On induced fuzzy supra-topological spaces

Arafa A. Nasef, R. Mareay

Received 23 March 2013; Revised 31 May 2013; Accepted 28 June 2013

Abstract. The concept of induced fuzzy topological space, introduced by Weiss [J. Math. Anal. Appl. 50(1975), 142-150], was defined with the notion of a lower semi-continuous function. The aim of this paper is to introduce and study the concepts of induced fuzzy supra-topological spaces and s-lower β-continuous functions. s-Lower β-continuous functions turn out to be the natural tool for studying the induced fuzzy supra-topological spaces.

2010 AMS Classification: 54E55, 54C10

Keywords: β-open subset, Lower β-continuity, Supra-topology, Fuzzy supra-continuity, Strong r-cut, Induced fuzzy topological space.

Corresponding Author: Arafa A. Nasef (nasefa50@yahoo.com)

1. Introduction

In 1997 [6], Bhaumik and Mukherjee introduced and studied the concepts of induced fuzzy supra-topological spaces and s-Lower semi-continuous functions. In 1998 [10], Mukherjee defined and studied a new class of fuzzy supra topological space under the name of α-induced fuzzy supra topological space. Moreover, Mukherjee in 2003 [11], introduced the concept of Σ—induced L—fuzzy supra topological space and Scott s-continuity. After the introduction of β-open subsets by Abd El-Monsef et al. [1], various concepts in topological space were introduced with the help of β-open subsets instead of open subsets. In Section 2, the concept of s-lower β-continuous function is introduced by using β-open subsets. Some characterizations and properties of these functions are examined. In Section 3, these functions are used to define a new class of fuzzy supra-topological spaces, called induced fuzzy supra-topological spaces. The fuzzy supra-continuous functions and initial supra-topological spaces are also investigated. The supra-interior and supra-closure of a fuzzy subset μ are denoted, respectively by μ^{*} and μ^{sc} [2].
2. s-Lower β-continuous functions

Definition 2.1. A function $f : (X, \tau) \rightarrow (\mathbb{R}, \sigma)$ from a topological space (X, τ) to usual topology (\mathbb{R}, σ) is said to be s-lower β-continuous (resp. s-upper β-continuous) at $x_0 \in X$ if for each $\epsilon > 0$, there exists a β-open neighbourhood $N(x_0)$ such that $x \in N(x_0)$ implies $f(x) > f(x_0) - \epsilon$ (resp. $f(x) < f(x_0) + \epsilon$)

The following results can easily be proved analogous to the Theorem 2 in [3].

Result 2.2. The necessary and sufficient condition for a real-valued function f to be s-lower β-continuous is that for all $r \in \mathbb{R}$, the set $\{x \in X : f(x) > r\}$ is β-open (or equivalently $\{x \in X : f(x) \leq r\}$ is β-closed).

Result 2.3. The characteristic function of a β-open subset is s-lower β-continuous.

Result 2.4. The sum and product of two s-lower β-continuous functions are not necessarily s-lower β-continuous functions.

Result 2.5. If $\{f_i : j \in J\}$ is an arbitrary family of s-lower β-continuous functions, then the function g, defined by $g(x) = \sup_j f_j(x)$ is s-lower β-continuous.

Remark 2.6. If $f_1, f_2, f_3, ..., f_n$ are s-lower β-continuous functions, then the function h, defined by $h(x) = \inf_{i=1}^n (f_i(x))$, where $i = 1, 2, ..., n$ is not s-lower β-continuous.

Result 2.7. A function f from a topological space (X, τ) into a space (\mathbb{R}, σ_1), where $\sigma_1 = \{\{r, \infty\} : r \in \mathbb{R}\}$ is s-lower β-continuous iff the inverse image of any open subset of (\mathbb{R}, σ_1) is β-open in (X, τ).

Definition 2.8 ([7]). Recall that a function $f : (X, \tau) \rightarrow [0, 1]$ is called Scott continuous (lower β-continuous) at $a \in X$ if for every $\alpha \in [0, 1)$ with $\alpha < f(a)$ there is a neighborhood U of a such that $\alpha < f(x)$ for every $x \in U$. If it is called Scott continuous (or lower semi continuous) on X if f is Scott continuous (or lower semi continuous) at every point of X.

