Annals of Fuzzy Mathematics and Informatics Volume 8, No. 6, (December 2014), pp. 987–1000 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fuzzy n-fold KU-ideals of KU-algebras

SAMY M. MOSTAFA, FATEMA F. KAREEM

Received 21 April 2014; Revised 28 May 2014; Accepted 24 June 2014

ABSTRACT. In this paper, we introduce the concept of fuzzy n-fold KUideal in KU-algebras, which is a generalization of fuzzy KU-ideal of KUalgebras and we obtain a few properties that is similar to the properties of fuzzy KU-ideal in KU-algebras, see [8]. Furthermore, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.

2010 AMS Classification: 06F35, 03G25, 94D05

Keywords: KU-algebra, n-fold KU-ideal, Fuzzy n-fold KU-ideal, Image and the pre image of fuzzy n-fold KU-ideal, Product of fuzzy n-fold KU-ideals.

Corresponding Author: Fatema F. Kareem (fa_sa20072000@yahoo.com)

1. INTRODUCTION

 \mathbf{P} rabpayak and Leerawat [11, 12] constructed a new algebraic structure which is called KU-algebras and introduced the concept of homomorphisms for such algebras and investigated some related properties. Zadeh [14] introduced the notion of fuzzy sets. At present this concept has been applied to many mathematical branches, such as groups, functional analysis, probability theory and topology. Mostafa et al [8] introduced the notion of fuzzy KU-ideals of KU-algebras and then they investigated several basic properties which are related to fuzzy KU-ideals. Akram et al and Yaqoob et al [2, 13] introduced the notion of cubic sub-algebras and ideals in KU-algebras. They discussed relationship between a cubic subalgebra and a cubic KU-ideal. Muhiuddin [10] applied the bipolar-valued fuzzy set theory to KUalgebras, and introduced the notions of bipolar fuzzy KU-subalgebras and bipolar fuzzy KU-ideals in KU-algebras. He considered the specifications of a bipolar fuzzy KU-subalgebra, a bipolar fuzzy KU-ideal in KU-algebras and discussed the relations between a bipolar fuzzy KU-subalgebra and a bipolar fuzzy KU-ideal and provided conditions for a bipolar fuzzy KU-subalgebra to be a bipolar fuzzy KU-ideal. Gulistan et al. [4] studied (α, β)-fuzzy KU-ideals in KU-algebras and discussed some special properties. Jun and Dudek [6] introduced n-fold BCC-ideals and obtained some related results. Jun [5] introduced n-fold fuzzy BCC-ideals and gave a relation between an n-fold fuzzy BCC-ideal and a fuzzy BCK-ideal. Mostafa and Kareem [9] introduced n-fold KU-ideals and obtained some related results. Akram et al. [1] introduced the notion of interval-valued $(\tilde{\theta}, \tilde{\delta})$ -fuzzy KU-ideals of KU-algebras and obtained some related properties. In this paper, we introduce a generalization of fuzzy KU-ideal of KU-algebras. Therefore, a few properties similar to the properties of fuzzy KU-ideal in KU-algebras can be obtained. Also, a few results of fuzzy n-fold KU-ideals of KU-algebra under homomorphism have been discussed. Moreover, some algorithms for folding theory have been constructed.

2. Preliminaries

In this section, we submit some concepts related to KU-algebra from the literature. Meanwhile, some comments and results are obtained.

Definition 2.1 ([11, 12]). An algebra (X, *, 0) of type (2, 0) is said to be a KU -algebra, if for all $x, y, z \in X$, the following axioms are obtained:

 $\begin{array}{l} (ku_1)(x\ast y)\ast [(y\ast z)\ast (x\ast z)]=0,\\ (ku_2)x\ast 0=0,\\ (ku_3)0\ast x=x,\\ (ku_4)x\ast y=0 \mbox{ and } y\ast x=0 \mbox{ implies } x=y,\\ (ku_5)x\ast x=0,\\ \mbox{On a KU-algebra } (x,\ast,0) \mbox{ we can define a binary relation } \leq \mbox{ on } X \mbox{ by putting:}\\ x\leq y\Leftrightarrow y\ast x=0.\\ \mbox{Thus a KU-algebra } X \mbox{ satisfies the conditions:}\\ (ku_{1'}): (y\ast z)\ast (x\ast z)\leq (x\ast y)\\ (ku_{2'}): 0\leq x\\ (ku_{3'}): x\leq y, y\leq x \mbox{ implies } x=y,\\ (ku_{4'}): y\ast x\leq x. \end{array}$

Theorem 2.2 ([8]). In a KU-algebra (X, *, 0), the following axioms are satisfied: For all $x, y, z \in X$, (1): $x \leq y$ implies $y * z \leq x * z$, (2): x * (y * z) = y * (x * z), (3): $((y * x) * x) \leq y$.

Definition 2.3 ([8, 11]). A non-empty subset S of a KU-algebra (X, *, 0) is called a KU-sub algebra of X if $x * y \in S$ whenever $x, y \in S$.

Definition 2.4. [11] A non-empty subset I of a KU-algebra (X, *, 0) is called an ideal of X if for any $x, y \in X$, (i) $0 \in I$, (ii) $x * y, x \in I$ imply $y \in I$.

We will refer to X is a KU-algebra unless otherwise indicated.

Lemma 2.5. In a KU-algebra X, any ideal is a KU-sub algebra.

