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Abstract. In this article we introduce the sequence spaces[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and

[
Λ

2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
, and study some basic topo-

logical and algebraic properties of these spaces. Also we investigate the
relations related to these spaces and some of their properties like solidity,
symmetricity, convergence free etc., and also investigate some inclusion
relations related to these spaces.
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1. Introduction

Throughout w,Γ,Λ,N and R denote the classes of all, entire and analytic scalar
valued single sequences, the set of all positive integers and the set of all real numbers
respectively.

We write w2 for the set of all complex double sequences (xmn), where m,n ∈ N.
Then, w2 is a linear space under the coordinate wise addition and scalar multiplica-
tion.

Some initial works on double sequence spaces is found in Bromwich [1]. Later
on, they were investigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir
and Solankan [5], Tripathy [6], Türkmenoglu [7], and many others.

We procure the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn − l|tmn = 1for some l ∈ C

}
,



N. Subramanian/Ann. Fuzzy Math. Inform. 8 (2014), No. 6, 965–976

C0p (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn|tmn = 1

}
,

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|tmn < ∞

}
,

Cbp (t) := Cp (t)
∩
Mu (t) and C0bp (t) = C0p (t)

∩
Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1
for all m,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the sets
Mu, Cp, C0p,Lu, Cbp and C0bp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gökhan and Colak
[8,9] have proved that Mu (t) and Cp (t) , Cbp (t) are complete paranormed spaces of
double sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and Cbp (t) .
Quite recently, in her PhD thesis, Zelter [10] has essentially studied both the theory
of topological double sequence spaces and the theory of summability of double se-
quences. Mursaleen and Edely [11] and Tripathy have independently introduced the
statistical convergence and Cauchy for double sequences and given the relation be-
tween statistical convergent and strongly Cesàro summable double sequences. Altay
and Başar [12] have defined the spaces BS,BS (t) , CSp, CSbp, CSr and BV of double
sequences consisting of all double series whose sequence of partial sums are in the
spaces Mu,Mu (t) , Cp, Cbp, Cr and Lu, respectively, and also examined some proper-
ties of those sequence spaces and determined the α− duals of the spaces BS,BV, CSbp

and the β (ϑ)− duals of the spaces CSbp and CSr of double series. Başar and Sever
[13] have introduced the Banach space Lq of double sequences corresponding to the
well-known space ℓq of single sequences and examined some properties of the space
Lq. Quite recently Subramanian and Misra [14] have studied the space χ2

M (p, q, u)
of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a
modulus was introduced by Maddox [15] as an extension of the definition of strongly
Cesàro summable sequences. Connor [16] further extended this definition to a def-
inition of strong A− summability with respect to a modulus where A = (an,k) is
a nonnegative regular matrix and established some connections between strong A−
summability, strong A− summability with respect to a modulus, and A− statistical
convergence. In [17] the notion of convergence of double sequences was presented
by A. Pringsheim. Also, in [18]-[19], and [20] the four dimensional matrix trans-
formation (Ax)k,ℓ =

∑∞
m=1

∑∞
n=1 a

mn
kℓ xmn was studied extensively by Robison and

Hamilton.
We need the following inequality in the sequel of the paper. For a, b,≥ 0 and

0 < p < 1, we have

(1.1) (a+ b)p ≤ ap + bp.

The double series
∑∞

m,n=1 xmn is called convergent if and only if the double sequence

(smn) is convergent, where smn =
∑m,n

i,j=1 xij(m,n ∈ N).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|1/m+n
< ∞.

The vector space of all double analytic sequences will be denoted by Λ2. A sequence
966
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x = (xmn) is called double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞.
The double gai sequences will be denoted by χ2. Let ϕ = {finite sequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence

is defined by x[m,n] =
∑m,n

i,j=0xijℑij for all m,n ∈ N ; where ℑij denotes the dou-

ble sequence whose only non zero term is a 1
(i+j)! in the (i, j)

th
place for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (ℑmn) is a
Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings x = (xk) →
(xmn)(m,n ∈ N) are also continuous.

Let M and Φ are mutually complementary modulus functions. Then, we have:
(i) For all u, y ≥ 0,

(1.2) uy ≤ M (u) + Φ (y) , (Y oung′s inequality)[See[21]]

(ii) For all u ≥ 0,

(1.3) uη (u) = M (u) + Φ (η (u)) .

(iii) For all u ≥ 0, and 0 < λ < 1,

(1.4) M (λu) ≤ λM (u)

Lindenstrauss and Tzafriri [22] used the idea of Orlicz function to construct Orlicz
sequence space

ℓM =
{
x ∈ w :

∑∞
k=1 M

(
|xk|
ρ

)
< ∞, for someρ > 0

}
.

The space ℓM with the norm

∥x∥ = inf
{
ρ > 0 :

∑∞
k=1 M

(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
tp (1 ≤ p < ∞) , the spaces ℓM coincide with the classical sequence space ℓp.

A sequence f = (fmn) of modulus function is called a Musielak-modulus function.
A sequence g = (gmn) defined by

gmn (v) = sup {|v|u− (fmn) (u) : u ≥ 0} ,m, n = 1, 2, · · ·
is called the complementary function of a Musielak-modulus function f . For a given
Musielak modulus function f, the Musielak-modulus sequence space tf is defined as
follows

tf =
{
x ∈ w2 : Mf (|xmn|)1/m+n → 0asm, n → ∞

}
,

where Mf is a convex modular defined by

Mf (x) =
∑∞

m=1

∑∞
n=1 fmn (|xmn|)1/m+n

, x = (xmn) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) = supmn

{
inf

(∑∞
m=1

∑∞
n=1 fmn

(
|xmn|1/m+n

mn

))
≤ 1

}
.
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If X is a sequence space, we give the following definitions:

(i)X
′
= the continuous dual of X;

(ii)Xα =
{
a = (amn) :

∑∞
m,n=1 |amnxmn| < ∞, for eachx ∈ X

}
;

(iii)Xβ =
{
a = (amn) :

∑∞
m,n=1amnxmn is convegent, for eachx ∈ X

}
;

(iv)Xγ =
{
a = (amn) : supmn≥1

∣∣∣∑M,N
m,n=1 amnxmn

∣∣∣ < ∞, for eachx ∈ X
}
;

(v)letX be an FK − space ⊃ ϕ; thenXf =
{
f(ℑmn) : f ∈ X

′
}
;

(vi)Xδ =
{
a = (amn) : supmn |amnxmn|1/m+n

< ∞, for eachx ∈ X
}
;

Xα, Xβ , Xγ are called α − (orKöthe − Toeplitz)dual of X,β − (or generalized −
Köthe− Toeplitz)dual ofX, γ− dual of X, δ− dual ofX respectively.Xα is defined
by Gupta and Kamptan . It is clear that Xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ

does not hold, since the sequence of partial sums of a double convergent series need
not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by
Kizmaz as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z} ,
for Z = c, c0 and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and ℓ∞ denote the classes of convergent,null and bounded scalar valued
single sequences respectively. The difference sequence space bvp of the classical space
ℓp is introduced and studied in the case 1 ≤ p ≤ ∞ by Başar and Altay and in the
case 0 < p < 1 by Altay and Başar. The spaces c (∆) , c0 (∆) , ℓ∞ (∆) and bvp are
Banach spaces normed by

∥x∥ = |x1|+ supk≥1 |∆xk| and ∥x∥bvp
= (

∑∞
k=1 |xk|p)

1/p
, (1 ≤ p < ∞) .

Later on the notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
,

where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn −
xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N.

