Fuzzy n-fold KU-ideals of KU-algebras

SAMY M. MOSTAFA, FATEMA F. KAREEM

Received 21 April 2014; Revised 28 May 2014; Accepted 24 June 2014

ABSTRACT. In this paper, we introduce the concept of fuzzy n-fold KU-ideal in KU-algebras, which is a generalization of fuzzy KU-ideal of KU-algebras and we obtain a few properties that is similar to the properties of fuzzy KU-ideal in KU-algebras, see [8]. Furthermore, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.

2010 AMS Classification: 06F35, 03G25, 94D05

Keywords: KU-algebra, n-fold KU-ideal, Fuzzy n-fold KU-ideal, Image and the pre image of fuzzy n-fold KU-ideal, Product of fuzzy n-fold KU-ideals.

Corresponding Author: Fatema F. Kareem (fa_sa20072000@yahoo.com)

1. Introduction

Prabpayak and Leerawat [11, 12] constructed a new algebraic structure which is called KU-algebras and introduced the concept of homomorphisms for such algebras and investigated some related properties. Zadeh [14] introduced the notion of fuzzy sets. At present this concept has been applied to many mathematical branches, such as groups, functional analysis, probability theory and topology. Mostafa et al [8] introduced the notion of fuzzy KU-ideals of KU-algebras and then they investigated several basic properties which are related to fuzzy KU-ideals. Akram et al and Yaqoob et al [2, 13] introduced the notion of cubic sub-algebras and ideals in KU-algebras. They discussed relationship between a cubic subalgebra and a cubic KU-ideal. Muhiuddin [10] applied the bipolar-valued fuzzy set theory to KU-algebras, and introduced the notions of bipolar fuzzy KU-subalgebras and bipolar fuzzy KU-ideals in KU-algebras. He considered the specifications of a bipolar fuzzy KU-subalgebra, a bipolar fuzzy KU-ideal in KU-algebras and discussed the relations between a bipolar fuzzy KU-subalgebra and a bipolar fuzzy KU-ideal and provided conditions for a bipolar fuzzy KU-subalgebra to be a bipolar fuzzy KU-ideal. Gulistan et al. [4] studied (α, β)-fuzzy KU-ideals in KU-algebras and discussed some special properties. Jun and Dudek [6] introduced n-fold BCC-ideals and obtained some related results. Jun [5] introduced n-fold fuzzy BCC-ideals and gave a relation...
between an n-fold fuzzy BCC-ideal and a fuzzy BCK-ideal. Mostafa and Kareem [9] introduced n-fold KU-ideals and obtained some related results. Akram et al. [1] introduced the notion of interval-valued ($\tilde{\theta}$, $\tilde{\delta}$)-fuzzy KU-ideals of KU-algebras and obtained some related properties. In this paper, we introduce a generalization of fuzzy KU-ideal of KU-algebras. Therefore, a few properties similar to the properties of fuzzy KU-ideal in KU-algebras can be obtained. Also, a few results of fuzzy n-fold KU-ideals of KU-algebra under homomorphism have been discussed. Moreover, some algorithms for folding theory have been constructed.

2. Preliminaries

In this section, we submit some concepts related to KU-algebra from the literature. Meanwhile, some comments and results are obtained.

Definition 2.1 ([11, 12]). An algebra $(X, \ast, 0)$ of type $(2, 0)$ is said to be a KU-algebra, if for all $x, y, z \in X$, the following axioms are obtained:

$(ku_1)(x \ast y) \ast [(y \ast z) \ast (x \ast z)] = 0,$

$(ku_2)x \ast 0 = 0,$

$(ku_3)0 \ast x = x,$

$(ku_4)x \ast y = 0$ and $y \ast x = 0$ implies $x = y,$

$(ku_5)x \ast x = 0,$

On a KU-algebra $(x, \ast, 0)$ we can define a binary relation \leq on X by putting:

$x \leq y \iff y \ast x = 0.$

Thus a KU-algebra X satisfies the conditions:

$(ku_{1'}) : (y \ast z) \ast (x \ast z) \leq (x \ast y)$

$(ku_{2'}) : 0 \leq x$

$(ku_{3'}) : x \leq y, y \leq x$ implies $x = y,$

$(ku_{4'}) : y \ast x \leq x.$

Theorem 2.2 ([8]). *In a KU-algebra $(X, \ast, 0)$, the following axioms are satisfied:*

For all $x, y, z \in X$,

$(1): x \leq y \implies y \ast z \leq x \ast z,$

$(2): x \ast (y \ast z) = y \ast (x \ast z),$

$(3): ((y \ast x) \ast x) \leq y.$

Definition 2.3 ([8, 11]). A non-empty subset S of a KU-algebra $(X, \ast, 0)$ is called a KU-sub algebra of X if $x \ast y \in S$ whenever $x, y \in S$.

Definition 2.4. [11] A non-empty subset I of a KU-algebra $(X, \ast, 0)$ is called an ideal of X if for any $x, y \in X$,

(i) $0 \in I,$

(ii) $x \ast y, x \in I$ imply $y \in I.$

We will refer to X is a KU-algebra unless otherwise indicated.