Proof. Let I be an ideal. Then $0 \in I$ and y * (x * y) = 0 for all $x, y \in X$. Thus for $x, y \in I$ we have $y * (x * y) \in I$, which implies $x * y \in I$.

Definition 2.6 ([8, 11]). Let I be a non empty subset of a KU-algebra X. Then I is said to be an KU- ideal of X, if $(I_1)_0 \in I$

 $(I_2) \forall x, y, z \in X$, if $x * (y * z) \in I$ and $y \in I$, imply $x * z \in I$.

Theorem 2.7. In a KU-algebra X, any KU-ideal is an ideal.

Proof. Indeed, by putting x = 0 in Definition 2.6 (I_2), we obtain the result.

Combining Lemma 2.5 and Theorem 2.7, we have the following corollary.

Corollary 2.8. Any KU-ideal of a KU-algebra X is a KU-sub algebra.

Now, we review some fuzzy logic concepts.

Definition 2.9 ([14]). Let X be a set, a fuzzy set μ in X is a function $\mu : X \to [0, 1]$. For a fuzzy set μ in X and $t \in [0, 1]$ define $U(\mu, t)$ to be the set $U(\mu, t) = \{x \in X : \mu(x) \ge t\}$, which is called a level set of μ .

Definition 2.10 ([8]). A fuzzy set μ in a KU-algebra X is called a fuzzy sub-algebra of X if $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$ for all $x, y \in X$.

Definition 2.11. Let X be a KU-algebra, a fuzzy set μ in X is called a fuzzy ideal of X if it satisfies the following conditions:

 $(F_1)\mu(0) \ge \mu(x) \text{ for all } x \in X.$ $(F_2) \forall x, y \in X, \mu(y) \ge \min\{\mu(x * y), \mu(x)\}.$

Definition 2.12 ([8]). Let X be a KU-algebra, a fuzzy set μ in X is called a fuzzy KU-ideal of X if it satisfies the following conditions: $(FI_1)\mu(0) \ge \mu(x)$ for all $x \in X$.

 $(FI_2) \forall x, y, z \in X, \mu(x * z) \ge \min\{\mu(x * (y * z)), \mu(y)\}.$

Example 2.13. Let $X = \{0, 1, 2, 3, 4\}$ with * is defined by the following table

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	0	3	4
2	0	1	0	3	4
3	0	0	0	0	4
4	0	0	0	0	0

Using the algorithms in Appendix A, we can prove that (X, *, 0) is KU-algebra. We define $\mu : X \to [0, 1]$ in X by

 $\mu(0) = t_0, \ \mu(1) = \mu(2) = t_1, \ \mu(3) = \mu(4) = t_2$, where $t_0, t_1, t_2 \in [0, 1]$ with $t_0 > t_1 > t_2$. By routine calculations, we know that μ is a fuzzy KU-ideal of KU-algebra X.

Lemma 2.14 ([8]). If μ is a fuzzy ideal of KU-algebra X and if $x \leq y$, then $\mu(x) \geq \mu(y)$.

Lemma 2.15 ([8]). Let μ be a fuzzy KU-ideal of KU-algebra X, if the inequality $x * y \leq z$ hold in X. Then $\mu(y) \geq \min\{\mu(x), \mu(z)\}$

Lemma 2.16. Any fuzzy KU- ideal of KU- algebras X is a fuzzy ideal.

Proof. clear.

Lemma 2.17. In a KU-algebra X any fuzzy KU-ideal is a fuzzy sub-algebra.

Proof. let μ be a fuzzy KU-ideal of a KU-algebra X, for any $x, y \in X$ from $(ku_{4'})$, we have $x * y \leq y$ and (by Lemma 2.16) μ be a fuzzy ideal of a KU-algebra X then (by Lemma(2.14)) $\mu(x * y) \geq \mu(y)$ and (by Lemma(2.15)) $\mu(y) \geq \min\{\mu(x), \mu(y)\}$, hence $\mu(x * y) \geq \min\{\mu(x), \mu(y)\}$.

The following example shows that the converse of Lemma 2.17 may not be true. $\hfill \Box$

Example 2.18. Let $X = \{0, 1, 2, 3, 4\}$ with * defined as in Example 2.13, and μ be a fuzzy set in X given by

$$\mu(x) = \begin{cases} t_1 & x \in \{0, 2, 3\} \\ t_2 & otherwise \end{cases}$$

where $t_1 > t_2$ in [0, 1]. It is easy to see that μ is a fuzzy sub-algebra of X (by using the algorithms in Appendix A). But μ is not a fuzzy KU-ideal of X because

 $\mu(0*1) = \mu(1) = t_2 < t_1 = \min\{\mu(0*(3*1)), \mu(3)\}.$

Definition 2.19 ([12]). Let (X, *, 0) and (X', *', 0') be two KU-algebras, a homomorphism is a map $f: X \to X'$ satisfying f(x * y) = f(x) *' f(y) for all $x, y \in X$.

Theorem 2.20 ([12]). Let f be a homomorphism of a KU-algebra X into a KU-algebra Y, then

(i) If 0 is the identity in X, then f(0) is the identity in Y.

(ii) If S is a KU-subalgebra of X, then f(S) is a KU-subalgebra of Y.

(iii) If I is an n-fold KU-ideal of X, then f(I) is an n-fold KU-ideal in Y.

(iv) If S is a KU-subalgebra of Y, then $f^{-1}(S)$ is a KU-algebra of X.

(v) If B is an n-fold KU-ideal in f(X), then $f^{-1}(B)$ is an n-fold KU-ideal in X.

