proposed similarity mea-
sures (3.4) and (3.8) as follows:

(4.9)
ET (Ã) = SNTV (Ã, Ãc)

= 1
n

n∑
i=1

(
min{µÃ(xi), νÃ(xi)}+0.5πÃ(xi)

max{µÃ(xi), νÃ(xi)}+0.5πÃ(xi)

)
and
(4.10)

ET (Ã∗) = 1
n

n∑
i=1

(
min

{
µL

Ã∗
(xi), νL

Ã∗
(xi)

}
+min

{
µU

Ã∗
(xi), νU

Ã∗
(xi)

}
+0.5

(
πL

Ã∗
(xi)+πU

Ã∗
(xi)

)
max

{
µL

Ã∗
(xi), νL

Ã∗
(xi)

}
+max

{
µU

Ã∗
(xi), νL

Ã∗
(xi)

}
+0.5

(
πL

Ã∗
(xi)+πU

Ã∗
(xi)

)
)

.

Theorem 4.1. Entropy measure (4.9) is a valid measure for the IFSs.

Proof. In order to prove that the entropy (4.9) is a valid measure, we will have to satisfy
all the four properties (E1) to (E4) as listed in definition 2.7.

(E1) If Ã is a crisp set, then either µÃ(xi) = 1, νÃ(xi) = 0, πÃ(xi) = 0 or
µÃ(xi) = 0, νÃ(xi) = 1, πÃ(xi) = 0, ∀xi ∈ X.

From this we have S(Ã, Ãc) = 0 ⇒ ET (Ã) = 0.

Conversely, if ET (Ã) = 0, then min {µÃ(xi), νÃ(xi)} + 0.5 × πÃ(xi) = 0, ∀xi ∈ X;
which implies either µÃ(xi) = 1, νÃ(xi) = 0, πÃ(xi) = 0 or
µÃ(xi) = 0, νÃ(xi) = 1, πÃ(xi) = 0, ∀xi ∈ X;

⇒ Ã is a crisp set.
(E2) Let µÃ(xi) = νÃ(xi), ∀xi ∈ X

⇔ µÃc(xi) = νÃ(xi) = µÃ(xi), νÃc(xi) = µÃ(xi) = νÃ(xi),

⇔ Ãc = Ã ⇔ SNTV (Ã, Ãc) = 1 ⇔ ET (Ã) = 1.

(E3) As per the definition, SNTV (Ã, Ãc) = SNTV (Ãc, A) ⇔ ET (Ã) = ET (Ãc).

(E4) Suppose that µB̃(xi) ≤ νB̃(xi) for each xi ∈ X, then Ã ⊆ B̃, i.e.,
µÃ(xi) ≤ µB̃(xi), νÃ(xi) ≥ νB̃(xi);
⇒ µÃ(xi) ≤ µB̃(xi) ≤ νB̃(xi) ≤ νÃ(xi);

⇒ Ã ⊆ B̃ ⊆ B̃c ⊆ Ãc.
Therefore, by definition 2.5 of the similarity measure for IFSs, we have
SNTV (Ã, Ãc) ≤ SNTV (B̃, Ãc) ≤ SNTV (B̃, B̃c).
Similarly, if µÃ(xi) ≥ µB̃(xi), νÃ(xi) ≤ νB̃(xi), for µB̃(xi) ≥ νB̃(xi),
then we have νÃ(xi) ≤ νB̃(xi) ≤ µB̃(xi) ≤ µÃ(xi),

⇒ Ãc ⊆ B̃c ⊆ B̃ ⊆ Ã,
⇒ SNTV (Ãc, Ã) ≤ SNTV (B̃c, Ã) ≤ SNTV (B̃c, B̃),

⇒ SNTV (Ã, Ãc) ≤ SNTV (Ã, B̃c) ≤ SNTV (B̃, B̃c),

⇒ ET (Ã) = SNTV (Ã, Ãc) ≤ SNTV (B̃, B̃c) = ET (B̃),

⇒ ET (Ã) ≤ ET (B̃).

Since ET (Ã) satisfies all the four properties of an entropy measure, therefore, it is a valid
entropy for the IFSs. �

Theorem 4.2. Entropy measure (4.10) is a valid measure for the IVIFSs.

Proof. In order to prove that the entropy (4.10) is a valid measure, we will have to satisfy
all the properties (E1) to (E4) as listed in definition 2.8.