Lemma 2.5. *In a KU-algebra X, any ideal is a KU-sub algebra.*

Proof. Let I be an ideal. Then $0 \in I$ and $y \ast (x \ast y) = 0$ for all $x, y \in X$. Thus for $x, y \in I$ we have $y \ast (x \ast y) \in I$, which implies $x \ast y \in I$. \hfill \Box
Definition 2.6 ([8, 11]). Let I be a non empty subset of a KU-algebra X. Then I is said to be a KU-ideal of X, if

1. $(I_1) 0 \in I$
2. $(I_2) \forall x, y, z \in X,$ if $x \ast (y \ast z) \in I$ and $y \in I,$ imply $x \ast z \in I.$

Theorem 2.7. In a KU-algebra X, any KU-ideal is an ideal.

Proof. Indeed, by putting $x = 0$ in Definition 2.6 (I_2), we obtain the result. □

Combining Lemma 2.5 and Theorem 2.7, we have the following corollary.

Corollary 2.8. Any KU-ideal of a KU-algebra X is a KU-sub algebra.

Now, we review some fuzzy logic concepts.

Definition 2.9 ([14]). Let X be a set, a fuzzy set μ in X is a function $\mu : X \to [0, 1].$

For a fuzzy set μ in X and $t \in [0, 1]$ define $U(\mu, t)$ to be the set $U(\mu, t) = \{x \in X : \mu(x) \geq t\},$ which is called a level set of $\mu.$

Definition 2.10 ([8]). A fuzzy set μ in a KU-algebra X is called a fuzzy sub-algebra of X if $\mu(x \ast y) \geq \min\{\mu(x), \mu(y)\}$ for all $x, y \in X.$

Definition 2.11. Let X be a KU-algebra, a fuzzy set μ in X is called a fuzzy ideal of X if it satisfies the following conditions:

1. $(F_1) \mu(0) \geq \mu(x)$ for all $x \in X.$
2. $(F_2) \forall x, y \in X, \mu(y) \geq \min\{\mu(x \ast y), \mu(x)\}.$

Definition 2.12 ([8]). Let X be a KU-algebra, a fuzzy set μ in X is called a fuzzy KU-ideal of X if it satisfies the following conditions:

1. $(FI_1) \mu(0) \geq \mu(x)$ for all $x \in X.$
2. $(FI_2) \forall x, y, z \in X, \mu(x \ast z) \geq \min\{\mu(x \ast (y \ast z)), \mu(y)\}.$

Example 2.13. Let $X = \{0, 1, 2, 3, 4\}$ with \ast is defined by the following table

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Using the algorithms in Appendix A, we can prove that $(X, \ast, 0)$ is KU-algebra. We define $\mu : X \to [0, 1]$ in X by

$\mu(0) = t_0, \mu(1) = \mu(2) = t_1, \mu(3) = \mu(4) = t_2,$ where $t_0, t_1, t_2 \in [0, 1]$ with $t_0 > t_1 > t_2.$ By routine calculations, we know that μ is a fuzzy KU-ideal of KU-algebra $X.$

Lemma 2.14 ([8]). If μ is a fuzzy ideal of KU-algebra X and if $x \leq y,$ then $\mu(x) \geq \mu(y).$

Lemma 2.15 ([8]). Let μ be a fuzzy KU-ideal of KU-algebra $X,$ if the inequality $x \ast y \leq z$ hold in $X.$ Then $\mu(y) \geq \min\{\mu(x), \mu(z)\}.$

Lemma 2.16. Any fuzzy KU-ideal of KU-algebras X is a fuzzy ideal.
Lemma 2.17. In a KU-algebra X any fuzzy KU-ideal is a fuzzy sub-algebra.

Proof. Let μ be a fuzzy KU-ideal of a KU-algebra X, for any $x, y \in X$ from (ku^*), we have $x \ast y \leq y$ and (by Lemma 2.16) μ be a fuzzy ideal of a KU-algebra X then (by Lemma(2.14)) $\mu(x \ast y) \geq \mu(y)$ and (by Lemma(2.15)) $\mu(y) \geq \min\{\mu(x), \mu(y)\}$, hence $\mu(x \ast y) \geq \min\{\mu(x), \mu(y)\}$.

The following example shows that the converse of Lemma2.17 may not be true. □

Example 2.18. Let $X = \{0, 1, 2, 3, 4\}$ with $*$ defined as in Example 2.13, and μ be a fuzzy set in X given by

$$
\mu(x) = \begin{cases}
 t_1 & x \in \{0, 2, 3\} \\
 t_2 & \text{otherwise}
\end{cases}
$$

where $t_1 > t_2$ in $[0, 1]$. It is easy to see that μ is a fuzzy sub-algebra of X (by using the algorithms in Appendix A). But μ is not a fuzzy KU-ideal of X because $\mu(0 \ast 1) = \mu(1) = t_2 < t_1 = \min\{\mu(0 \ast (3 \ast 1)), \mu(3)\}$.

Definition 2.19 [12]. Let $(X, \ast, 0)$ and $(X', \ast', 0')$ be two KU-algebras, a homomorphism is a map $f : X \rightarrow X'$ satisfying $f(x \ast y) = f(x) \ast' f(y)$ for all $x, y \in X$.

Theorem 2.20 [112]. Let f be a homomorphism of a KU-algebra X into a KU-algebra Y, then

(i) If θ is the identity in X, then $f(\theta)$ is the identity in Y.
(ii) If S is a KU-subalgebra of X, then $f(S)$ is a KU-subalgebra of Y.
(iii) If I is an n-fold KU-ideal of X, then $f(I)$ is an n-fold KU-ideal in Y.
(iv) If S is a KU-subalgebra of Y, then $f^{-1}(S)$ is a KU-algebra of X.
(v) If B is an n-fold KU-ideal in $f(X)$, then $f^{-1}(B)$ is an n-fold KU-ideal in X.