Definition 2.21 ([3]). A fuzzy μ is called a fuzzy relation on any set X, if μ is a fuzzy subset $\mu : X \times X \to [0, 1]$.

Definition 2.22 ([3]). If μ is a fuzzy relation on a set X and β is a fuzzy subset of X, then μ is a fuzzy relation on β if $\mu(x, y) \leq \min\{\beta(x), \beta(y)\}, \forall x, y \in X$.

Definition 2.23 ([3]). Let μ and β be two fuzzy subsets of a set X, the product of μ and β are define by $(\mu \times \beta)(x, y) = \min\{\mu(x), \beta(y)\}, \forall x, y \in X.$

Lemma 2.24 ([3]). Let μ and β be two fuzzy subsets of a set X, then

(i) $\mu \times \beta$ is a fuzzy relation on X.

(ii) $(\mu \times \beta)_t = \mu_t \times \beta_t$ for all $t \in [0, 1]$.

Definition 2.25 ([3]). If β is a fuzzy subset of a set X, the strongest fuzzy relation on X, that is, a fuzzy relation on β is μ_{β} given by $\mu_{\beta}(x, y) = \min\{\beta(x), \beta(y)\}, \forall x, y \in X$.

Lemma 2.26 ([9]). For a given fuzzy subset β of a set X, let μ_{β} be the strongest fuzzy relation on X, then for $t \in [0, 1]$, we have $(\mu_{\beta})_t = \beta_t \times \beta_t$.

Remark 2.27 ([9]). Let X and Y be two KU-algebras, we define * on $X \times Y$ by: For every $(x, y), (u, v) \in X \times Y, (x, y) * (u, v) = (x * u, y * v)$, then clearly $(X \times Y, *, (0, 0))$ is a KU-algebra.

3. MAJOR SECTION

For any elements x and y of a KU-algebra $X, x^n * y$, denotes x * (x * ... (x * y)), where x occurs n times.

Definition 3.1. A nonempty subset I of a KU-algebra X is called an n-fold KU-ideal of X if

(I) $0 \in I$

(II) $\forall x, y, z \in X$ there exists a natural number n such that $x^n * z \in I$ whenever $x^n * (y * z) \in I$ and $y \in I$.

For a KU-algebra X, obviously $\{0\}$ and X itself are n-fold KU-ideal of X for every positive integer n.

Example 3.2. Let $X = \{0, 1, 2, 3, 4\}$ with * defined as Example 2.13. By using the algorithms in Appendix A, it is easy to check that $I = \{0, 1, 2, 3\}$ is an n-fold KU-ideal of X for every positive integer n.

Proposition 3.3. Let X be a KU-algebra, a nonempty subset I of a KU-algebra X is an n-fold KU-ideal of X if and only if I is an ideal of X.

Proof. Let I be an n-fold KU-ideal in X; it is clear that $0 \in I$. Since for any $x, y, z \in X$, $(x^n * (y * z)) \in I, y \in I \Rightarrow (x^n * z) \in I$, then by setting x = 0, we obtain $(y * z) \in I, y \in I \Rightarrow z \in I$. Hence I is an ideal.

Conversely, let I be an ideal of X, then $0 \in I$. Now, if $(x^n * (y * z)) \in I, y \in I$ then (by Th.2.2 (2)) $(y * (x^n * z)) \in I$ and $y \in I$, since I is an ideal of X, thus $(x^n * z) \in I$, therefore I is an n-fold KU-ideal of X.

Proposition 3.4. Let I be an ideal of a KU-algebra X, if $\forall x, y, z \in X, x^n * (y * z) \in I$, then I is an n-fold KU-ideal.

Proof. Let $x, y, z \in X$, such that $x^n * (y * z) = y * (x^n * z) \in I$ and $y \in I$, since I is an ideal and $y \in I$, we easily obtain $x^n * z \in I$. Hence I is an n-fold KU-ideal. \Box

Proposition 3.5. If I is an n-fold KU-ideal of a KU-algebra X, then for any $x, y, z \in X, x^n * z \in I \Rightarrow x^n * (y * z) \in I$.

Proof. If we assume that for any $n \in N$, we have

$$\begin{array}{rl} by(2), Th.2.2, ku_{3} \\\hline (x^{n} * z) * (x^{n} * (y * z)) &= x^{n} * ((x^{n} * z) * (y * z))) = x^{n} * (y * ((x^{n} * z))) = y \\ &= y * (x^{n} * ((x^{n} * z) * z) = y * ((x^{n} * z) * (x^{n} * z))) \\ &= y * 0 = 0 \in I \end{array}$$

since I is an ideal and $x^n * z \in I$, hence $x^n * (y * z) \in I$.

Definition 3.6. A fuzzy set μ in a KU-algebra X is called an n-fold fuzzy KU-ideal of X if

 $(F_1)\mu(0) \ge \mu(x)$ for all $x \in X$.

 (F_2) $\forall x, y, z \in X$, there exists a natural number n such that $\mu(x^n * z) \ge \min\{\mu(x^n * (y * z)), \mu(y)\}.$

Remark 3.7. The 1-fold fuzzy KU-ideal is precisely a fuzzy KU-ideal.

Example 3.8. Let $X = \{0, 1, 2, 3, 4\}$ with * defined as in Example 2.13, define a fuzzy set μ in X by $\mu(4) = 0.2$ and $\mu(x) = 0.7$ for all $x \neq 4$. Then μ is an n-fold fuzzy KU-ideal of X. By using the algorithms at the end of this paper, many examples of n-fold and fuzzy n-fold KU-ideals can be given.