(E1) Let Ã∗ be a crisp set. Then either we have
[µL

Ã∗
(xi), µ

U
Ã∗

(xi)] = [1, 1], [νL
Ã∗

(xi), νU
Ã∗

(xi)] = [0, 0]& [πL
Ã∗

(xi), πU
Ã∗

(xi)] = [0, 0]
or
[µL

Ã∗
(xi), µ

U
Ã∗

(xi)] = [0, 0], [νL
Ã∗

(xi), ν
U
Ã∗

(xi)] = [1, 1]& [πL
Ã∗

(xi), π
U
Ã∗

(xi)] = [0, 0] for

10
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each xi ∈ X.
Hence, we have S(Ã∗, Ãc

∗) = 0 ⇒ ET (Ã∗) = 0.

Conversely, suppose that ET (Ã∗) = 0, then we have

min
{

µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}

+ min
{

µU
Ã∗

(xi), ν
U
Ã∗

(xi)
}

+ 0.5
(
πL

Ã∗
(xi) + πU

Ã∗
(xi)

)
= 0;

Since each term in the above equation is non-negative, therefore,

min
{

µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}

= 0, min
{

µU
Ã∗

(xi), νU
Ã∗

(xi)
}

= 0

and πL
Ã∗

(xi) + πU
Ã∗

(xi) = 0 for each xi ∈ X;

which further implies that Ã∗ is a crisp set.
(E2) If [µL

Ã∗
(x), µU

Ã∗
(x)] = [νL

Ã∗
(x), νU

Ã∗
] for each xi ∈ X, then from equation (4.10) we

obtain ET (Ã∗) = 1.

Conversely, if we suppose that ET (Ã∗) = 1, then we get

min
{

µL
Ã∗

(xi), νL
Ã∗

(xi)
}

+ min
{

µU
Ã∗

(xi), νU
Ã∗

(xi)
}

= max
{

µL
Ã∗

(xi), ν
L
Ã∗

(xi)
}

+ max
{

µU
Ã∗

(xi), νL
Ã∗

(xi)
}

;

which implies that [µL
Ã∗

(x), µU
Ã∗

(x)] = [νL
Ã∗

(x), νU
Ã∗

], ∀xi ∈ X.

(E3) As per the definition, SNTV (Ã∗, Ãc
∗) = SNTV (Ãc

∗, A∗) ⇒ ET (Ã∗) = ET (Ãc
∗).

(E4) Let Ã∗ is less fuzzy than B̃∗, i.e., Ã∗ ⊆ B̃∗
⇒ µL

Ã∗
(xi) ≤ µL

B̃∗
(xi), µ

U
Ã∗

(xi) ≤ µU
B̃∗

(xi)& νL
Ã∗

(xi) ≥ νL
B̃∗

(xi), ν
U
Ã∗

(xi) ≥ νU
B̃∗

(xi)

for µL
B̃∗

(xi) ≤ νL
B̃∗

(xi) and µU
B̃∗

(xi) ≤ νU
B̃∗

(xi),∀xi ∈ X.

Then it follows that µL
Ã∗

(xi) ≤ µL
B̃∗

(xi) ≤ νL
B̃∗

(xi) ≤ νL
Ã∗

(xi)

and µU
Ã∗

(xi) ≤ µU
B̃∗

(xi) ≤ νU
B̃∗

(xi) ≤ νU
Ã∗

(xi),∀xi ∈ X;

⇒ Ã∗ ⊆ B̃∗ ⊆ B̃c
∗ ⊆ Ãc

∗.
Therefore, by the definition of similarity measure of IVIFSs, we have
SNTV (Ã∗, Ãc

∗) ≤ SNTV (B̃∗, Ãc
∗) ≤ SNTV (B̃∗, B̃c

∗).
Similarly, if µL

Ã∗
(xi) ≥ µL

B̃∗
(xi), µU

Ã∗
(xi) ≥ µU

B̃∗
(xi) and νL

Ã∗
(xi) ≤ νL

B̃∗
(xi),

νU
Ã∗

(xi) ≤ νU
B̃∗

(xi) for µL
B̃∗

(xi) ≥ νL
B̃∗

(xi) and µU
B̃∗

(xi) ≥ νU
B̃∗

(xi),∀xi ∈ X;

which follows that νL
Ã∗

(xi) ≤ νL
B̃∗

(xi) ≤ µL
B̃∗

(xi) ≤ µL
Ã∗

(xi)

and νU
Ã∗

(xi) ≤ νU
B̃∗

(xi) ≤ µU
B̃∗

(xi) ≤ µU
Ã∗

(xi),∀xi ∈ X;

⇒ Ãc
∗ ⊆ B̃c

∗ ⊆ B̃∗ ⊆ Ã∗;
⇒ SNTV (Ãc

∗, Ã∗) ≤ SNTV (B̃c
∗, Ã∗) ≤ SNTV (B̃c

∗, B̃∗);

⇒ SNTV (Ã∗, Ãc
∗) ≤ SNTV (Ã∗, B̃c

∗) ≤ SNTV (B̃∗, B̃c
∗);

⇒ ET (Ã∗) = SNTV (Ã∗, Ãc
∗) ≤ SNTV (B̃∗, B̃c

∗) = ET (B̃∗);

⇒ ET (Ã∗) ≤ ET (B̃∗).