Definition 2.21 [8]. A fuzzy μ is called a fuzzy relation on any set X, if μ is a fuzzy subset $\mu : X \times X \rightarrow [0, 1]$.

Definition 2.22 [8]. If μ is a fuzzy relation on a set X and β is a fuzzy subset of X, then μ is a fuzzy relation on β if $\mu(x, y) \leq \min\{\beta(x), \beta(y)\}, \forall x, y \in X$.

Definition 2.23 [8]. Let μ and β be two fuzzy subsets of a set X, the product of μ and β are defined by $(\mu \ast \beta)(x, y) = \min\{\mu(x), \beta(y)\}, \forall x, y \in X$.

Lemma 2.24 [8]. Let μ and β be two fuzzy subsets of a set X, then

(i) $\mu \ast \beta$ is a fuzzy relation on X.
(ii) $(\mu \ast \beta)_t = \mu_t \ast \beta_t$ for all $t \in [0, 1]$.

Definition 2.25 [8]. If β is a fuzzy subset of a set X, the strongest fuzzy relation on X, that is, a fuzzy relation on β is μ_β given by $\mu_\beta(x, y) = \min\{\beta(x), \beta(y)\}, \forall x, y \in X$.

Lemma 2.26 [9]. For a given fuzzy subset β of a set X, let μ_β be the strongest fuzzy relation on X, then for $t \in [0, 1]$, we have $(\mu_\beta)_t = \beta_t \ast \beta_t$.

Remark 2.27 [9]. Let X and Y be two KU-algebras, we define $*$ on $X \times Y$ by:

For every $(x, y), (u, v) \in X \times Y, (x, y) \ast (u, v) = (x \ast u, y \ast v)$, then clearly $(X \times Y, \ast, (0, 0))$ is a KU-algebra.
3. Major Section

For any elements \(x\) and \(y\) of a KU-algebra \(X\), \(x^n \ast y\), denotes \(x \ast (x \ast \ldots \ast (x \ast y))\), where \(x\) occurs \(n\) times.

Definition 3.1. A nonempty subset \(I\) of a KU-algebra \(X\) is called an \(n\)-fold KU-ideal of \(X\) if

(I) \(0 \in I\)

(II) \(\forall x, y, z \in X\) there exists a natural number \(n\) such that \(x^n \ast z \in I\) whenever \(x^n \ast (y \ast z) \in I\) and \(y \in I\).

For a KU-algebra \(X\), obviously \(\{0\}\) and \(X\) itself are \(n\)-fold KU-ideal of \(X\) for every positive integer \(n\).

Example 3.2. Let \(X = \{0, 1, 2, 3, 4\}\) with \(*\) defined as Example 2.13. By using the algorithms in Appendix A, it is easy to check that \(I = \{0, 1, 2, 3\}\) is an \(n\)-fold KU-ideal of \(X\) for every positive integer \(n\).

Proposition 3.3. Let \(X\) be a KU-algebra, a nonempty subset \(I\) of a KU-algebra \(X\) is an \(n\)-fold KU-ideal of \(X\) if and only if \(I\) is an ideal of \(X\).

Proof. Let \(I\) be an \(n\)-fold KU-ideal in \(X\); it is clear that \(0 \in I\). Since for any \(x, y, z \in X\), \((x^n \ast (y \ast z)) \in I\), \(y \in I \Rightarrow (x^n \ast z) \in I\), then by setting \(x = 0\), we obtain \((y \ast z) \in I, y \in I \Rightarrow z \in I\). Hence \(I\) is an ideal.

Conversely, let \(I\) be an ideal of \(X\), then \(0 \in I\). Now, if \((x^n \ast (y \ast z)) \in I\), \(y \in I\) then \((by \text{Th.}2.2(2)) (y \ast (x^n \ast z)) \in I\) and \(y \in I\), since \(I\) is an ideal of \(X\), thus \((x^n \ast z) \in I\), therefore \(I\) is an \(n\)-fold KU-ideal of \(X\).

Proposition 3.4. Let \(I\) be an ideal of a KU-algebra \(X\), if \(\forall x, y, z \in X, x^n \ast (y \ast z) \in I\), then \(I\) is an \(n\)-fold KU-ideal.

Proof. Let \(x, y, z \in X\), such that \((x^n \ast (y \ast z)) = y \ast (x^n \ast z) \in I\) and \(y \in I\), since \(I\) is an ideal and \(y \in I\), we easily obtain \(x^n \ast z \in I\). Hence \(I\) is an \(n\)-fold KU-ideal.

Proposition 3.5. If \(I\) is an \(n\)-fold KU-ideal of a KU-algebra \(X\), then for any \(x, y, z \in X, x^n \ast z \in I \Rightarrow x^n \ast (y \ast z) \in I\).

Proof. If we assume that for any \(n \in N\), we have

\[
\begin{align*}
(x^n \ast z) \ast (x^n \ast (y \ast z)) &= x^n \ast ((x^n \ast z) \ast (y \ast z)) = x^n \ast (y \ast ((x^n \ast z) \ast (x^n \ast z))) = \\
&= y \ast (x^n \ast ((x^n \ast z) \ast (x^n \ast z))) = y \ast ((x^n \ast z) \ast (x^n \ast z)) = y \ast 0 = 0 \in I
\end{align*}
\]

since \(I\) is an ideal and \(x^n \ast z \in I\), hence \(x^n \ast (y \ast z) \in I\).