Lemma 3.9. In a KU-algebra X, every fuzzy n-fold KU-ideal is a fuzzy ideal.

Proof. Let μ be an n-fold fuzzy KU-ideal of a KU-algebra X. By taking x = 0 in (F_2) and using (ku_3) , we get

 $\mu(z) = \mu(0^n * z) \ge \min\{\mu(0^n * (y * z)), \mu(y)\} = \min\{\mu(y * z), \mu(y)\}, \text{ for all } y, z \in X.$ Hence μ is a fuzzy ideal of X.

Lemma 3.10. Let μ be a fuzzy n-fold KU-ideal of KU-algebra X, if the inequality $x^n * y \leq z$ holds in X. Then $\mu(y) \geq \min\{\mu(x^n), \mu(z)\}.$

Proof. Assume that the inequality $x^n * y \leq z$ holds in X, then $z * (x^n * y) = 0$ and by (F_2)

$$\mu((x^n * y)) \ge \min\{\mu(x^n * (z * y)), \mu(z)\} = \min\{\mu(z * (x^n * y)), \mu(z)\} \\ = \min\{\mu(0), \mu(z)\} = \mu(z) - -(I)$$

but

$$\begin{aligned} \mu(0*y) &= \mu(y) \geq \min\{\mu(0*(x^n*y)), \mu(x^n)\} &= \min\{\mu(x^n*y), \mu(x^n)\} \\ &\geq \min\{\mu(z), \mu(x^n)\} \ (by(I)) \end{aligned}$$

i.e. $\mu(y) \ge \min\{\mu(x^n), \mu(z)\}.$

Proposition 3.11. If μ is a fuzzy n-fold KU - ideal of X, then

$$\mu(x^n * (x^n * y) \ge \mu(y))$$

Proof. By taking $z = x^n * y$ in (F_2) and using (ku_2) and (F_1) , we get

$$\begin{aligned} \mu(x^n * (x^n * y)) &&\geq \min\{\mu(x^n * (y * (x^n * y))), \mu(y)\} \\ &&= \min\{\mu(x^n * (x^n * (y * y))), \mu(y)\} \\ &&= \min\{\mu(x^n * (x^n * 0)), \mu(y)\} \\ &&= \min\{\mu(x^n * 0), \mu(y)\} \\ &&= \min\{\mu(0), \mu(y)\} = \mu(y). \end{aligned}$$

The proof is completed.

Proposition 3.12. If μ is a fuzzy n-fold KU-ideal, then

$$\mu(x^n * (y * z)) \ge \mu(x^n * z)$$

Proof. Since

 $by(2), Th. 2.2, ku_3$

$$\begin{cases} (x^{n} * z) * (x^{n} * (y * z)) &= x^{n} * ((x^{n} * z) * (y * z)) \\ &= x^{n} * (y * ((x^{n} * z) * z)) \\ &= y * (x^{n} * ((x^{n} * z) * z)) \\ &= y * ((x^{n} * z) * (x^{n} * z)) \\ &= y * 0 = 0, \\ 992 \end{cases}$$

we have $x^n * (y * z) \leq (x^n * z)$, by Lemma 2.14, we get

$$\mu(x^n * (y * z)) \ge \mu(x^n * z).$$

The proof is completed.

Proposition 3.13. Let A be a nonempty subset of a KU-algebra X and μ be a fuzzy set in X defined by

$$\mu(x) = \begin{cases} t_1 & x \in A \\ t_2 & otherwise \end{cases}$$

where $t_1 > t_2$ in [0, 1]. Then μ is an n-fold fuzzy KU-ideal of X if and only if A is an n-fold fuzzy KU-ideal of X.

Moreover, $X_{\mu} = A$ where $X_{\mu} = \{x \in X : \mu(x) = \mu(0)\}.$

Proof. Assume that μ is an n-fold fuzzy KU-ideal of X. Since $\mu(0) \ge \mu(x)$ for all $x \in X$, we have $\mu(0) = t_1$ and so $0 \in A$. For any $x, y, z \in X$ such that $x^n * (y * z) \in A$ and $y \in A$. Using (F_2) , we know that $\mu(x^n * z) \ge \min\{\mu(x^n * (y * z)), \mu(y)\} = t_1$ and thus $\mu(x^n * z) = t_1$. Hence $x^n * z \in A$, and A is an n-fold KU-ideal of X.

Conversely, suppose that A is an n-fold KU-ideal of X. Since $0 \in A$, it follows that $\mu(0) = t_1 \ge \mu(x)$ for all $x \in X$. Let $x, y, z \in X$. If $y \notin A$ and $x^n * z \in A$, then clearly $\mu(x^n * z) \ge \min\{\mu(x^n * (y * z)), \mu(y)\}$. Assume that $y \in A$ and $x^n * z \notin A$. Then by (II), we have $x^n * (y * z) \notin A$. Therefore

$$\mu(x^n * z) = t_2 = \min\{\mu(x^n * (y * z)), \mu(y)\}.$$

Finally we have that $X_{\mu} = \{x \in X : \mu(x) = \mu(0)\} = \{x \in X : \mu(x) = t_1\} = A.$

Theorem 3.14. Let μ be a fuzzy set in KU-algebra X and n a positive integer. Then μ is an n-fold fuzzy KU-ideal of X if and only if the nonempty level set $U(\mu, t)$ of μ is an n-fold KU-ideal of X. We then call $U(\mu, t)$ the level n-fold KU-ideal of μ .