Since ET (Ã∗) satisfies all the four properties of an entropy measure, therefore, it is
a valid entropy for the IVIFS.

�

5. Multi-criteria group decision making with IFS and IVIFS

In this section, we present a new method which is based on the proposed weighted sim-
ilarity measures, where the objective weights are calculated using the proposed entropies
to deal with the multiple criteria group decision making (MCDM) problems under the
intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets. Ratings of the alterna-
tives, importance/weights of criteria and importance of decision makers in a group decision
committee are the three most significant factors which can affect on the results of decision
making problems.

11
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Let A = {A1, A2, . . . , Am} be the set of possible alternatives, D = {D1, D2, . . . , Dl}
be the set of decision makers and C = {C1, C2, . . . , Cn} be the set of criteria with which
the performance of alternatives are measured. Assume that the weight information of
the criteria and the decision makers are completely unknown. Let ([aij , bij ] , [cij , dij ])
be the interval-valued intuitionistic fuzzy number, where [aij , bij ] indicates the degree
that alternative Ai satisfies the criterion Cj , [cij , dij ] indicates the degree that alternative
Ai does not satisfies the criterion Cj and [aij , bij ] ⊂ [0, 1], [cij , dij ] ⊂ [0, 1] such that
bij + dij ≤ 1, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Now, we propose the following algorithm to solve the above multi-criteria group decision
making problem:

Step 1: Determine the weights of decision makers in the decision group.
Assume that decision group contains l decision makers. The importance/weights
of the decision makers in the selection committee may not be equal. The im-
portance/weights of decision makers are considered as linguistic variables ex-
pressed by interval-valued intuitionistic fuzzy numbers (IVIFNs). Let Dk =
([ak, bk], [ck, dk]) be an interval-valued intuitionistic fuzzy number for rating of
kth decision maker. Then the subjective weight of kth decision maker can be
defined as:

(5.1) λk =

(
ak + bk + (1− bk − dk)

(
ak

ak+ck

)
+ (1− ak − ck)

(
bk

bk+dk

))
∑l

k=1

(
ak + bk + (1− bk − dk)

(
ak

ak+ck

)
+ (1− ak − ck)

(
bk

bk+dk

))
and

∑l
k=1 λk = 1. The linguistic variables for the importance of the decision

makers are provided in the Table 1. If the importance of all the decision makers
is same namely extremely importance, the rating of the kth decision maker can
be expressed as ([1, 1], [0, 0][0, 0]). Then the weight of each decision maker will
be 1/l.

Step 2: Construct the aggregated interval-valued intuitionistic fuzzy decision matrix by
pulling the individual decision opinions into a group opinions.

Let Dk =
(
r
(k)
ij

)
m×n

is an interval-valued intuitionistic fuzzy decision matrix for

kth (k = 1, 2, . . . , l) decision maker and λ = λ1, λ2, . . . , λl is the weight vector for

decision makers,
∑l

k=1 λk = 1, λk ∈ [0, 1]. In group decision-making process, all
the individual decision opinions need to be fused into group opinions to construct
aggregated interval-valued intuitionistic fuzzy decision matrix. In order to do, we
utilize interval-valued intuitionistic fuzzy weighted average (IIFWA) operator due
to Xu et al. [33] as follows:

rij = IIFWAλ

(
r
(1)
ij , r

(2)
ij , . . . , r

(l)
ij

)
=

([
1−

l∏
k=1

(1− a
(k)
ij )λk , 1−

l∏
k=1

(1− b
(k)
ij )λk

]
,

[
l∏

k=1

(c
(k)
ij )λk ,

l∏
k=1

(d
(k)
ij )λk

])
.(5.2)

The aggregated interval-valued intuitionistic fuzzy decision matrix can be defined
as:

(5.3) D =


r11 r12 · · · r1n

r21 r22 · · · r2n

...
...