Definition 3.6. A fuzzy set \(\mu\) in a KU-algebra \(X\) is called an \(n\)-fold fuzzy KU-ideal of \(X\) if

\((F_1)\mu(0) \geq \mu(x)\) for all \(x \in X\).

\((F_2)\forall x, y, z \in X\), there exists a natural number \(n\) such that \(\mu(x^n \ast z) \geq \min\{\mu(x \ast (y \ast z)), \mu(y)\}\).

Remark 3.7. The 1-fold fuzzy KU-ideal is precisely a fuzzy KU-ideal.
Example 3.8. Let $X = \{0, 1, 2, 3, 4\}$ with $*$ defined as in Example 2.13, define a fuzzy set μ in X by $\mu(4) = 0.2$ and $\mu(x) = 0.7$ for all $x \neq 4$. Then μ is an n-fold fuzzy KU-ideal of X. By using the algorithms at the end of this paper, many examples of n-fold and fuzzy n-fold KU-ideals can be given.

Lemma 3.9. In a KU-algebra X, every fuzzy n-fold KU-ideal is a fuzzy ideal.

Proof. Let μ be an n-fold fuzzy KU-ideal of a KU-algebra X. By taking $x = 0$ in (F_2) and using (ku_3), we get

$\mu(z) = \mu(0^n * z) = \min\{\mu(0^n * (y * z)), \mu(y)\}$

Hence μ is a fuzzy ideal of X. □

Lemma 3.10. Let μ be a fuzzy n-fold KU-ideal of a KU-algebra X, if the inequality $x^n * y \leq z$ holds in X. Then $\mu(y) = \min\{\mu(x^n), \mu(z)\}$.

Proof. Assume that the inequality $x^n * y \leq z$ holds in X, then $z * (x^n * y) = 0$ and $\mu((x^n * y)) = \min\{\mu(x^n * (z * y)), \mu(z)\}$

by (F_2)

$\mu((x^n * y)) = \min\{\mu(x^n * (z * y)), \mu(z)\} = \min\{\mu(z * (x^n * y)), \mu(z)\}$

Hence μ is a fuzzy ideal of X. □

Proposition 3.11. If μ is a fuzzy n-fold KU-ideal of X, then

$\mu(x^n * (x^n * y) \geq \mu(y)$

Proof. By taking $z = x^n * y$ in (F_2) and using (ku_2) and (F_1), we get

$\mu(x^n * (x^n * y) \geq \min\{\mu(x^n * (y * (x^n * y))), \mu(y)\}$

$\mu(x^n * (x^n * y) \geq \min\{\mu(x^n * (x^n * (y * y))), \mu(y)\}$

$\mu(x^n * (x^n * y) \geq \min\{\mu(x^n * 0), \mu(y)\}$

$\mu(x^n * (x^n * y) \geq \min\{\mu(0), \mu(y)\}$

The proof is completed. □

Proposition 3.12. If μ is a fuzzy n-fold KU-ideal, then

$\mu(x^n * (y * z)) \geq \mu(x^n * z)$

Proof. Since

by (2), Th.2.2, ku_3

$\begin{cases}
(x^n * z) * (x^n * (y * z)) = x^n * ((x^n * z) * (y * z)) \\
= x^n * (y * ((x^n * z) * (y * z))) \\
= y * (x^n * ((x^n * z) * (y * z))) \\
= y * ((x^n * z) * (x^n * z)) \\
= y * 0 = 0
\end{cases}$
we have $x^n \ast (y \ast z) \leq (x^n \ast z)$, by Lemma 2.14, we get

$$\mu(x^n \ast (y \ast z)) \geq \mu(x^n \ast z).$$

The proof is completed. □

Proposition 3.13. Let A be a nonempty subset of a KU-algebra X and μ be a fuzzy set in X defined by

$$\mu(x) = \begin{cases} t_1 & x \in A \\ t_2 & \text{otherwise} \end{cases},$$

where $t_1 > t_2$ in $[0, 1]$. Then μ is an n-fold fuzzy KU-ideal of X if and only if A is an n-fold fuzzy KU-ideal of X.

Moreover, $X_\mu = A$ where $X_\mu = \{x \in X : \mu(x) = \mu(0)\}$.

Proof. Assume that μ is an n-fold fuzzy KU-ideal of X. Since $\mu(0) \geq \mu(x)$ for all $x \in X$, we have $\mu(0) = t_1$ and so $0 \in A$. For any $x, y, z \in X$ such that $x^n \ast (y \ast z) \in A$ and $y \in A$. Using (F_2), we know that $\mu(x^n \ast z) \geq \min(\mu(x^n \ast (y \ast z)), \mu(y)) = t_1$ and thus $\mu(x^n \ast z) = t_1$. Hence $x^n \ast z \in A$, and A is an n-fold KU-ideal of X.