2. Preliminaries

Let n ∈ N and X be a real vector space of dimension m, where n ≤ m. A
real valued function dp(x1, . . . , xn) = ∥(d1(x1), . . . , dn(xn))∥p on X satisfying the
following four conditions:
(i) ∥(d1(x1), . . . , dn(xn))∥p = 0 if and and only if d1(x1), . . . , dn(xn) are linearly
dependent,
(ii) ∥(d1(x1), . . . , dn(xn))∥p is invariant under permutation,
(iii) ∥(αd1(x1), . . . , αdn(xn))∥p = |α| ∥(d1(x1), . . . , dn(xn))∥p, α ∈ R
(iv) dp ((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · ·xn)

p + dY (y1, y2, · · · yn)p)1/p
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for 1 ≤ p < ∞; (or)
(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := sup {dX(x1, x2, · · ·xn), dY (y1, y2, · · · yn)} ,
for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y is called the p product metric of the Cartesian
product of n metric spaces is the p norm of the n-vector of the norms of the n
subspaces.

A trivial example of p product metric of n metric space is the p norm space is
X = R equipped with the following Euclidean metric in the product space is the p
norm:

∥(d1(x1), . . . , dn(xn))∥E = sup (|det(dmn (xmn))|) =

sup



∣∣∣∣∣∣∣∣∣∣∣∣

d11 (x11) d12 (x12) ... d1n (x1n)
d21 (x21) d22 (x22) ... d2n (x1n)

.

.

.
dn1 (xn1) dn2 (xn2) ... dnn (xnn)

∣∣∣∣∣∣∣∣∣∣∣∣


where xi = (xi1, · · ·xin) ∈ Rn for each i = 1, 2, · · ·n.
If every Cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the p− metric. Any complete p− metric space is said to
be p− Banach metric space.

The notion of ideal convergence was introduced first by Kostyrko et al.[24] as
a generalization of statistical convergence which was further studied in topological
spaces by Kumar et al.[25,26] and also more applications of ideals can be deals with
various authors by B.Hazarika [27-39] and B.C.Tripathy and B. Hazarika [40-43].

Definition 2.1. A family I ⊂ 2Y of subsets of a non empty set Y is said to be an
ideal in Y if
(1) ϕ ∈ I,
(2) A,B ∈ I implies A

∪
B ∈ I,

(3) A ∈ I,B ⊂ A implies B ∈ I.
While an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y.

Given I ⊂ 2N×N be a non trivial ideal in N × N. A sequence (xmn)m,n∈N×N in

X is said to be I− convergent to 0 ∈ X, if for each ϵ > 0 the set A (ϵ) =
{m,n ∈ N× N : ∥(d1(x1), . . . , dn(xn))− 0∥p ≥ ϵ} belongs to I.

Definition 2.2. A non-empty family of sets F ⊂ 2X is a filter on X if and only if
(1) ϕ /∈ F,
(2) A,B ∈ F implies A

∩
B ∈ F,

(3) A ∈ F,A ⊂ B, implies B ∈ F.

Definition 2.3. An ideal I is called non-trivial ideal if I ̸= ϕ and X /∈ I. Clearly
I ⊂ 2X is a non-trivial ideal if and only if F = F (I) = {X −A : A ∈ I} is a filter
on X.

Definition 2.4. A non-trivial ideal I ⊂ 2X is called (i) admissible if and only if
{{x} : x ∈ X} ⊂ I. (ii) maximal if there cannot exists any non-trivial ideal J ̸= I
containing I as a subset.

If we take I = If = {A ⊆ N× N : A is a finite subset } . Then If is a non-trivial
admissible ideal of N and the corresponding convergence coincides with the usual
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convergence. If we take I = Iδ = {A ⊆ N× N : δ(A) = 0} where δ (A) denote the
asyptotic density of the set A. Then Iδ is a non-trivial admissible ideal of N×N and
the corresponding convergence coincides with the statistical convergence.

Let D denote the set of all closed and bounded intervals X = [x1, x2] on the real
line R × N. For X,Y ∈ D, we define X ≤ Y if and only if x1 ≤ y1 and x2 ≤ y2,
d(X,Y ) = max {|x1 − y1| , |x2 − y2|}, where X = [x1, x2] and Y = [y1, y2].