Since every open subset is β-open, we have the following result.

Result 2.9. Every lower β-continuous function is s-lower β-continuous.

The converse of the Result 2.9 is not true which can be seen from the following example.

Example 2.10. Let $X = \{a, b, c, d\}$ and $Y = \{0, 1, 2\}$. Let

$$\tau = \{X, \emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}\} \text{ and } \tau_1 = \{Y, \emptyset, \{2\}\}$$

be the topologies on X and Y, respectively. A function $g : X \rightarrow Y$ is defined by $g(a) = g(d) = 2, g(b) = 1$ and $g(c) = 0$. Now $g^{-1}(0) = \{c\}, g^{-1}(1) = \{b\}$ and $g^{-1}(2) = \{a, d\}$. We observe that $\{a, d\}$ is β-open in (X, τ), since $\{d\} \subseteq \{a, d\} \subseteq \{a, b, d\} = C_1\{d\}$. For all $r \in Y$, by Result 2.2, g is s-lower β-continuous. Since inverse image of the open subset $\{2\}$ of Y is β-open, g is not lower β-continuous.
2.1. **Initial supra-topology.** Finally we shall define an initial supra-topology on X.

Definition 2.11. Let $(X,\varphi(\tau))$ be an induced fuzzy supra-topological space. The family $\{\sigma_r(\alpha) : \alpha \in \varphi(\tau), r \in I\}$ of all β-open subsets of X form a supra-topology on X, called the initial supra-topology on X and is denoted by $i(\varphi)$. $(X, i(\varphi))$ is called the initial supra-topological space. Thus the relation between the initial supra-topology and the corresponding topology τ of $\varphi(\tau)$ is $\tau \subseteq i(\varphi)$.

Example 2.12. Let $X = \{a, b, c, d\}$ and $\tau = \{X, \emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}\}$ be a topology on X. Besides the members of τ, $\{a, d\}$, $\{b, d\}$ and $\{b, c, d\}$ are also β-open subsets in (X, τ).

Now 1_\emptyset, 1_X, $1_{\{c\}}$, $1_{\{d\}}$, $1_{\{c,d\}}$, $1_{\{a,d\}}$, $1_{\{b,d\}}$ and $1_{\{b,c,d\}}$ are s-lower β-continuous, since the characteristic function of a β-open subset is s-lower β-continuous. Thus the collection of all these functions forms an induced fuzzy supra-topology on X. Here $i(\varphi) = \{\emptyset, X, \{c\}, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{b, c, d\}, \{a, c, d\}\}$. Thus $\tau \subseteq i(\varphi)$.

Note. If we take $\beta O(X)$, the family of all β-open subsets of X, then $\beta O(X) = i(\varphi)$.

3. INDUCED FUZZY SUPRA-TOPOLOGICAL SPACE

The notion of supra-topology or pre-topology was due to Garg and Naimpally [8] and that of induced fuzzy topology was due to Weiss [13]. Abd El-Monsef and Ramadan [2] introduced the concept of fuzzy supra-topology as follows: A family $F' \subseteq 1^X$ is called a fuzzy supra-topology on X if $0, 1 \in F'$ and F' is closed under arbitrary union. In this section the notion of induced fuzzy supra-topology is introduced as a generalization of induced fuzzy topology. Its properties and the concepts of fuzzy supra-continuity in induced supra-topological spaces and initial supra-topology are also studied.

3.1. **Induced fuzzy supra-topology and its properties.**

Theorem 3.1. Let (X, τ) be a topological space. The family of all s-lower β-continuous functions from the topological space (X, τ) to the closed unit interval I forms a fuzzy supra-topology on X.

Proof. Let φ be the collection of all s-lower β-continuous functions from the topological space (X, τ) to I. We will now prove that φ is a fuzzy supra-topology on X.

(i) Since X is open, it is β-open and by Result 2.3, 1_x is s-lower β-continuous. Thus $1_x \in \varphi$.