Conversely, suppose that A is an n-fold KU-ideal of X. Since $0 \in A$, it follows that $\mu(0) = t_1 \geq \mu(x)$ for all $x \in A$. Let $x, y, z \in X$. If $y \notin A$ and $x^n \ast z \in A$, then clearly $\mu(x^n \ast z) \geq \min\{\mu(x^n \ast (y \ast z)), \mu(y)\}$. Assume that $y \in A$ and $x^n \ast z \notin A$. Then by (II), we have $x^n \ast (y \ast z) \notin A$. Therefore

$$\mu(x^n \ast z) = t_2 = \min(\mu(x^n \ast (y \ast z)), \mu(y)).$$

Finally we have that $X_\mu = \{x \in X : \mu(x) = \mu(0)\} = \{x \in X : \mu(x) = t_1\} = A$. □

Theorem 3.14. Let μ be a fuzzy set in KU-algebra X and n a positive integer. Then μ is an n-fold fuzzy KU-ideal of X if and only if the nonempty level set $U(\mu, t)$ of μ is an n-fold KU-ideal of X. We then call $U(\mu, t)$ the level n-fold KU-ideal of μ.

Proof. Suppose that μ is an n-fold fuzzy KU-ideal of X and $U(\mu, t) \neq \phi$ for any $t \in [0, 1]$, there exists $x \in U(\mu, t)$ and so $\mu(x) \geq t$. It follows from (F_1) that $\mu(0) \geq \mu(x) \geq t$ so that $0 \in U(\mu, t)$. Let $x, y, z \in X$ be such that $x^n \ast (y \ast z) \in U(\mu, t)$ and $y \in U(\mu, t)$. Using (F_2), we know that

$$\mu(x^n \ast z) \geq \min\{\mu(x^n \ast (y \ast z)), \mu(y)\} \geq \min\{t, t\} = t$$

and thus $x^n \ast z \in U(\mu, t)$. Hence $U(\mu, t)$ is an n-fold KU-ideal of X.

Conversely, suppose that $U(\mu, t) \neq \phi$ is an n-fold KU-ideal of X for every $t \in [0, 1]$. For any $x \in X$, let $\mu(x) = t$. Then $x \in U(\mu, t)$. Since $0 \in U(\mu, t)$, it follows that $\mu(0) \geq t = \mu(x)$ so that $\mu(0) \geq \mu(x)$ for all $x \in X$. Now, we need to show that μ satisfies (F_2). If not, then there exist $a, b, c \in X$ such that $\mu(a^n \ast c) \geq \min\{\mu(a^n \ast (b \ast c)), \mu(b)\}$. By taking $t_0 = \frac{1}{2}(\mu(a^n \ast c) + \min\{\mu((a^n \ast (b \ast c)), \mu(b))\}$ then we have

$$\mu(a^n \ast c) < t_0 < \min(\mu(a^n \ast (b \ast c)), \mu(b)).$$

Hence $(a^n \ast (b \ast c)) \in U(\mu, t_0)$ and $b \in U(\mu, t_0)$, but $a^n \ast c \notin U(\mu, t_0)$, which means that $U(\mu, t_0)$ is not an n-fold KU-ideal of X. This is contradiction. Therefore μ is a fuzzy n-fold KU-ideal of X. □
Lemma 3.15. Let \(\mu \) be a fuzzy \(n \)-fold KU-ideal of a KU-algebra \(X \) and \(t_1, t_2 \in [0, 1] \) with \(t_1 > t_2 \). Then
(i) \(U(\mu, t_1) \subseteq U(\mu, t_2) \),
(ii) Whenever \(t_1, t_2 \in \text{Im}(\mu) \), where \(\text{Im}(\mu) = \{ t_i : i \in \Lambda \} \) then \(U(\mu, t_1) \neq U(\mu, t_2) \),
(iii) \(U(\mu, t_1) = U(\mu, t_2) \) if and only if there does not exist \(x \in X \) such that \(t_1 \leq \mu(x) < t_2 \).

Proof. Clear.

\[\square \]

Theorem 3.16. Let \(\mu \) be a fuzzy \(n \)-fold KU-ideal of a KU-algebra \(X \) with \(\text{Im}(\mu) = \{ t_i : i \in \Lambda \} \) and \(\Omega = \{ U(\mu, t_i) : i \in \Lambda \} \) where \(\Lambda \) is an arbitrary index set. Then
(i) There exists a unique \(i_0 \in \Lambda \) such that \(t_{i_0} \geq t_i \) for all \(i \in \Lambda \).
(ii) \(X_\mu = \bigcap_{i \in \Lambda} U(\mu, t_i) = U(\mu, t_{i_0}) \),
(iii) \(X = \bigcup_{i \in \Lambda} U(\mu, t_i) \).

Proof. (i) since \(\mu(0) \in \text{Im}(\mu) \), there exists a unique \(i_0 \in \Lambda \) such that \(\mu(0) = t_{i_0} \).

Hence by \((F_1)\), we get \(\mu(x) \leq \mu(0) = t_{i_0} \) for all \(x \in X \), and so \(t_{i_0} \geq t_i \) for all \(i \in \Lambda \).

(ii) We have that
\[
U(\mu, t_{i_0}) = \{ x \in X : \mu(x) \geq t_{i_0} \} \\
= \{ x \in X : \mu(x) = t_{i_0} \} \\
= \{ x \in X : \mu(x) = \mu(0) \} = X.
\]

Note that \(U(\mu, t_{i_0}) \subseteq U(\mu, t_i) \) for all \(i \in \Lambda \), so that \(U(\mu, t_{i_0}) \subseteq \bigcap_{i \in \Lambda} U(\mu, t_i) \). Since \(i_0 \in \Lambda \), it follows that \(X_\mu = U(\mu, t_{i_0}) = \bigcap_{i \in \Lambda} U(\mu, t_i) \).