Then it can be easily seen that d defines a metric on D and (D, d) is a complete
metric space. Also the relation ≤ is a partial order on D. A fuzzy number X is a
fuzzy subset of the real line R × R that is a mapping X : R → J where J = [0, 1]
associating each real number t with its grade of membership X (t).

Definition 2.5. A fuzzy number X is said to be (i) convex if X (t) ≥ X (s)∧X (r) =
min {X (s) , X (r)}, where s < t < r. (ii) normal if there exists t0 ∈ R × R such
that X (t0) = 1. (iii) upper semi-continuous if for each ϵ > 0, X−1 ([0, a+ ϵ]) for all
a ∈ [0, 1] is open in the usual topology of R× R.

Let R (J) denote the set of all fuzzy numbers which are upper semicontinu-
ous and have compact support, that is if X ∈ R (J) × R (J) the for any α ∈
[0, 1] , [X]

α
is compact, where [X]

α
= {t ∈ R× R : X (t) ≥ α, if α ∈ [0, 1]}, [X]

0
=

({t ∈ R× R : X (t) > α, ifα = 0}).
The set R of real numbers can be embedded R (J) if we define r̄ ∈ R (J)× R (J)

by

r̄ (t) =

{
1, if t = r :

0, if t ̸= r

The absolute value, |X| of X ∈ R (J) is defined by

|X| (t) =

{
max {X (t) , X (−t)} , if t ≥ 0;

0, if t < 0

Define a mapping d̄ : R (J)× R (J) → R+ ∪ {0}by
d̄ (X,Y ) = sup0≤α≤1d ([X]

α
, [Y ]

α
) .

It is known that
(
R (J) , d̄

)
is a complete metric space.

Definition 2.6. A metric on R (J) is said to be translation invariant if

d̄ (X + Z, Y + Z) = d̄ (X,Y )

for X,Y, Z ∈ R (J) .

Definition 2.7. A sequence X = (Xmn) of fuzzy numbers is said to be convergent
to a fuzzy number X0 if for every ϵ > 0, there exists a positive integer n0 such that
d̄ (Xmn, X0) < ϵ for all m,n ≥ n0.

Definition 2.8. A sequence X = (Xmn) of fuzzy numbers is said to be (i) I-
convergent to a fuzzy number X0 if for each ϵ > 0 such that

A =
{
m,n ∈ N : d̄ (Xmn, X0) ≥ ϵ

}
∈ I.

The fuzzy number X0 is called I-limit of the sequence (Xmn) of fuzzy numbers and
we write I − limXmn = X0. (ii) I-bounded if there exists M > 0 such that

{m,n ∈ N : d (Xmn, 0̄) > M} ∈ I.
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Definition 2.9. Let a sequence space EF of fuzzy numbers. Then, (i) EF is said
to be solid ( or normal) if (Ymn) ∈ EF whenever (Xmn) ∈ EF and d̄ (Ymn, 0̄) ≤
d̄ (Xmn, 0̄) for all m,n ∈ N. (ii) EF is said to be symmetric if (Xmn) ∈ EF implies(
Xπ(mn)

)
∈ EF where π is a permutation of N× N.

Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space of E is
a sequence space

λE
mn =

{(
Xmpnp

)
∈ w2 : (mpnp) ∈ E

}
.

A canonical preimage of a sequence
{(

xmpnp

)}
∈ λE

K is a sequence {ymn} ∈ w2

defined as

ymn =

{
xmn, if m,n ∈ E

0, otherwise.

A canonical preimage of a step space λE
K is a set of canonical preimages of all elements

in λE
K , that is y is in canonical preimage of λE

K if and only if y is canonical preimage
of some x ∈ λE

K .

Definition 2.10. A sequence space EF is said to be monotone if EF contains the
canonical pre-images of all its step spaces.

The following well-known inequality will be used throughout the article. Let
p = (pmn) be any sequence of positive real numbers with 0 ≤ pmn ≤ supmnpmn =
G,D = max {1, 2G− 1} then

|amn + bmn|pmn ≤ D (|amn|pmn + |bmn|pmn) for all m,n ∈ N and amn, bmn ∈ C.