. . .
...

rm1 rm2 · · · rmn


12
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Step 3: Determine the aggregated interval-valued intuitionistic fuzzy weights of the criteria
using IIFWA operator.
All criteria may not be assumed to be of equal importance. Let W represents
a set of grades of importance for given criteria’s. In order to obtain W , all the
individual decision maker opinions for the importance of each of criterion need

to be combined. Let w
(k)
j =

([
a
(k)
ij , a

(k)
ij

]
,
[
c
(k)
ij , d

(k)
ij

])
be an IVIFN assigned

to criterion Cj by the kth decision maker. Then the aggregated weights of the
criteria are calculated using the IIFWA operator due to Xu et al. [33] as follows:

wj = IIFWAλ

(
w

(1)
j , w

(2)
j , . . . , w

(l)
j

)
=

([
1−

l∏
k=1

(1− a
(k)
ij )λk , 1−

l∏
k=1

(1− b
(k)
ij )λk

]
,

[
l∏

k=1

(c
(k)
ij )λk ,

l∏
k=1

(d
(k)
ij )λk

])
.(5.4)

The aggregated weights of the criteria can be defined as:
W = [w1, w2, . . . , wn]T , here wj = ([aj , bj ] , [aj , bj ]) , j = 1, 2, . . . , n.

Step 4: Construct the aggregated weighted interval-valued intuitionistic fuzzy decision
matrix.
After the aggregated weights of criteria and the aggregated interval valued intu-
itionistic fuzzy decision matrix are determined, the aggregated weighted interval-
valued intuitionistic fuzzy decision matrix can be defined as follows:

(5.5) D′ = D ⊗W =
(
r′ij
)

m×n
,

where r′ij =
([

a′ij , a′ij
]
,
[
c′ij , d′ij

])
is an element of the aggregated weighted interval-

valued intuitionistic fuzzy decision matrix.
Step 5: Determine the objective weights of criteria using the proposed interval-valued

intuitionistic fuzzy entropy measure (4.10).
Hwang and Yoon [15] introduced a method based on information entropy to de-
termine the weights of attributes. Rao et al. [20, 21] method also suggested the
calculation of objective weights using entropy. Xu [28] and Xu et al. [36] assigns
a small weight to an attribute with similar attribute values across alternatives
because such attribute does not help in differentiating alternatives. Furthermore,
the method requires all elements in a decision matrix to be normalized to the
range [0, 1] so that each column of the decision matrix sums-to-one.

The entropy of the jth criterion Cj , j = 1, 2, . . . , n for the m available alter-
natives can be obtained from entropy measure (4.10) as follows:

(5.6) Ej =
1

m

m∑
i=1

(
min {aij , cij}+ min {bij , dij}+ (1− (aij + bij + cij + dij)/2)

max {aij , cij}+ max {bij , dij}+ (1− (aij + bij + cij + dij)/2)

)
and the attribute weight wj for each criterion Cj based on entropy value can be
defined as

(5.7) wj =
1− Ej

n−
n∑

j=1

Ej

, j = 1, 2, . . . , n.

Step 6: Obtain the interval-valued intuitionistic fuzzy positive-ideal solution (IVIFPIS)
and the interval-valued intuitionistic fuzzy negative-ideal solution (IVIFNIS).
Let J1 and J2 be benefit criteria and cost criteria, respectively. The interval-valued
intuitionistic fuzzy positive-ideal solution, denoted as A+, and the interval-valued
intuitionistic fuzzy negative-ideal solution, denoted as A− , are defined as follows:

13
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(5.8) A+ =
(([

a+
1 , b+

1

]
,
[
c+
1 , d+

1

])
,
([

a+
2 , b+

2

]
,
[
c+
2 , d+

2

])
, . . . ,

([
a+

n , b+
n

]
,
[
c+

n , d+
n

]))
,

(5.9) A− =
(([

a−1 , b−1
]
,
[
c−1 , d−1

])
,
([

a−2 , b−2
]
,
[
c−2 , d−2

])
, . . . ,

([
a−n , b−n

]
,
[
c−n , d−n

]))
,

where for each j = 1, 2, . . . , n,([
a+

j , b+
j

]
,
[
c+

j , d+
j

])
= (〈[max aij , max bij ] , [min aij , min bij ] |j ∈ J1〉,

〈[min aij , min bij ] , [max aij , max bij ] |j ∈ J2〉)(5.10) ([
a−j , b−j

]
,
[
c−j , d−j

])
= (〈[min aij , min bij ] , [max aij , max bij ] |j ∈ J1〉,

〈[max aij , max bij ] , [min aij , min bij ] |j ∈ J2〉) .(5.11)

Step 7: Calculate the similarity measures of alternatives with the IVIFPIS and IVIFNIS
based on proposed weighted similarity measure (3.9), respectively as follows:
The similarity between alternatives can be found based on the proposed weighted
similarity measure (3.9) as follows:

(5.12) S(Ai, A+) =

n∑
j=1

wj

(
p + q

s + t

)
,

and

(5.13) S(Ai, A−) =

n∑
j=1

wj

(
p′ + q′

s′ + t′

)
,

where

p = min
{
aij , a+

j

}
+ min

{
cij , c+

j

}
+ min

{
1− bij − dij , 1− b+

j − d+
j

}
,

q = min
{
bij , b+

j

}
+ min

{
dij , d+

j

}
+ min

{
1− aij − cij , 1− a+

j − c+
j

}
,

s = max
{
aij , a+

j

}
+ max

{
cij , c+

j

}
+ max

{
1− bij − dij , 1− b+

j − d+
j

}
,

t = max
{
bij , b+

j

}
+ max

{
dij , d+

j

}
+ max

{
1− aij − cij , 1− a+

j − c+
j

}
,

p′ = min
{
aij , a−j

}
+ min

{
cij , c−j

}
+ min

{
1− bij − dij , 1− b−j − d−j

}
,

q′ = min
{
bij , b−j

}
+ min

{
dij , d−j

}
+ min

{
1− aij − cij , 1− a−j − c−j

}
,

s′ = max
{
aij , a−j

}
+ max

{
cij , c−j

}
+ max

{
1− bij − dij , 1− b−j − d−j

}
,

t′ = max
{
bij , b−j

}
+ max

{
dij , d−j

}
+ max

{
1− aij − cij , 1− a−j − c−j

}
,

Step 8: Calculate the relative closeness coefficient to the interval-valued intuitionistic fuzzy
ideal solution.
The relative closeness coefficient of an alternative Ai with respect A+ and A− is
defined as follows:

(5.14) Ci∗ =
S(Ai, A+)

S(Ai, A+) + S(Ai, A−)
, i = 1, 2, . . . , m.

Step 9: Rank all the alternatives.
After the relative closeness coefficient of each alternative is determined, alterna-
tives are ranked according to descending order of Ci∗ ’s and select one that has
largest rank, denoted by Ck∗ among the values Ci∗ , i = 1, 2, . . . , m. Hence, Ci∗

is the best choice.

Remark 5.1. Since the intuitionistic fuzzy set is a particular case of interval-valued intu-
itionistic fuzzy set, therefore above proposed algorithm for IVIFSs may similarly be outline
for IFSs. For this, we will have to make the following changes:
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• In step 1, the subjective weight given by the equation (5.1) will be replaced by the
weight as suggested in Boran [5].

• In step 2 and 3, the interval-valued intuitionistic fuzzy weighted average (IIFWA)
operator [33] will be replaced by the intuitionistic fuzzy weighted average (IFWA)
operator [30].

• In step 5, the entropy measure given by the equation (4.10) will be replaced by
the entropy measure given by the equation (4.9).

• In step 5, the weighted similarity measure given by the equation (3.9) will be
replaced by the weighted similarity measure given by the equation (3.7).

Table 1. The importance of decision makers and their weights.

DM1 DM2 DM3

linguistic terms Very Important Medium Important
Weight 0.393 0.236 0.372

Table 2. Linguistic terms for rating the importance of criteria and
the decision makers

Linguistic terms IFNs IVIFNs

Very Important (VI) (0.90, 0.10) ([0.90, 0.95], [0.00, 0.05])
Important (I) (0.85, 0.10) ([0.85, 0.90], [0.05, 0.10])
Medium (M) (0.50, 0.40) ([0.50, 0.55], [0.35, 0.40])
Unimportant (U) (0.20, 0.70) ([0.20, 0.25], [0.65, 0.70])
Very Unimportant (VU) (0.05, 0.90) ([0.05, 0.10], [0.85, 0.90])