(ii) \emptyset is β-open since it is open in X. Thus 1_\emptyset is s-lower β-continuous, i.e. $1_\emptyset \in \varphi$.

(iii) Let $\{n_j\}$ be an arbitrary family of s-lower β-continuous functions. By Result 2.3, $\text{Sup}\{n_j\}$ is also s-lower β-continuous. Hence $\bigvee n_j \in \varphi$.

283
Thus φ satisfies conditions (i) – (iii) of supra-topology. Hence φ forms a fuzzy supra-topology.

Definition 3.2. The fuzzy supra-topology, obtained as above, is called induced fuzzy supra-topology and the space $(X, \varphi(\tau))$ is called the induced fuzzy supra-topological space. The members of $\varphi(\tau)$ are called fuzzy supra-open subsets.

Theorem 3.3. A fuzzy subset α in an induced fuzzy supra-topological space $(X, \varphi(\tau))$ is fuzzy supra-open iff for each $r \in I$, the strong r-cut $\sigma_r(\alpha)$ is β-open in the topological space (X, τ).

Proof. A fuzzy subset α is fuzzy supra-open in $(X, \varphi(\tau))$ if $\alpha \in \varphi(\tau)$ iff α is s-lower β-continuous (by Theorem 3.1). Thus for each $r \in I$, $\{x \in X : \alpha(x) > r\}$ is β-open in (X, τ) (by Result 2.2). That is, $\sigma_r(\alpha)$ is β-open in (X, τ). \qed

Corollary 3.4. A fuzzy subset α in an induced fuzzy supra-topological space $(X, \varphi(\tau))$ is fuzzy supra-closed iff for each $r \in I$, the weak r-out $W_r(\alpha)$ is β-closed in the topological space (X, τ).

Theorem 3.5. If A is β-open in (X, τ), then 1_A is fuzzy supra β-open in $(X, \varphi(\tau))$.

Proof. Let A be β-open in (X, τ), then $A \subseteq cl(int(cl(A)))$, i.e., $1_A \subseteq 1_{cl\,int\,clA} = cl\,int\,clA = cl\,int\,1_A$. Then 1_A is fuzzy supra β-open in $(X, \varphi(\tau))$. \qed

The following theorem follows immediately from Result 2.9.

Theorem 3.6. If \mathcal{F} is an induced fuzzy topology and φ is an induced supra-topology on X, then $\mathcal{F} \subseteq \varphi$.

In [4] the completely induced fuzzy topology was introduced and by Lemma 2.4 of [5] we have the following corollary.

Corollary 3.7. $\mathfrak{S} \subseteq \mathcal{F} \subseteq \varphi$, where \mathfrak{S} is a completely induced fuzzy topology.

Let (X, \mathcal{F}) be a fuzzy topological space and \mathcal{F}' be a fuzzy supra-topology on X. We call \mathcal{F}' a fuzzy supra-topology associated with \mathcal{F} if $\mathcal{F} \subseteq \mathcal{F}'$. The family $\mathcal{F}'\beta O(X)$ of all fuzzy β-open subsets in (X, \mathcal{F}) is fuzzy supra-topology associated with \mathcal{F}.

Theorem 3.8. Let (X, \mathcal{F}') be a fuzzy supra-topological space where \mathcal{F}' is associated with the fuzzy topology \mathcal{F} on X and $\tau = \mathcal{F} \cap 2^X$. Then the induced fuzzy supra-topology $\varphi(\tau)$ on X is equivalent to the fuzzy supra-topology \mathcal{F}' if for any fuzzy subset μ and $r \in I$, $W_r^{(\alpha)}(\mu) = \bigcap \{Cl_\tau(W_\ell(\mu)) : t < r\}$ (resp. $\sigma_r^{(\beta)}(\mu) = \bigcup \{Int_\tau(\sigma_\ell(\mu)) : t > r\}$) is β-closed (resp. β-open) in (X, τ).