Proof. Suppose that μ is an n-fold fuzzy KU-ideal of X and $U(\mu, t) \neq \phi$ for any $t \in [0, 1]$, there exists $x \in U(\mu, t)$ and so $\mu(x) \geq t$. It follows from (F_1) that $\mu(0) \geq \mu(x) \geq t$ so that $0 \in U(\mu, t)$. Let $x, y, z \in X$ be such that $x^n * (y * z) \in U(\mu, t)$ and $y \in U(\mu, t)$. Using (F_2) , we know that

$$\mu(x^n * z) \ge \min\{\mu(x^n * (y * z)), \mu(y)\} \ge \min\{t, t\} = t$$

and thus $x^n * z \in U(\mu, t)$. Hence $U(\mu, t)$ is an n-fold KU-ideal of X.

Conversely, suppose that $U(\mu, t) \neq \phi$ is an n-fold KU-ideal of X for every $t \in [0, 1]$. For any $x \in X$, let $\mu(x) = t$. Then $x \in U(\mu, t)$. Since $0 \in U(\mu, t)$, it follows that $\mu(0) \geq t = \mu(x)$ so that $\mu(0) \geq \mu(x)$ for all $x \in X$. Now, we need to show that μ satisfies (F_2) . If not, then there exist $a, b, c \in X$ such that $\mu(a^n * c) \geq \min\{\mu(a^n * (b * c)), \mu(b)\}$.

By taking $t_0 = \frac{1}{2}(\mu(a^n * c) + \min\{\mu((a^n * (b * c)), \mu(b))\}$ then we have

$$\mu(a^n * c) < t_0 < \min\{\mu(a^n * (b * c)), \mu(b)\}.$$

Hence $(a^n * (b * c)) \in U(\mu, t_0)$ and $b \in U(\mu, t_0)$, but $a^n * c \notin U(\mu, t_0)$, which means that $U(\mu, t_0)$ is not an n-fold KU-ideal of X. This is contradiction. Therefore μ is a fuzzy n-fold KU-ideal of X.

993

Lemma 3.15. Let μ be a fuzzy n-fold KU-ideal of a KU-algebra X and $t_1, t_2 \in [0, 1]$ with $t_1 > t_2$. Then (i) $U(\mu, t_1) \subseteq U(\mu, t_2)$, (ii) Whenever $t_1, t_2 \in Im(\mu)$, where $Im(\mu) = \{t_i : i \in \Lambda\}$ then $U(\mu, t_1) \neq U(\mu, t_2)$, (iii) $U(\mu, t_1) = U(\mu, t_2)$ if and only if there does not exist $x \in X$ such that $t_1 \leq \mu(x) < t_2$.

Proof. Clear.

Theorem 3.16. Let μ be a fuzzy n-fold KU-ideal of a KU-algebra X with $Im(\mu) = \{t_i : i \in \Lambda\}$ and $\Omega = \{U(\mu, t_i) : i \in \Lambda\}$ where Λ is an arbitrary index set. Then (i) There exists a unique $i_0 \in \Lambda$ such that $t_{i_0} \ge t_i$ for all $i \in \Lambda$. (ii) $X_{\mu} = \bigcap_{i \in \Lambda} U(\mu, t_i) = U(\mu, t_{i_0}),$ (iii) $X = \bigcup_{i \in \Lambda} U(\mu, t_i),$

Proof. (i) since $\mu(0) \in \text{Im}(\mu)$, there exists a unique $i_0 \in \Lambda$ such that $\mu(0) = t_{i_0}$. Hence by (F_1) , we get $\mu(x) \leq \mu(0) = t_{i_0}$ for all $x \in X$, and so $t_{i_0} \geq t_i$ for all $i \in \Lambda$. (ii) We have that

$$U(\mu, t_{i_0}) = \{x \in X : \mu(x) \ge t_{i_0}\}$$

= $\{x \in X : \mu(x) = t_{i_0}\}$
= $\{x \in X : \mu(x) = \mu(0)\} = X$

Note that $U((\mu, t_{i_0}) \subseteq U(\mu, t_i)$ for all $i \in \Lambda$, so that $U(\mu, t_{i_0}) \subseteq \bigcap_{i \in \Lambda} U(\mu, t_i)$. Since $i_0 \in \Lambda$, it follows that $X_{\mu} = U(\mu, t_{i_0}) = \bigcap_{i \in \Lambda} U(\mu, t_i)$.

(iii) for any $x \in X$ we have $\mu(x) \in \operatorname{Im}(\mu)$ and so there exists $i(x) \in \Lambda$ such that $\mu(x) = t_{i(x)}$. This implies $x \in U(\mu, t_{i(x)}) \subseteq \bigcup_{i \in \Lambda} U(\mu, t_i)$. Hence $X = \bigcup_{i \in \Lambda} U(\mu, t_i)$

4. IMAGE (PRE-IMAGE) OF FUZZY N-FOLD KU- IDEALS UNDER HOMOMORPHISM

Definition 4.1. Let f be a mapping from the set X to the set Y. If μ is a fuzzy subset of X, then the fuzzy subset B of Y defined by

$$f(\mu)(y) = B(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), & \text{if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Is said to be the image of μ under f.

Similarly if β is a fuzzy subset of Y, then the fuzzy subset $\mu = \beta \circ f$ in X (i.e. the fuzzy subset defined by $\mu(x) = \beta(f(x))$ for all $x \in X$) is called the pre-image of β under f.