Table 3. Linguistic terms for rating the alternatives

Linguistic terms IFNs IVIFNs

Extremely Good (EG)/Extremely High (EH) (0.95, 0.05) ([0.90, 95.00], [0.00, 0.05])
Very Very Good (VVG)/Very Very High (VVH) (0.85, 0.10) ([0.85, 0.90], [0.05, 0.10])
Very good (VG)/Very High (VH) (0.80, 0.15) ([0.80, 0.85], [0.10, 0.15])
Good (G)/High (H) (0.75, 0.20) ([0.75, 0.80], [0.15, 0.20])
Medium Good (MG)/Medium High (MH) (0.60, 0.25) ([0.60, 0.65], [0.20, 0.25])
Fair (F)/Medium (M) (0.50, 0.35) ([0.50, 0.55], [0.30, 0.35])
Medium Poor (MP)/Medium Low (ML) (0.40, 0.55) ([0.40, 0.45], [0.50, 0.55])
Poor (P)/Low (L) (0.30, 0.65) ([0.30, 0.35], [0.60, 0.65])
Very Poor (VP)/Very Low (VL) (0.20, 0.75) ([0.20, 0.25], [0.70, 0.75])
Very Very Poor (VVP)/Very Very Low (VVL) (0.10, 0.85) ([0.10, 0.15], [0.80, 0.85])

6. Numerical examples

Example 6.1. An automobile company desires to select the most appropriate supplier for
one of the key elements in its manufacturing process. After pre-evaluation, five suppliers
(A1, A2, A3, A4, A5) have remained as alternatives for further evaluation. In order to
evaluate alternative suppliers, a committee of three decision makers DM1, DM2 and DM3

has been formed. Four criteria are considered as:
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• X1: Product quality.
• X2: Relationship closeness.
• X3: Delivery performance.
• X4: Price.

The proposed method is currently applied to solve this problem and the computational
procedure is as follows:

Importance degree of the decision makers on group decision is shown in Table 1. Lin-
guistic terms used for the ratings of the decision makers and criteria are given in Table 2.
In order to obtain the weights of the decision makers, Equation 5.1 is utilized:

λDM1 = 0.393, λDM2 = 0.372, λDM2 = 0.236.

Now the aggregated interval-valued intuitionistic fuzzy decision matrix based on the
opinions of decision makers is constructed using IIFWA operator. The linguistic terms
shown in Table 3 are used to rate each alternative supplier with respect to each criterion
by three decision makers. The ratings given by the decision makers to five alternatives is
shown in Table 4.

Table 4. The rating the alternatives

Criteria Suppliers Decisions makers Criteria Suppliers Decisions makers

DM1 DM2 DM3 DM1 DM2 DM3

X1 A1 G G G X3 A1 VG G VG
A2 MG G F A2 G MG MG
A3 VVG VG VG A3 VG VG G

A4 MG G G A4 VG G G
A5 F MG MG A5 G G MG

X2 A1 MG G MG X4 A1 H H H
A2 F MG G A2 MH M MH

A3 VG G VG A3 VH VH H

A4 F F MG A4 H MH MH
A5 MP F F A5 M MH M

Table 5. The importance weight of the criteria

Criteria DM1 DM2 DM3

X1 VI VI I
X2 I I I

X3 I I M
X4 M I M

The aggregated interval-valued intuitionistic fuzzy decision matrix based on aggregation
of decision makers opinions is constructed shown in Matrix representation A.

The importance weights of the criteria provided by decision makers can be linguistic
terms. These linguistic terms is represented as interval-valued intuitionistic fuzzy numbers
in Table 5 and opinions of decision makers on criteria are aggregated using Equation 5.4
to determine the aggregated weights of criteria. The interval-valued intuitionistic fuzzy
weights of criteria after aggregation of opinions of decision makers is:

W =


([0.884, 0.936], [0.000, 0.065])
([0.850, 0.900], [0.050, 0.100])
([0.766, 0.825], [0.103, 0.167])
([0.624, 0.685], [0.221, 0.288])


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After the weights of the criteria and the rating of the alternatives has been determined,
the aggregated weighted interval-valued intuitionistic fuzzy decision matrix is constructed
utilizing Equation 5.5 shown in Matrix representation B.

The entropy of the jth criterion Xj , j = 1, 2, . . . , 4 for the available alternatives can be
obtained from entropy measure (4.10). The objectives weights of criteria based on entropy
are w1 = 0.359, w2 = 0.230, w3 = 0.303, w4 = 0.108.

Product quality, relationship closeness and delivery performance are benefit criteria
J1 = {X1, X2, X3} and price is cost criteria J2 = {X4}. Then interval-valued intuitionistic
fuzzy positive-ideal solution and interval-valued intuitionistic fuzzy negative ideal solution
are

A+ = {([0.726, 0.816], [0.076, 0.184]), ([0.671, 0.756], [0.154, 0.244]),

([0.605, 0.693], [0.201, 0.301]), ([0.328, 0.395], [0.433, 0.518])}

and

A− = {([0.498, 0.575], [0.234, 0.331]), ([0.394, 0.462], [0.398, 0.476]),

([0.511, 0.594], [0.263, 0.358]), ([0.489, 0.571], [0.311, 0.407])} .