Proof. Let μ be \mathcal{F}'-closed subset of X and $r \in I$, then by the given condition, $W_r^{(\alpha)}(\mu) = \bigcap \{Cl_\tau(W_\ell(\mu)) : t < r\}$ is β-closed in (X, τ). By Theorem 3.3 μ is $\varphi(\tau)$-closed. Now if α is $\varphi(\tau)$-closed and $r \in I$, then
\[W_r(\alpha^{sc}) = \bigcap \{ Cl_r(W_t(\alpha)) : t < r \} = \bigcap \{ W_t(\alpha) : t < r \} = W_r(\alpha). \]

Thus \(\alpha^{sc} = \alpha \), i.e. \(\alpha \) is \(\mathcal{F}' \)-closed. This completes the proof. \(\square \)

Analogous to Theorem 3.18 of [12], we have the following theorem.

Theorem 3.9. If \(\varphi(\tau) \) is induced fuzzy supra-topology on \(X \), then
\[\mathcal{F}_{\varphi(\tau)} = \{ \alpha \subseteq X : \mu \in \varphi(\tau) \Rightarrow \alpha \cap \mu \in \varphi(\tau) \} \]
is a fuzzy topology on \(X \) and \(\mathcal{F}_{\varphi(\tau)} \subseteq \varphi(\tau) \).

3.2. Fuzzy supra-continuity in induced fuzzy supra-topological spaces.

Definition 3.10. Let \((X, \mathcal{F}) \) and \((Y, \mathcal{F}') \) be fuzzy topological spaces and \(\mathcal{F}' \) be an associated fuzzy supra-topology with \(\mathcal{F} \). A function \(f : X \to Y \) is a fuzzy \(S \)-continuous if the inverse image of each fuzzy open subset in \(Y \) is \(\mathcal{F}' \)-supra-open in \(X \).

Theorem 3.11. Let \(f : (X, \varphi(\tau)) \to (Y, \mathcal{F}) \) be a function from an induced fuzzy supra-topological space \((X, \varphi(\tau)) \) into a fuzzy topological space \((Y, \mathcal{F}) \). Then the following statements are equivalent:

1. \(f \) is fuzzy \(S \)-continuous.
2. The inverse image of each fuzzy closed subset in \(Y \) is \(\varphi(\tau) \)-closed.
3. \((f^{-1}(\gamma))^{Sc} \subseteq f^{-1}(Cl(\gamma)) \) for any fuzzy subset \(\gamma \) in \(Y \).
4. \(f(\alpha^{sc}) \subseteq Cl(f(\alpha)) \) for any fuzzy subset \(\alpha \) in \(X \).
5. For any fuzzy point \(x_p \) in \(X \) and fuzzy open subset \(\gamma \) in \(Y \) containing \(f(x_p) \), there exists \(\alpha \in \varphi(\tau) \) such that \(x_p \in \alpha \) and \(f(\alpha) \subseteq \gamma \).

Proof. It is straightforward and hence omitted. \(\square \)

In [2] fuzzy supra-continuity was defined as follows: Let \((X, \mathcal{F}_1) \) and \((Y, \mathcal{F}_2) \) be two fuzzy topological spaces, \((X, \mathcal{F}_1') \) and \((X, \mathcal{F}_2') \) be two associated fuzzy supra-topological spaces with \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \), respectively. A function \(f : X \to Y \) is a fuzzy supra-continuous if the inverse image of \(\mathcal{F}_2' \)-supra-open subset is \(\mathcal{F}_1' \)-supra-open. Also we know that a function \(f : (X, \tau) \to (Y, \tau_1) \) is \(\beta \)-irresolute if the inverse of \(\beta \)-open subset is \(\beta \)-open.

Theorem 3.12. Let \(\varphi(\tau) \) and \(\varphi(\tau_1) \) be two induced fuzzy supra-topological associated with \(\mathcal{F} \) and \(\mathcal{F}_1 \). Then a function \(f : (X, \mathcal{F}) \to (Y, \mathcal{F}_1') \) is fuzzy supra-continuous iff \(f : (X, \tau) \to (Y, \tau_1) \) is \(\beta \)-irresolute function.