(iii) for any \(x \in X \) we have \(\mu(x) \in \text{Im}(\mu) \) and so there exists \(i(x) \in \Lambda \) such that \(\mu(x) = t_{i(x)} \). This implies \(x \in U(\mu, t_{i(x)}) \subseteq \bigcup_{i \in \Lambda} U(\mu, t_i) \). Hence \(X = \bigcup_{i \in \Lambda} U(\mu, t_i) \) \(\square \)

4. Image (pre-image) of fuzzy \(n \)-fold KU-ideals under homomorphism

Definition 4.1. Let \(f \) be a mapping from the set \(X \) to the set \(Y \). If \(\mu \) is a fuzzy subset of \(X \), then the fuzzy subset \(B \) of \(Y \) defined by
\[
f(\mu)(y) = B(y) = \begin{cases}
\sup_{x \in f^{-1}(y)} \mu(x), & \text{if } f^{-1}(y) = \{ x \in X, f(x) = y \} \neq \emptyset \\
0 & \text{otherwise}
\end{cases}
\]

Is said to be the image of \(\mu \) under \(f \).

Similarly if \(\beta \) is a fuzzy subset of \(Y \), then the fuzzy subset \(\mu = \beta \circ f \) in \(X \) (i.e. the fuzzy subset defined by \(\mu(x) = \beta(f(x)) \) for all \(x \in X \)) is called the pre-image of \(\beta \) under \(f \).

Theorem 4.2. An onto homomorphic pre-image of a fuzzy \(n \)-fold KU-ideal is also a fuzzy \(n \)-fold KU-ideal.

Proof. Let \(f : X \to X' \) be an onto homomorphism of KU-algebras, \(\beta \) be a fuzzy \(n \)-fold KU-ideal of \(X' \) and \(\mu \) be the pre-image of \(\beta \) under \(f \), then \(\mu(x) = \beta(f(x)) \), for
all $x \in X$. Let $x \in X$, then $\mu(0) = \beta((0)) \geq \beta(f(x)) = \mu(x)$. Now let $x, y, z \in X$ then
\[
\mu(x^n \ast z) = \beta(f(x^n \ast z) = \beta(f(x^n) \ast f(z)) \\
\geq \min\{\beta(f(x^n)) \ast (f(y) \ast f(z)), \beta(f(y))\} \\
= \min\{\beta(f(x^n \ast (y \ast z))), \beta(f(y))\} \\
= \min\{\mu(x^n \ast (y \ast z)), \mu(y)\},
\]
the proof is completed. □

Definition 4.3. A fuzzy subset μ of X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_0) = SUP_{t \in T} \mu(t)$.

Theorem 4.4. Let $f : X \rightarrow X'$ be a homomorphism between KU-algebras X and X'. For every fuzzy n-fold KU-ideal μ in X, $f(\mu)$ is a fuzzy n-fold KU-ideal of X'.

Proof. By definition
\[
B(y') = f(\mu)(y') := \sup_{x \in f^{-1}(y')} \mu(x)
\]
for all $y' \in X'$ and sup $\phi := 0$. We have to prove that
\[
B((x')^n \ast z') \geq \min\{B((x')^n \ast (y' \ast z')), B(y')\}, \forall x', y', z' \in X'.
\]
Let $f : X \rightarrow X'$ be an onto a homomorphism of KU-algebras, μ be a fuzzy n-fold KU-ideal of X with sup property and β be the image of μ under f, since μ is a fuzzy n-fold KU-ideal of X, we have $\mu(0) \geq \mu(x)$ for all $x \in X$. Note that $0 \in f^{-1}(0')$, where $0, 0'$ are the zero of X and X' respectively, Thus, $B(0') = \sup_{t \in f^{-1}(0')} \mu(t) = \mu(0) \geq \mu(x)$ for all $x \in X$, which implies that $B(0') \geq \sup_{t \in f^{-1}(x')} \mu(t) = B(x')$ for any $x' \in X'$.

For any $x', y', z' \in X'$, Let
\[
x_0 \in f^{-1}(x'), y_0 \in f^{-1}(y'), z_0 \in f^{-1}(z')
\]
be such that
\[
\mu((x_0)^n \ast z_0) = \sup_{t \in f^{-1}((x')^n \ast z')} \mu(t), \mu(y_0) = \sup_{t \in f^{-1}(y')} \mu(t)
\]
and
\[
\mu((x_0)^n \ast (y_0 \ast z_0)) = B((x_0)^n \ast (y' \ast z')) = B((x')^n \ast (y' \ast z')) = \sup_{t \in f^{-1}((x')^n \ast (y' \ast z'))} \mu(t).
\]
Then
\[
B((x')^n \ast z') = \sup_{t \in f^{-1}((x')^n \ast z')} \mu(t) = \mu((x_0)^n \ast z_0) \\
\geq \min\{\mu((x_0)^n \ast (y_0 \ast z_0)), \mu(y_0)\} \\
= \min\{\sup_{t \in f^{-1}((x')^n \ast (y' \ast z'))} \mu(t), \sup_{t \in f^{-1}(y')} \mu(t)\} \\
= \min\{B((x')^n \ast (y' \ast z')), B(y')\}.
\]
Hence B is a fuzzy n-fold KU-ideal of Y. □

Proposition 4.5. For a given fuzzy subset β of a KU-algebra X, let μ_β be the strongest fuzzy relation on X. If μ_β is a fuzzy n-fold KU-ideal of $X \times X$, then $\beta(x) \leq \beta(0)$ for all $x \in X$.

995
Proof. Since \(\mu_\beta \) is a fuzzy n-fold KU-ideal of \(X \times X \), it follows from \((FI_1)\) that
\[
\mu_\beta(x, x) = \min(\beta(x), \beta(x)) \leq \min(\beta(0), \beta(0)) \Rightarrow \beta(x) \leq \beta(0).
\]
\(\square \)

Theorem 4.6. Let \(\mu \) and \(\beta \) be two fuzzy n-fold KU-ideals of a KU-algebra \(X \), then \(\mu \times \beta \) is a fuzzy n-fold KU-ideal of \(X \times X \).

Proof. for any \((x, y) \in X \times X \), we have,
\[
(\mu \times \beta)(0, 0) = \min(\mu(0), \beta(0)) \geq \min(\mu(x), \beta(x)) = (\mu \times \beta)(x, y).
\]
Now let \((x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X \), then
\[
(\mu \times \beta)(x_1^n \ast z_1, x_2^n \ast z_2) = \min\{\mu(x_1^n, z_1), \beta(x_2^n, z_2)\}
\]
\[
\geq \min\{\min\{\mu(x_1^n \ast (y_1 \ast z_1), \mu(y_1))\}, \min\{\beta(x_2^n \ast (y_2 \ast z_2), \beta(y_2))\}\}\}
\]
\[
= \min\{\min\{\mu(x_1^n \ast (y_1 \ast z_1), \beta(x_2^n \ast (y_2 \ast z_2))\}, \min\{\mu(y_1), \beta(y_2)\}\}\}
\]
\[
= \min\{\min\{\mu \times \beta)(x_1^n \ast (y_1 \ast z_1), x_2^n \ast (y_2 \ast z_2)), \{\mu \times \beta(y_1, y_2)\}\}\}
\]
Hence \(\mu \times \beta \) is a fuzzy n-fold KU-ideal of \(X \times X \).

Analogous to theorem 3.2 [7], we have a similar results for n-fold KU-ideal, which can be proved in similar manner, we state the results without proof. \(\square \)

Theorem 4.7. let \(\mu \) and \(\beta \) be two fuzzy subsets of a KU-algebra \(X \), such that \(\mu \times \beta \) is a fuzzy n-fold KU-ideal of \(X \times X \), then

(i) either \(\mu(x) \leq \mu(0) \) or \(\beta(x) \leq \beta(0) \) for all \(x \in X \).

(ii) if \(\mu(x) \leq \mu(0) \) for all \(x \in X \), then either \(\mu(x) \leq \mu(0) \) or \(\beta(x) \leq \beta(0) \).

(iii) if \(\beta(x) \leq \beta(0) \) for all \(x \in X \), then either \(\mu(x) \leq \mu(0) \) or \(\beta(x) \leq \mu(0) \).

(iv) if \(\mu \) or \(\beta \) is a fuzzy n-fold KU-ideal of \(X \).

Theorem 4.8. let \(\beta \) be a fuzzy subset of a KU-algebra \(X \) and \(\mu_\beta \) be the strongest fuzzy relation on \(X \), then \(\beta \) is a fuzzy n-fold KU-ideal of \(X \) if and only if \(\mu_\beta \) is a fuzzy n-fold KU-ideal of \(X \times X \).

Proof. Assume that \(\beta \) is a fuzzy KU-ideal of \(X \), we note from \((FI_1)\) that:
\[
\mu_\beta(0, 0) = \min(\beta(0), \beta(0)) \geq \min(\beta(x), \beta(y)) = \mu_\beta(x, y).
\]
Now, for any \((x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X \), we have from \((FI_2)\):
\[
\mu_\beta(x_1^n \ast z_1, x_2^n \ast z_2) = \min\{\beta(x_1^n, z_1), \beta(x_2^n, z_2)\}
\]
\[
\geq \min\{\min\{\beta(x_1^n \ast (y_1 \ast z_1), \beta(y_1))\}, \min\{\beta(x_2^n \ast (y_2 \ast z_2), \beta(y_2))\}\}\}
\]
\[
= \min\{\min\{\beta(x_1^n \ast (y_1 \ast z_1), \beta(x_2^n \ast (y_2 \ast z_2))\}, \min\{\beta(y_1), \beta(y_2)\}\}\}
\]
\[
= \min\{\mu_\beta(x_1^n \ast (y_1 \ast z_1), x_2^n \ast (y_2 \ast z_2)), \mu_\beta(y_1, y_2)\}\}
\]
Hence \(\mu_\beta \) is a fuzzy KU-ideal of \(X \times X \).

Conversely: For all \((x, y) \in X \times X \), we have
\[
\mu_\beta(0, 0) = \min(\beta(0), \beta(0)) \geq \min(\beta(x), \beta(y)) = \mu_\beta(x, y).
\]
It follows that \(\beta(0) \geq \beta(x) \) for all \(x \in X \), which prove \((FI_1)\).