Similarity of each alternative with the IVIFPIS and IVIFPIN based on proposed weighted
similarity measure (3.9) is calculated in Table 6.

Table 6. Similarities with the IVIFPIS and IVIFPIN

Alternatives S+ S−

A1 0.873 0.772
A2 0.769 0.883
A3 0.966 0.711
A4 0.818 0.818
A5 0.722 0.953

Finally, using Equation 5.14, the value of relative closeness of each alternative for the
final ranking is shown in Table 6.

Table 7. Relative closeness coefficient

Alternatives Ci∗

A1 0.531
A2 0.465
A3 0.576
A4 0.500
A5 0.431

Thus, the preference order of alternatives is A1, A2, A3, A4 and A5 according to de-
creasing order of Ci∗ is

A3 > A1 > A4 > A2 > A5.
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7. Conclusions

The proposed new similarity measures for intuitionistic fuzzy sets and interval-valued
intuitionistic fuzzy sets based on ‘NTV’ metric along with their weighted form are valid
similarity measures. The new intuitionistic fuzzy entropies for intuitionistic fuzzy sets
and interval-valued intuitionistic fuzzy sets analogously obtained through the proposed
similarity measures are also valid information measures. Further, a new algorithm for
MCDM using the proposed weighted similarity measures in which the weights have been
calculated using the proposed entropies, has been illustrated through a numerical example.
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[5] F. M. Boran, S. Genç, M. Kurt and D. Akay, A multi-criteria intuitionistic fuzzy group decision

making for supplier selection with TOPSIS method, Expert Systems with Applications 36(8)

(2009) 11363–11368.
[6] P. Burillo and H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy

sets, Fuzzy Sets and Systems 78(3) (1996) 305–316.
[7] H. Bustince and P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets and Systems

79(3) (1996) 403–405.
[8] S. K. De, R. Biswas and A. R. Roy, An application of intuitionistic fuzzy sets in medical

diagnosis, Fuzzy Sets and Systems 117 (2001) 209–213.
[9] A. Deluca and S. Termini, A definition of a non-probabilistic entropy in the setting of fuzzy

sets theory, Information and Control 20(4) (1972) 301–312.
[10] L. Dengfeng and C. Chuntain, New similarity measures of intuitionistic fuzzy sets and appli-

cation to pattern recognition, Pattern Recognition Letters 23(1–3) (2002) 221–225.
[11] G. S. Hung and Y. S. Liu, The fuzzy entropy of vague sets based on non-fuzzy sets, Computer

Engineering and Applications 22 (2005) 16–17.
[12] W. L. Hung and M. S. Yang, Similarity measures of intuitionistic fuzzy sets based on Hausdorff

distance, Pattern Recognition Letters 25(14) (2004) 1603–1611.
[13] W. L. Hung and M. S. Yang, Fuzzy entropy on intuitionistic fuzzy sets, International Journal

of Intelligent Systems 21(4) (2006) 443–451.
[14] W. L. Hung and M. S. Yang, On similarity measures between intuitionistic fuzzy sets, Inter-

national Journal of Intelligent Systems 23(3) (2008) 364–383.

[15] C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications,

Springer, Heidelberg, (1981).
[16] Z. Liang and P. Shi, Similarity measures on intuitionistic fuzzy sets, Pattern Recognition

Letters 24(15) (2003) 2687–2693.
[17] X. Liu, S. Zheng and F. Xiong, Entropy and subsethood for general interval-valued intuition-

istic fuzzy sets, Fuzzy Systems and Knowledge Discovery 3613 (2005) 42–52.

[18] J. J. Nieto, A. Torres and M. M. Vzquez-Trasande, A metric space to study differences between

polynucleotides, Appl. Math. Lett. 16(8) (2003) 1289–1294.
[19] C. P. Pappis and N. I. Karacapilidis, A comparative assessment of measures of similarity of

fuzzy values, Fuzzy Sets and Systems 56(2) (1993) 171–174.

19



Tanuj Kumar et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 1, 1–21

[20] R. V. Rao, Decision Making in the Manufacturing Environment using Graph Theory and
Fuzzy Multiple Attribute Decision making methods, Springer-Verlag, London, (2007).

[21] R. V. Rao and D. Singh, Weighted Euclidean distance based approach as a multiple attribute
decision making method for plant or facility layout design selection, International Journal of

Industrial Engineering Computations 3(3) (2012) 365–382

[22] E. Szmidt and J. Kacprzyk, Group decision making under intuitionistic fuzzy preference rela-
tions, Proc. of 7th IPMU Conf. Paris (1998) 172–178.