Proof. Let \(f \) be a fuzzy supra-continuous function and \(A \) be a \(\beta \)-open subset in \((Y, \tau_1) \). Then \(1_A \in \varphi(\tau) \) and
\[
\begin{align*}
 f^{-1}(A) &= \{ x \in X : 1_A(f(X)) = 1 \} \\
 &= \{ x \in X : f^{-1}(1_A(x)) > r \text{ and } 0 < r < 1 \} \\
 &= \sigma_r(f^{-1}(1_A)).
\end{align*}
\]
Thus \(f^{-1}(1_A) \) is fuzzy supra-open. Since \(f \) is fuzzy supra-continuous. By Theorem 3.3, \(\sigma_f(f^{-1}(1_A)) \) is \(\beta \)-open in the topological space \((X, \tau)\). Thus \(f \) is \(\beta \)-irresolute function.

Conversely, let \(f : (X, \tau) \to (Y, \tau_1) \) be \(\beta \)-irresolute function and \(\alpha \) is a fuzzy supra-open subset in \((Y, \varphi(\tau_1))\). Now for \(r > 0 \),

\[
\sigma_f(f^{-1}(\alpha)) = \{ x \in X : f^{-1}(\alpha(x)) > r \} = (\alpha f)^{-1}(r, \infty) = f^{-1}(\alpha^{-1}(r, \infty)).
\]

Since \(\alpha \in \varphi(\tau_1) \), \(\alpha \) is \(s \)-lower \(\beta \)-continuous and then \((\alpha)^{-1}(r, \infty) \) is \(\beta \)-open in \((Y, \tau_1)\). Also by hypothesis, \(f^{-1}(\alpha^{-1}(r, \infty)) \) is \(\beta \)-open in \((X, \tau)\), i.e. \(\sigma_f(f^{-1}(\alpha)) \) is \(\beta \)-open in \((X, \tau)\) which implies \(f^{-1}(\alpha) \in \varphi(\tau) \). Hence the theorem. \(\square \)

Fuzzy supra-open function is defined in [2] as follows:

A function \(f \) from a fuzzy supra-topological space \((X, \mathcal{F}_1')\) into a fuzzy supra-topological space \((Y, \mathcal{F}_2')\) is called fuzzy supra-open if \(f(\alpha) \in \mathcal{F}_2' \) for each \(\alpha \in \mathcal{F}_1' \). We have the following theorem.

Theorem 3.13. Let \((X, \varphi(\tau_1))\) and \((Y, \varphi(\tau_2))\) be two induced fuzzy supra-topological spaces. If \(f : (X, \varphi(\tau_1)) \to (Y, \varphi(\tau_2)) \) is an injective fuzzy supra-continuous and fuzzy supra-open, then \(f : (X, \mathcal{F}_1') \to (Y, \mathcal{F}_2') \) is fuzzy continuous.

Proof. Let \(f : (X, \varphi(\tau_1)) \to (Y, \varphi(\tau_2)) \) be an injective fuzzy supra-continuous supra-open function. If \(\mu \in \varphi(\tau_1) \) then \(f(\mu) \in \varphi(\tau_2) \) by supra-open function. Now for each \(\alpha \in \mathcal{F}_1' \), \(\alpha \cap f(\mu) \in \varphi(\tau_2) \) by Theorem 3.9. Then \(f^{-1}(\alpha \cap f(\mu)) = f^{-1}(\alpha) \cap \mu \in \varphi(\tau_1) \) by injective supra-continuity of \(f \). Thus \(f^{-1}(\alpha) \in \mathcal{F}_1' \) for each \(\alpha \in \mathcal{F}_1' \) which proves that \(f : (X, \mathcal{F}_1') \to (Y, \mathcal{F}_2') \) is fuzzy continuous. \(\square \)

4. Conclusion

In this paper we studied the concepts of induced fuzzy supra-topological spaces and \(s \)-lower \(\beta \)-continuous functions. We deduced the properties of induced fuzzy supra-topological spaces. Fuzzy supra-continuity in induced fuzzy supra-topological spaces are defined. Finally, we defined the Initial supra-topology.

References

286

Arafa A. Nasef (nasefa50@yahoo.com)
Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

R. Mareay (roshdeymareay@yahoo.com)
Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt