Annals of Fuzzy Mathematics and Informatics Volume 8, No. 6, (December 2014), pp. 921–939

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

© Kyung Moon Sa Co. http://www.kyungmoon.com

On soft fuzzy G_{δ} pre continuity in soft fuzzy topological space

V. Visalakshi, M. K. Uma, E. Roja

Received 16 September 2013; Revised 11 May 2014; Accepted 31 May 2014

ABSTRACT. In this paper the concept of soft fuzzy G_{δ} pre open set and soft fuzzy G_{δ} -pre continuous functions are introduced. Also the concepts soft fuzzy G_{δ} pre kernel, soft fuzzy G_{δ} -pre connectedness, soft fuzzy G_{δ} -pre compactness and soft fuzzy G_{δ} -pre normal spaces are introduced and studied.

2010 AMS Classification: 54A40, 03E72

Keywords: Soft fuzzy G_{δ} pre open set, Soft fuzzy F_{σ} pre closed set, Soft fuzzy G_{δ} pre kernel, Soft fuzzy G_{δ} -pre continuous, Soft fuzzy G_{δ} -pre irresolute, Soft fuzzy G_{δ} -pre connected space, Soft fuzzy G_{δ} -pre compact space, Soft fuzzy G_{δ} -pre normal space.

Corresponding Author: V. Visalakshi (visalkumar_cbe@yahoo.co.in)

1. Introduction

Zadeh introduced the fundamental concepts of fuzzy sets in his classical paper [8]. Fuzzy sets have applications in many fields such as information [5] and control[6]. In mathematics, topology provided the most natural framework for the concepts of fuzzy sets to flourish. Chang [4] introduced and developed the concept of fuzzy topological spaces. The concept of soft fuzzy topological space is introduced by Ismail U.Tiryaki [7]. G.Balasubramanian [1] introduced the concept of fuzzy G_{δ} set. The concept of pre open set was introduced by A.S.Bin Shahana [3].

In this paper soft fuzzy G_{δ} pre open set is introduced and studied. Some of its properties are discussed. Several characterizations of soft fuzzy G_{δ} -pre continuous functions are established. In this connection, some of their interrelations are discussed and counter examples are provided wherever necessary.

A new characterizations of soft fuzzy G_{δ} -pre connected, soft fuzzy G_{δ} -pre compact and soft fuzzy G_{δ} -pre normal spaces are introduced and their properties are discussed.

2. Preliminaries

Definition 2.1 ([1]). Let (X,T) be a fuzzy topological space. Let λ be any fuzzy set. Then λ is said to be fuzzy G_{δ} set if $\lambda = \bigwedge_{i=1}^{\infty} \mu_i$, where each μ_i is fuzzy open set. The complement of a fuzzy G_{δ} set is fuzzy F_{σ} .

Definition 2.2 ([3]). Let (X,T) be a fuzzy topological space. Let λ be any fuzzy set. Then λ is said to be fuzzy *pre open* set if $\lambda \leq int(cl(\lambda))$. The complement of a pre open set is *pre closed*.

Definition 2.3 ([3]). Let (X,T) be a fuzzy topological space. Let λ be any fuzzy set. Then λ is said to be fuzzy α open set if $\lambda \leq int(cl(int(\lambda)))$. The complement of an α open set is α closed.

Definition 2.4 ([2]). Let (X,T) be a fuzzy topological space. Let λ be any fuzzy set. Then λ is said to be fuzzy β open set if $(\lambda, N) \leq cl(int(cl(\lambda)))$. The complement of a β open set is β closed.

Definition 2.5 ([7]). Let X be a set, μ be a fuzzy subset of X and $M \subseteq X$. Then,the pair (μ, M) will be called a soft fuzzy subset of X. The set of all soft fuzzy subsets of X will be denoted by SF(X).

Definition 2.6 ([7]). The relation \sqsubseteq on SF(X) is given by $(\mu, M) \sqsubseteq (\gamma, N) \Leftrightarrow (\mu(x) < \gamma(x)) or(\mu(x) = \gamma(x) and x \notin M/N), \forall x \in X$ and for all $(\mu, M), (\gamma, N) \in SF(X)$.

Proposition 2.7 ([7]). If $(\mu_j, M_j)_{j \in J} \in SF(X)$, then the family $\{(\mu_j, M_j) | j \in J\}$ has a meet, that is greatest lower bound, in $(SF(X), \sqsubseteq)$, denoted by

$$\sqcap_{i \in J}(\mu_i, M_i)$$
 such that $\sqcap_{i \in J}(\mu_i, M_i) = (\mu, M)$

where

$$\begin{array}{l} \mu(x) = \bigwedge_{j \in J} \mu_j(x), \forall \, x \in X. \\ M = \bigcap_{j \in J} M_j. \end{array}$$