[23] E. Szmidt and J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets and Systems 118

(2001) 467–477.
[24] E. Szmidt and J. Kacprzyk, A new concept of a similarity measure for intuitionistic fuzzy sets

and its use in group decision making, Modeling Decisions for Artificial Intelligence 3558 (2005)

272–282.
[25] I. K. Vlachos and G. D. Sergiadis, Intuitionistic fuzzy information applications to pattern

recognition, Pattern Recognition Letters 28(2) (2007) 197–206.
[26] W. J. Wang, New similarity measures on fuzzy sets and on elements, Fuzzy Sets and Systems

85(3) (1997) 305–309.
[27] C. P. Wei, P. Wang and Y. Z. Zhang, Entropy, similarity measure of interval-valued intuition-

istic fuzzy sets and their applications, Inform. Sci. 181(19) (2011) 4273–4286.

[28] X. Xu, A note on the subjective and objective integrated approach to determine attribute

weights, European J. Oper. Res. 156(2) (2004) 530–532.
[29] Z. S. Xu, On similarity measures of interval-valued intuitionistic fuzzy sets and their application

to pattern recognitions, J. Southeast Univ. 23 (2007) 139–143.
[30] Z. S. Xu, Intuitionistic fuzzy aggregation opterators, IEEE Transaction of Fuzzy Systems 15(6)

(2007) 1179–1187.

[31] Z. S. Xu, Methods for aggregating interval-valued intuitionistic fuzzy information and their

application to decision making, Control Decis. 22 (2007) 215–219.
[32] Z. S. Xu and X. Cai, Intuitionistic Fuzzy Information Aggregation: Theory and Applications,

Springer, Jointly published with Science Press, (2013).
[33] Z. S. Xu and J. Chen, Approach to group decision making based on interval-valued intuition-

istic judgment matrices, System Engineering Theory & Practice 27(4) (2007) 126–133.

[34] Z. S. Xu and J. Chen, On geometric aggregation over interval-valued intuitionistic fuzzy in-
formation. The 4th International Conference on Fuzzy Systems and Knowledge Discovery

(FSKD07), Haikou, China: (2007) 466–471.
[35] Z. S. Xu and J. Chen, An overview of distance and similarity measures of intuitionistic sets,

Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 16(04) (2008) 529–555.
[36] Z. S. Xu and H. Hui, Entropy-based procedures for intuitionistic fuzzy multiple attribute

decision making, Journal of Systems Engineering and Electronics 20(5) (2009) 1001–1011.
[37] Z. S. Xu and R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy

sets, Int. J. Gen. Syst. 35(4) (2006) 417–433.
[38] Z. S. Xu and R. R. Yager, Intuitionistic fuzzy Bonferroni means, IEEE Transactions on Sys-

tems, Man, and Cybernetics-Part B 41(2) (2011) 568–578.

[39] L. Xuecheng, Entropy, distance measure and similarity measure of fuzzy sets and their rela-
tions, Fuzzy Sets and Systems 52(3) (1992) 305–318.

[40] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–356.

[41] W. Zeng and P. Guo, Normalized distance, similarity measure, inclusion measure and entropy
of interval-valued fuzzy sets and their relationship, Inform. Sci. 178(5) (2008) 1334–1342.

[42] W. Zeng and H. Li, Relationship between similarity measure and entropy of interval-valued

fuzzy sets, Fuzzy Sets and Systems 157(11) (2006) 1477–1484.
[43] W. Zeng, W. Yu, F. Yu, X. Chen, H. Wu and S. Wu, Entropy of intuitionistic fuzzy set

based on similarity measure, International Journal of Innovative Computing, Information and

Control 5 12(A) (2009) 4737–4744.
[44] H. Zhang, W. Zhang and C. Mei, Entropy of interval-valued fuzzy sets based on distance and

its relationship with similarity measure, Knowledge-Based Systems 22(6) (2009) 449–454.

20



Tanuj Kumar et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 1, 1–21

Tanuj Kumar (tanujkhutail@gmail.com)
Department of Mathematics, Jaypee University of Information Technology, Waknaghat,
Solan, Himachal Pradesh, Postal Code– 173234.

Rakesh Kumar Bajaj (rakesh.bajaj@gmail.com)
Department of Mathematics, Jaypee University of Information Technology, Waknaghat,
Solan, Himachal Pradesh, Postal Code– 173234.

21


	 `NTV' metric based entropies of interval-valued intuitionistic fuzzy sets and their applications in decision making . By 