Also |amn|pmn ≤ max
{
1, |a|G

}
for all a ∈ C.

First we procure some known results; those will help in establishing the results
of this article.

Lemma 2.11. A sequence space EF is normal implies EF is monotone. (For the
crisp set case, one may refer to Kamthan and Gupta [44], page 53).

Lemma 2.12. (Kostyrko et al., [24], Lemma 5.1). If I ⊂ 2N is a maximal ideal,
then for each A ⊂ N we have either A ∈ I or N−A ∈ I.

3. Some new sequence spaces of fuzzy numbers

The main aim of this article to introduce the following sequence spaces and ex-
amine topological and algebraic properties of the resulting sequence spaces. Let
p = (pmn) be a sequence of positive real numbers for all m,n ∈ N. f = (fmn) be

a Musielak-modulus function,
(
X, ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

)
be a p−metric

space, and µmn (X) = d̄ (Xmn, 0̄) be a sequence of fuzzy numbers, we define the
following sequence spaces as follows:[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
= {(Xmn) ∈ EF } :{{

(m,n) ∈ N× N :
[
fmn

(
∥µmn (X) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]
≥ ϵ

}
∈ I

}
,[

Λ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
= {(Xmn) ∈ EF : ∃M > 0} ∋{{

(m,n) ∈ N× N :
[
fmn

(
∥µmn (X) , (d (x1) , d (x2) , · · · , d (xn−1))∥p

)]
≥ M

}
∈ I

}
.
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Theorem 3.1. The spaces
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and[

Λ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
are normal and monotone

Proof. Let X = (Xmn) be any element of
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and Y = (ymn) be any sequence such that

d̄
(
((m+ n)!Ymn)

1/m+n
, 0̄
)
≤ d̄

(
((m+ n)!Xmn)

1/m+n
, 0̄
)
for all m,n ∈ N.

Then for all ϵ > 0,{
m,n ∈ N : d̄

(
((m+ n)!Ymn)

1/m+n
, 0̄
)
≥ ϵ

}
⊆{

m,n ∈ N : d̄
(
((m+ n)!Xmn)

1/m+n
, 0̄
)
≥ ϵ

}
.

Hence y = (Ymn) ∈
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
.

Thus the spaces
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
is normal and hence mono-

tone. Similarly
[
Λ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
. □

Proposition 3.2. If I is neither maximal nor I = I (F ) then the space[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
are not symmetric.

Example 3.3. Let us consider a sequence of fuzzy number defined by X = (Xmn) ,
where

((m+ n)!Xmn (t))
1/m+n

=

{
1 + t,−1 ≤ t ≤ 0

1− t, 0 ≤ t ≤ 1.

Then for m,n /∈ A /∈ I ∈
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
.

Let K ⊂ N be such that K /∈ I, then it must be N − K ∈ I. Let us consider a
sequence space Y = (Ymn) , a rearrangement of the sequence (Xmn) defined by

((m+ n)!Ymn)
1/m+n

=

{
((m+ n)!Xmn)

1/m+n
,m, n ∈ K

0, otherwise.

Then (Ymn) /∈
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
. Hence[

χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
is not symmetric.

Theorem 3.4. The spaces
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and[

Λ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
are sequence algebra

Proof. LetXmn and Ymn be two elements of
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
.

For α ∈ [0, 1] , let Xα
mn, Y

α
mn, 0̄

α be the α level set of Xmn, Ymn, 0̄ respectively. Since

d
(
((m+ n)!Xα

mnY
α
mn)

1/m+n
, 0̄α

)
≤ C1d

(
((m+ n)!Xα

mn)
1/m+n

, 0̄α
)
+

C2d
(
((m+ n)!Y α

mn)
1/m+n

, 0̄α
)
, therefore we have
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d̄
(
((m+ n)!XmnYmn)

1/m+n
, 0̄
)
≤ C1d̄

(
((m+ n)!Xmn)

1/m+n
, 0̄
)
+

C2d̄
(
((m+ n)!Ymn)

1/m+n
, 0̄
)
. Let ϵ > 0 be given. Then

A
(
ϵ
2

)
=

{
m,n ∈ N : d̄

(
((m+ n)!Xmn)

1/m+n
, 0̄
)
≥ ϵ

2

}
∈ I.