Proposition 2.8 ([7]). If $(\mu_j, M_j)_{j \in J} \in SF(X)$, then the family $\{(\mu_j, M_j) | j \in J\}$ has a join, that is least upper bound, in $(SF(X), \sqsubseteq)$, denoted by

$$\sqcup_{i \in J}(\mu_i, M_i)$$
 such that $\sqcup_{i \in J}(\mu_i, M_i) = (\mu, M)$

where

$$\mu(x) = \bigvee_{j \in J} \mu_j(x), \forall x \in X.$$

$$M = \bigcup_{j \in J} M_j.$$

Definition 2.9 ([7]). Let X be a non-empty set and the soft fuzzy sets A and B be in the form,

$$A = \{(\mu, M)/\mu(x) \in I^X, \forall \, x \in X, M \subseteq X\}$$

$$B = \{(\lambda, N)/\lambda(x) \in I^X, \forall \, x \in X, N \subseteq X\}$$

Then,

- (1) $A \subseteq B \Leftrightarrow \mu(x) \leq \lambda(x), \forall x \in X, M \subseteq N$.
- (2) $A = B \Leftrightarrow \mu(x) = \lambda(x), \forall x \in X, M = N.$
- (3) $A' \Leftrightarrow 1 \mu(x), \forall x \in X, X \mid M$.
- (4) $A \sqcap B \Leftrightarrow \mu(x) \land \lambda(x), \forall x \in X, M \cap N$.

(5) $A \sqcup B \Leftrightarrow \mu(x) \lor \lambda(x), \forall x \in X, M \cup N$.

Definition 2.10 ([7]).
$$(0, \phi) = \{(\lambda, N)/\lambda = 0, N = \phi\}$$
 $(1, X) = \{(\lambda, N)/\lambda = 1, N = X\}$

Definition 2.11 ([7]). For $(\mu, M) \in SF(X)$ the soft fuzzy set $(\mu, M)' = (1 - \mu, X|M)$ is called the complement of (μ, M) .

Definition 2.12 ([7]). Let $x \in X$ and $S \in I$ define $x_s : X \to I$ by,

$$x_s(z) = \begin{cases} s & \text{if } z = x; \\ 0 & \text{otherwise.} \end{cases}$$

Then, the soft fuzzy set $(x_s, \{x\})$ is called the point of SF(X) with base x and value s.

Proposition 2.13 ([7]). Let $\varphi: X \to Y$ be a point function.

(1) The mapping $\varphi^{\rightharpoonup}$ from SF(X) to SF(Y) corresponding to the image operator of the diffunction (f,F) is given by

$$\varphi^{\rightharpoonup}(\mu, M) = (\gamma, N) \text{ where } \gamma(y) = \sup\{\mu(x)/y = \varphi(x)\} \text{ and } N = \{\varphi(x)/x \in M\}.$$

(2) The mapping φ —from SF(Y) to SF(X) corresponding to the inverse image of the diffunction (f,F) is given by

$$\varphi^{\leftarrow}(\gamma, N) = (\gamma \circ \varphi, \varphi^{-1}[N]).$$

Note: $\varphi^{-}(\mu, M) = \varphi(\mu, M)$ and $\varphi^{-}(\gamma, N) = \varphi^{-1}(\gamma, N)$.

Definition 2.14 ([7]). A subset $T \subseteq SF(X)$ is called an SF-topology on X if

- (1) $(0, \phi)$ and $(1, X) \in T$.
- (2) $(\mu_j, M_j) \in T, j = 1, 2, 3, ... n \Rightarrow \bigcap_{i=1}^n (\mu_j, M_j) \in T.$
- (3) $(\mu_j, M_j), j \in J \Rightarrow \sqcup_{j \in J} (\mu_j, M_j) \in T$. the elements of T are called soft fuzzy open, and those of $T' = \{(\mu, M)/(\mu, M)' \in T\}$ soft fuzzy closed.

If T is a SF-topology on X we call the pair (X,T) an SF-topological space (in short, SFTS).

Definition 2.15 ([7]). The closure of a soft fuzzy set (μ, M) will be denoted by (μ, M) . It is given by

$$\overline{(\mu, M)} = \bigcap \{ (\gamma, N) / (\mu, M) \sqsubseteq (\gamma, N), (\gamma, N) \in T' \}$$

Likewise the interior is given by

$$(\mu, M)^{\circ} = \sqcup \{(\gamma, N)/(\gamma, N) \in T, (\gamma, N) \sqsubseteq (\mu, M)\}$$

Note: $(\mu, M) = cl(\mu, M)$ and $(\mu, M)^{\circ} = int(\mu, M)$.

Definition 2.16 ([7]). A soft fuzzy topological space (X,T) is said to be a *soft fuzzy compact* if whenever $\bigsqcup_{i\in I}(\lambda_i,M_i)=(1,X), (\lambda_i,M_i)\in T, i\in I$, there is a finite subset J of I with $\bigsqcup_{i\in J}(\lambda_i,M_i)=(1,X)$.

3. Soft fuzzy G_{δ} pre open sets and its basic properties

Definition 3.1. Let (X,T) be a soft fuzzy topological space. Let (λ,N) be any soft fuzzy set. Then (λ,N) is said to be *soft fuzzy* G_{δ} *set* if $(\lambda,N) = \bigcap_{i=1}^{\infty} (\mu_i,M_i)$, where each (μ_i,M_i) is soft fuzzy open set. The complement of a soft fuzzy G_{δ} set is soft fuzzy F_{σ} .