Theorem 4.2. An onto homomorphic pre-image of a fuzzy n-fold KU-ideal is also a fuzzy n-fold KU-ideal.

Proof. Let $f : X \to X'$ be an onto homomorphism of KU-algebras, β be a fuzzy n-fold KU-ideal of X' and μ be the pre-image of β under f, then $\mu(x) = \beta(f(x))$, for

all $x \in X$. Let $x \in X$, then $\mu(0) = \beta(f(0)) \ge \beta(f(x)) = \mu(x)$. Now let $x, y, z \in X$ then

$$\begin{aligned} \mu(x^n * z) &= \beta(f(x^n * z) = \beta(f(x^n) *' f(z))) \\ &\geq \min\{\beta(f(x^n) *' (f(y) *' f(z)), \beta(f(y))\} \\ &= \min\{\beta(f(x^n * (y * z))), \beta(f(y))\} \\ &= \min\{\mu(x^n * (y * z)), \mu(y)\}, \end{aligned}$$

the proof is completed.

Definition 4.3. A fuzzy subset μ of X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_0) = \underset{t \in T}{SUP} \mu(t)$.

Theorem 4.4. Let $f: X \to X'$ be a homomorphism between KU-algebras X and X'. For every fuzzy n-fold KU-ideal μ in X, $f(\mu)$ is a fuzzy n-fold KU-ideal of X'.

Proof. By definition

$$B(y') = f(\mu)(y') := \sup_{x \in f^{-1}(y')} \mu(x)$$

for all $y' \in X'$ and $\sup \phi := 0$. We have to prove that

$$B((x')^n * z') \ge \min\{B((x')^n * (y' * z'), B(y')\}, \forall x', y', z' \in X'.$$

Let $f: X \to X'$ be an onto a homomorphism of KU-algebras, μ be a fuzzy n-fold KUideal of X with sup property and β be the image of μ under f, since μ is a fuzzy n-fold KU-ideal of X, we have $\mu(0) \ge \mu(x)$ for all $x \in X$. Note that $0 \in f^{-1}(0')$, where 0, 0'are the zero of X and X' respectively, Thus, $B(0') = \sup_{t \in f^{-1}(0')} \mu(t) = \mu(0) \ge \mu(x)$ for all $x \in X$, which implies that $B(0') \ge \sup_{t \in f^{-1}(x')} \mu(t) = B(x')$ for any $x' \in X'$.

For any $x', y', z' \in X'$, Let

$$x_0 \in f^{-1}(x'), y_0 \in f^{-1}(y'), z_0 \in f^{-1}(z')$$

be such that

$$\mu((x_0)^n * z_0) = \sup_{t \in f^{-1}((x')^n * z')} \mu(t), \mu(y_0) = \sup_{t \in f^{-1}(y')} \mu(t)$$

and

$$\mu((x_0)^n * (y_0 * z_0) = B\{f((x_0)^n * (y_0 * z_0)\} = B((x')^n * (y' * z')) \\ = \sup_{((x_0)^n * (y_0 * z_0) \in f^{-1}((x')^n * (y' * z'))} \mu((x_0)^n * (y_0 * z_0)) \\ = \sup_{t \in f^{-1}((x')^n * (y' * x'))} \mu(t).$$

Then

$$B((x')^{n} * z') = \sup_{t \in f^{-1}((x')^{n} * z')} \mu(t) = \mu((x_{0})^{n} * z_{0})$$

$$\geq \min\{\mu((x_{0})^{n} * (y_{0} * z_{0}), \mu(y_{0})\}$$

$$= \min\{\sup_{t \in f^{-1}((x')^{n} * (y' * z'))} \mu(t), \sup_{t \in f^{-1}(y')} \mu(t)\}$$

$$= \min\{B((x')^{n} * (y' * z')), B(y')\}.$$

B is a fuzzy n-fold KU-ideal of *Y*.

Hence B is a fuzzy n-fold KU-ideal of Y.

Proposition 4.5. For a given fuzzy subset β of a KU-algebra X, let μ_{β} be the strongest fuzzy relation on X. If μ_{β} is a fuzzy n-fold KU-ideal of $X \times X$, then $\beta(x) \leq \beta(0)$ for all $x \in X$.

Proof. Since μ_{β} is a fuzzy n-fold KU-ideal of $X \times X$, it follows from (FI_1) that $\mu_{\beta}(x, x) = \min\{\beta(x), \beta(x)\} \le \min\{\beta(0), \beta(0)\}$, then $\beta(x) \le \beta(0)$.

Theorem 4.6. Let μ and β be two fuzzy n-fold KU-ideals of a KU-algebra X, then $\mu \times \beta$ is a fuzzy n-fold KU-ideal of $X \times X$.

Proof. for any $(x, y) \in X \times X$, we have,

$$(\mu \times \beta)(0,0) = \min\{\mu(0), \beta(0)\} \ge \min\{\mu(x), \beta(x)\} = (\mu \times \beta)(x,y).$$

Now let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X$, then

 $\begin{aligned} &(\mu \times \beta)(x_1^n * z_1, x_2^n * z_2) = \min\{\mu(x_1^n, z_1), \beta(x_2^n, z_2)\} \\ &\geq \min\{\min\{\mu(x_1^n * (y_1 * z_1), \mu(y_1))\}, \min\{\beta(x_2^n * (y_2 * z_2), \beta(y_2))\}\} \\ &= \min\{\min\{\mu(x_1^n * (y_1 * z_1), \beta(x_2^n * (y_2 * z_2))\}, \min\{\mu(y_1), \beta(y_2)\}\} \\ &= \min\{(\mu \times \beta)(x_1^n * (y_1 * z_1), x_2^n * (y_2 * z_2)), \{\mu \times \beta(y_1, y_2)\}\} \end{aligned}$

Hence $\mu \times \beta$ is a fuzzy n-fold KU-ideal of $X \times X$. Analogous to theorem 3.2 [7], we have a similar results for n-fold KU-ideal, which can be proved in similar manner, we state the results without proof.

Theorem 4.7. let μ and β be two fuzzy subsets of a KU-algebra X, such that $\mu \times \beta$ is a fuzzy n-fold KU-ideal of $X \times X$, then (i) either $\mu(x) \leq \mu(0)$ or $\beta(x) \leq \beta(0)$ for all $x \in X$.

(ii) if $\mu(x) \leq \mu(0)$ for all $x \in X$, then either $\mu(x) \leq \beta(0)$ or $\beta(x) \leq \beta(0)$. (iii) if $\beta(x) \leq \beta(0)$ for all $x \in X$, then either $\mu(x) \leq \mu(0)$ or $\beta(x) \leq \mu(0)$.

(iv) either μ or β is a fuzzy n-fold KU-ideal of X.

Theorem 4.8. let β be a fuzzy subset of a KU-algebra X and μ_{β} be the strongest fuzzy relation on X, then β is a fuzzy n-fold KU-ideal of X if and only if μ_{β} is a fuzzy n-fold KU-ideal of X × X.

Proof. Assume that β is a fuzzy KU-ideal of X, we note from (FI_1) that:

 $\mu_{\beta}(0,0) = \min\{\beta(0),\beta(0)\} \ge \min\{\beta(x),\beta(y)\} = \mu_{\beta}(x,y).$

Now, for any $(x_1, x_2), (y_1, y_2), (z_1, z_2), \in X \times X$, we have from (FI_2) :

$$\begin{split} & \mu_{\beta}(x_{1}^{n} * z_{1}, x_{2}^{n} * z_{2}) = \min\{\beta(x_{1}^{n}, z_{1}), \beta(x_{2}^{n}, z_{2})\} \\ & \geq \min\{\min\{\beta(x_{1}^{n} * (y_{1} * z_{1}), \beta(y_{1}))\}\min\{\beta(x_{2}^{n} * (y_{2} * z_{2}), \beta(y_{2}))\}\} \\ & = \min\{\min\{\beta(x_{1}^{n} * (y_{1} * z_{1})), \beta(x_{2}^{n} * (y_{2} * z_{2}))\}\min\{\beta(y_{1}), \beta(y_{2})\}\} \\ & = \min\{(\mu_{\beta}(x_{1}^{n} * (y_{1} * z_{1}), x_{2}^{n} * (y_{2} * z_{2}))), \mu_{\beta}(y_{1}, y_{2})\} \end{split}$$

Hence μ_{β} is a fuzzy KU-ideal of $X \times X$. Conversely: For all $(x, y) \in X \times X$, we have $\mu_{\beta}(0, 0) = \min\{\beta(0), \beta(0)\} \ge \min\{\beta(x), \beta(y)\} = \mu_{\beta}(x, y)$. It follows that $\beta(0) \ge \beta(x)$ for all $x \in X$, which prove (FI_1) . Now, let $(x_1, x_2), (y_1, y_2), (z_1, z_2), \in X \times X$, then $\min\{\beta(x_1^n * z_1), \beta(x_2^n * z_2)\} = \mu_{\beta}(x_1^n * z_1, x_2^n * z_2)$ $\ge \min\{\mu_{\beta}((x_1^n, x_2^n) * ((y_1, y_2) * (z_1, z_2))), \mu_{\beta}(y_1, y_2)\}$ $= \min\{\min\{\mu_{\beta}(x_1^n * (y_1 * z_1), x_2^n * (y_2 * z_2))\}, \mu_{\beta}(y_1, \mu_{\beta}(y_2))\}$ $= \min\{\min\{\mu_{\beta}(x_1^n * (y_1 * z_1), \beta(x_2^n * (y_2 * z_2)))\}, \min\{\beta(y_1), \beta(y_2)\}\}$ $= \min\{\min\{\beta(x_1^n * (y_1 * z_2), \beta(y_1))\}, \min\{\beta(x_2^n * (y_2 * z_2), \beta(y_2))\}\}$ In particular, if we take $x_2 = y_2 = z_2 = 0$, then

$$\beta(x_1^n * z_1) \ge \min\{\beta(x_1^n * (y_1 * z_1)), \beta(y_1)\}.$$

This proves (FI_2) and completes the proof.

5. Conclusion

We have studied the fuzzy foldedness of a KU-ideal in a KU-algebras. Also we discussed a few results of fuzzy n-fold KU-ideal of a KU-algebras under homomorphism, the image and the pre- image of fuzzy n-fold KU-ideals in KU - algebras are defined. How the image and the pre-image of fuzzy n-fold KU-ideals in KU-algebras become fuzzy n-fold KU-ideals are studied. Moreover, the product of fuzzy n-fold KU-ideals to product KU-algebras is established. Furthermore, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.

The main purpose of our future work is to investigate the foldedness of other types of fuzzy n-fold ideals such as a bipolar fuzzy n-fold KU-ideal of KU-algebras.