Now, let \((x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X \), then
\[
\min\{\beta(x_1^n \ast z_1), \beta(x_2^n \ast z_2)\} = \mu_\beta(x_1^n \ast z_1, x_2^n \ast z_2)
\]
\[
\geq \min\{\min\{\beta(x_1^n \ast (y_1 \ast z_1), \beta(x_2^n \ast (y_2 \ast z_2))\}, \beta(y_1)\}\}\}
\]
\[
= \min\{\beta(x_1^n \ast (y_1 \ast z_1), x_2^n \ast (y_2 \ast z_2)), \min\{\beta(y_1), \beta(y_2)\}\}\}
\]
\[
= \min\{\mu_\beta(x_1^n \ast (y_1 \ast z_2), \beta(y_1))\}, \min\{\beta(x_2^n \ast (y_2 \ast z_2), \beta(y_2))\}\}\}
\]
In particular, if we take $x_2 = y_2 = z_2 = 0$, then
\[
\beta(x_1^n * z_1) \geq \min\{\beta(x_1^n * (y_1 * z_1)), \beta(y_1)\}.
\]
This proves (FI$_2$) and completes the proof. \square

5. Conclusion

We have studied the fuzzy foldedness of a KU-ideal in a KU-algebras. Also we discussed a few results of fuzzy n-fold KU-ideal of a KU-algebras under homomorphism, the image and the pre-image of fuzzy n-fold KU-ideals in KU-algebras are defined. How the image and the pre-image of fuzzy n-fold KU-ideals in KU-algebras become fuzzy n-fold KU-ideals are studied. Moreover, the product of fuzzy n-fold KU-ideals to product KU-algebras is established. Furthermore, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.

The main purpose of our future work is to investigate the foldedness of other types of fuzzy n-fold ideals such as a bipolar fuzzy n-fold KU-ideal of KU-algebras.

Appendix A. Algorithms

This appendix contains all necessary algorithms

Algorithm for KU-algebras

Input $\mathbf{X}:$ set, \ast: binary operation
Output "\mathbf{X} is a KU-algebra or not"

Begin
If $\mathbf{X} = \emptyset$ then go to (1.);
EndIf
If $0 \notin \mathbf{X}$ then go to (1.);
EndIf
Stop: = false;
i := 1;
While $i \leq |\mathbf{X}|$ and not (Stop) do
If $x_i \ast x_i \neq 0$ then
Stop: = true;
EndIf
j := 1
While $j \leq |\mathbf{X}|$ and not (Stop) do
If $((y_j \ast x_i) \ast x_i) \neq 0$ then
Stop: = true;
EndIf
EndIf
EndIf
k := 1
While $k \leq |\mathbf{X}|$ and not (Stop) do
If $(x_i \ast y_i) \ast ((y_j \ast z_k) \ast (x_i \ast z_k)) \neq 0$ then
Stop: = true;
EndIf
EndIf
EndIf While
EndIf
EndIf While
EndIf
EndIf While

997
If Stop then

(1.) Output (" X is not a KU-algebra")
Else
Output (" X is a KU-algebra")
EndIf
End

Algorithm for fuzzy subsets
Input (X : KU-algebra, A : X \to [0, 1]);
Output (" A is a fuzzy subset of X or not")
Begin
Stop: =false;
i := 1;
While i \leq |X| and not (Stop) do
If (A(x_i) < 0) or (A(x_i) > 1) then
Stop: = true;
EndIf
EndIf While
If Stop then
Output (" A is a fuzzy subset of X ")
Else
Output (" A is not a fuzzy subset of X ")
EndIf
End

Algorithm for n-fold KU-ideals
Input (X: KU-algebra, I: subset of X; n \in \mathbb{N});
Output (" I is an n-fold KU-ideal of X or not");
Begin
If I = \phi then go to (1.);
EndIf
If 0 \notin I then go to (1.);
EndIf
Stop: =false;
i := 1;
While i \leq |X| and not (Stop) do
j := 1
While j \leq |X| and not (Stop) do
k := 1
While k \leq |X| and not (Stop) do
If \((x_i^n \ast (y_j \ast z_k)) \in I\) and \(y_i \in I\) then
If \((x_i^n \ast z_k) \notin I\) then
Stop: = true;
EndIf
EndIf
EndIf
EndIf
End
EndIf While
EndIf While
EndIf While
If Stop then
Output (" I is an n-fold KU-ideal of X ")
Else
(1.) Output (" I is not an n-fold KU-ideal of X ")
EndIf
End

Algorithm for fuzzy n-fold KU-ideals
Input (X KU-algebra, *: binary operation, A: fuzzy subset of X);
Output (" A is a fuzzy n-fold KU-ideal of X or not")
Begin
Stop: =false;
i := 1;
While i ≤ |X| and not (Stop) do
If A(0) < A(x_i) then
Stop: = true;
EndIf
j := 1
While j ≤ |X| and not (Stop) do
k := 1
While k ≤ |X| and not (Stop) do
If A(x^n_i * z_k) < min(A(x^n_i * (y_j * z_k)), A(y_j)) then
Stop: = true;
EndIf
EndIf While
EndIf While
EndIf While
If Stop then
Output (" A is not a fuzzy n-fold KU-ideal of X ")
Else
 Output (" A is a fuzzy n-fold KU-ideal of X ")
EndIf
End

Acknowledgements. The authors are thankful to the referees for a careful reading of the paper and for valuable comments and suggestions.

References

Samy M. Mostafa (samymostafa@yahoo.com)
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

Fatema F. Kareem (fa_sa20072000@yahoo.com)
Department of Mathematics, Faculty of science, Ain Shams University, Cairo, Egypt and Department of Mathematics, Ibn-Al-Haitham college of Education, University of Baghdad, Iraq