B
(
ϵ
2

)
=

{
m,n ∈ N : d̄

(
((m+ n)!Ymn)

1/m+n
, 0̄
)
≥ ϵ

2

}
∈ I.

C (ϵ) =
{
m,n ∈ N : d̄

(
((m+ n)!XmnYmn)

1/m+n
, 0̄
)
≥ ϵ

}
.

To prove the result it is sufficient to prove that C (ϵ) ⊆ A (ϵ1)
∪
B (ϵ2) . Now{

m,n ∈ N : d̄
(
((m+ n)!XmnYmn)

1/m+n
, 0̄
)
≥ ϵ

}
⊆

C1

{
m,n ∈ N : d̄

(
((m+ n)!Xmn)

1/m+n
, 0̄
)
≥ ϵ

2

}∪
C2

{
m,n ∈ N : d̄

(
((m+ n)!Ymn)

1/m+n
, 0̄
)
≥ ϵ

2

}
,

where ϵ1 = ϵ
2C1

and ϵ2 = ϵ
2C2

.
The other results can be shown similarly. □

Theorem 3.5.
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
is a complete metric space

under the metric
d (X,Y ) = supmn

{(
(m+ n)!d̄ (|Xmn − Ymn|)1/m+n

, 0̄
)
: m,n = 1, 2, 3, · · ·

}
,

where X = (Xmn) ∈
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
and

Y = (Ymn) ∈
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
Proof. Let

{
X(rs)

}
be a Cauchy sequence in[

χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
. Then given any ϵ > 0 there exists a

positive integer N ×N depending on ϵ such that d
(
X(rs), X(pq)

)
< ϵ,

for all r, s ≥ N ×N and for all p, q ≥ N ×N. Hence

supmn

{(
(m+ n)!d̄

(∣∣∣X(rs)
mn −X

(pq)
mn

∣∣∣)1/m+n

, 0̄

)}
< ϵ, for all r, s ≥ N ×N

and for all p, q ≥ N ×N. Consequently
(
(m+ n)!d̄ (Xmn, 0̄)

)1/m+n
is a

Cauchy sequence in the metric space C of complex numbers. But C is complete.
So,(
(m+ n)!d̄

(
X

(rs)
mn , 0̄

))1/m+n

→
(
(m+ n)!d̄ (Xmn, 0̄)

)1/m+n
as r, s → ∞.

Hence there exists a positive integer r0s0 such that{(
(m+ n)!d̄

(∣∣∣X(rs)
mn −Xmn

∣∣∣)1/m+n

, 0̄

)}
< ϵ, for all r0, s0 ≥ N ×N.

In particular, we have

{(
(m+ n)!d̄

(∣∣∣X(r0s0)
mn −Xmn

∣∣∣)1/m+n

, 0̄

)}
< ϵ.

Now(
(m+ n)!d̄ (Xmn, 0̄)

)1/m+n ≤
(
(m+ n)!d̄

(∣∣∣Xmn −X
(r0s0)
mn

∣∣∣)1/m+n

, 0̄

)
+(

(m+ n)!d̄
(
X

(r0s0)
mn , 0̄

))1/m+n

< ϵ+ 0 as m,n → ∞.
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(
(m+ n)!d̄ (Xmn, 0̄)

)1/m+n
< ϵ as m,n → ∞.

That is (Xmn) ∈
[
χ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
. □

Corollary 3.6.
[
Λ
2I(F )
f , ∥(d (x1) , d (x2) , · · · , d (xn−1))∥p

]
is a complete metric space.

Proof. Similarly the proof of Theorem 3.5. □
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