Appendix A. Algorithms

This appendix contains all necessary algorithms Algorithm for KU-algebras Input (X: set, *: binary operation) Output (" X is a KU-algebra or not") Begin If $X = \phi$ then go to (1.); EndIf If $0 \notin X$ then go to (1.); EndIf Stop: =false; i := 1;While $i \leq |X|$ and not (Stop) do If $x_i * x_i \neq 0$ then Stop: = true; EndIf j := 1While $j \leq |X|$ and not (Stop) do If $((y_j * x_i) * x_i) \neq 0$ then Stop: = true; EndIf EndIf k := 1While $k \leq |X|$ and not (Stop)do If $(x_i * y_i) * ((y_j * z_k) * (x_i * z_k)) \neq 0$ then Stop: = true; EndIf EndIf While EndIf While EndIf While

If Stop then

```
(1.) Output (" X is not a KU-algebra")
     Else
       Output (" X is a KU-algebra")
     EndIf
      End
Algorithm for fuzzy subsets
Input (X : \text{KU-algebra}, A : X \rightarrow [0, 1]);
Output (" A is a fuzzy subset of X or not")
Begin
Stop: =false;
i := 1;
While i \leq |X| and not (Stop) do
If (A(x_i) < 0) or (A(x_i) > 1) then
Stop: = true;
EndIf
   EndIf While
If Stop then
Output (" A is a fuzzy subset of X ")
     Else
       Output (" A is not a fuzzy subset of X ")
     EndIf
     End
   Algorithm for n-fold KU-ideals
Input (X: KU-algebra, I: subset of X, n \in N);
Output (" I is an n-fold KU-ideal of X or not");
Begin
If I = \phi then go to (1.);
EndIf
If 0 \notin I then go to (1.);
EndIf
Stop: =false;
i := 1;
While i \leq |X| and not (Stop) do
j := 1
While j \leq |X| and not (Stop) do
k := 1
While k \leq |X| and not (Stop) do
If (x_i^n * (y_j * z_k)) \in I and y_i \in I then
If (x_i^n * z_k) \notin I then
   Stop: = true;
     EndIf
     EndIf
```

EndIf While EndIf While EndIf While If Stop then Output (" I is an n-fold KU-ideal of X ") Else (1.) Output (" I is not an n-fold KU-ideal of X ") EndIf End Algorithm for fuzzy n-fold KU-ideals Input (X KU-algebra, *: binary operation, A: fuzzy subset of X); Output (" A is a fuzzy n-fold KU-ideal of X or not") Begin Stop: = false; i := 1;While $i \leq |X|$ and not (Stop) do If $A(0) < A(x_i)$ then Stop: = true; EndIf j := 1While $j \leq |X|$ and not (Stop) do k := 1While $k \leq |X|$ and not (Stop) do If $A(x_i^n * z_k) < \min(A(x_i^n * (y_j * z_k)), A(y_j))$ then Stop: = true; EndIf EndIf While EndIf While EndIf While If Stop then Output (" A is not a fuzzy n-fold KU-ideal of X ") Else Output (" Ais a fuzzy n-fold KU-ideal of X ") EndIf End

Acknowledgements. The authors are thankful to the referees for a careful reading of the paper and for valuable comments and suggestions.

References

- [2] M. Akram, N. Yaqoob and Gulistan, Cubic KU-subalgebras, Int. J. Pure Appl. Math. 89(5) (2013) 659-665.
- [3] P. Bhattacharye and N. P. Mukheriee, Fuzzy relations and fuzzy groups, Inform. Sci. 36(3) (1985) 267-282.

- [4] M. Gulistan, M. Shahzad and S. Ahmed, On (α, β) -fuzzy KU-ideals of KU-algebras, Afr. Mat. (in press).
- [5] Y. B. Jun, On n-fold fuzzy BCC-ideals, Sci. Math. 3(1) (2000) 61-66 (electronic).
- [6] Y. B. Jun and W. A. Dudek, n-fold BCC-ideals of BCC-algebras, Sci. Math. 3(2) (2000) 173–178.
- [7] D. S. Malik and J. N. Mordeson, Fuzzy relation on rings and groups, Fuzzy Sets and Systems 43 (1991) 117–123.
- [8] S. M. Mostafa, M. A. Abd-Elnaby and M. M. M. Yousef, Fuzzy ideals of KU-Algebras, Int. Math. Forum 6(63) (2011) 3139–3149.
- [9] S. M. Mostafa and F. F. Kareem, N-fold commutative KU-Algebras, Int. J. Algebra 8(6) (2014) 267–275.
- [10] G. Muhiuddin, Bipolar fuzzy KU-subalgebras \ ideals of KU-algebras, Ann. Fuzzy Math. Inform. 8(3) (2014) 339–504.
- [11] C. Prabpayak and U. Leerawat, On ideals and congruence in KU-algebras, Scientia Magna 5(1) (2009) 54–57.
- [12] C. Prabpayak and U. Leerawat, On isomorphisms of KU-algebras, Scientia Magna 5(3) (2009) 25–31.
- [13] N. Yaqoob, S. M. Mostafa and M. A. Ansari, On cubic KU-ideals of KU-algebras, ISRN Algebra 2013, Art. ID 935905, 10 pp.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

SAMY M. MOSTAFA (samymostafa@yahoo.com)

Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

FATEMA F. KAREEM (fa_sa20072000@yahoo.com)

Department of Mathematics, Faculty of science, Ain Shams University, Cairo, Egypt and Department of Mathematics, Ibn-Al-Haitham college of Education, University of Baghdad, Iraq