Definition 3.2. Let (X,T) be a soft fuzzy topological space. Let (λ,N) be any soft fuzzy set. Then (λ,N) is said to be *soft fuzzy pre open set* if $(\lambda,N) \sqsubseteq int(cl(\lambda,N))$. The complement of a soft fuzzy pre open set is soft fuzzy pre closed.

Definition 3.3. Let (X,T) be a soft fuzzy topological space.Let (λ, N) be any soft fuzzy set. Then (λ, N) is said to be soft fuzzy G_{δ} pre open set if $(\lambda, N) = (\mu, M) \sqcap (\gamma, L)$, where (μ, M) is soft fuzzy G_{δ} set and (γ, L) is soft fuzzy pre open set. The complement of a soft fuzzy G_{δ} pre open set is soft fuzzy F_{σ} pre closed.

Remark 3.4.

- (i) Arbitrary union of soft fuzzy G_{δ} sets is soft fuzzy G_{δ} .
- (ii) Arbitrary union of soft fuzzy pre open sets is soft fuzzy pre open.

Proposition 3.5. Arbitrary union of soft fuzzy G_{δ} pre open sets is soft fuzzy G_{δ} pre open.

Proof. Let (μ_i, M_i) be soft fuzzy G_δ sets and let (γ_i, N_i) be soft fuzzy pre open sets. Let (λ_i, P_i) be the family of soft fuzzy G_δ pre open sets. Therefore $(\lambda_i, P_i) = (\mu_i, M_i) \sqcap (\gamma_i, N_i)$. Now

$$\sqcup_{i=1}^{\infty} (\lambda_i, P_i) = \sqcup_{i=1}^{\infty} [(\mu_i, M_i) \sqcap (\gamma_i, N_i)]
= \sqcup_{i=1}^{\infty} (\mu_i, M_i) \sqcap \sqcup_{i=1}^{\infty} (\gamma_i, N_i)$$

Since arbitrary union of soft fuzzy G_{δ} sets is soft fuzzy G_{δ} and arbitrary union of soft fuzzy pre open sets is soft fuzzy pre open. Therefore $\bigsqcup_{i=1}^{\infty}(\mu_i, M_i)$ is a soft fuzzy G_{δ} set and $\bigsqcup_{i=1}^{\infty}(\gamma_i, N_i)$ is a soft fuzzy pre open set. Thus $\bigsqcup_{i=1}^{\infty}(\mu_i, M_i) \sqcap \bigsqcup_{i=1}^{\infty}(\gamma_i, N_i)$ is soft fuzzy G_{δ} pre open set. Hence $\bigsqcup_{i=1}^{\infty}(\lambda_i, P_i)$ is soft fuzzy G_{δ} pre open. Hence the proof.

Remark 3.6.

- (i) Arbitrary intersection of soft fuzzy F_{σ} sets is soft fuzzy F_{σ} .
- (ii) Arbitrary intersection of soft fuzzy pre closed sets is soft fuzzy pre closed.

Proposition 3.7. Arbitrary intersection of soft fuzzy F_{σ} pre closed sets is soft fuzzy F_{σ} pre closed.

Proof. Let (μ_i, M_i) be soft fuzzy F_{σ} sets and let (γ_i, N_i) be soft fuzzy pre closed sets. Let (λ_i, P_i) be the family of soft fuzzy F_{σ} pre closed sets. Therefore $(\lambda_i, P_i) = (\mu_i, M_i) \sqcup (\gamma_i, N_i)$. Now

$$\sqcap_{i=1}^{\infty}(\lambda_{i}, P_{i}) = \sqcap_{i=1}^{\infty}[(\mu_{i}, M_{i}) \sqcup (\gamma_{i}, N_{i})]
= \sqcap_{i=1}^{\infty}(\mu_{i}, M_{i}) \sqcup \sqcap_{i=1}^{\infty}(\gamma_{i}, N_{i})$$

Since arbitrary intersection of soft fuzzy F_{σ} sets is soft fuzzy F_{σ} and arbitrary intersection of soft fuzzy pre closed sets is soft fuzzy pre closed. Therefore $\sqcap_{i=1}^{\infty}(\mu_i, M_i)$ is a soft fuzzy F_{σ} set and $\sqcap_{i=1}^{\infty}(\gamma_i, N_i)$ is a soft fuzzy pre closed set. Thus $\sqcap_{i=1}^{\infty}(\mu_i, M_i) \sqcup \sqcap_{i=1}^{\infty}(\gamma_i, N_i)$ is soft fuzzy F_{σ} pre closed set. Hence $\sqcap_{i=1}^{\infty}(\lambda_i, P_i)$ is soft fuzzy F_{σ} pre closed.

Definition 3.8. Let (X,T) be any soft fuzzy topological space and let (λ, M) be any soft fuzzy set in (X,T). Then soft fuzzy G_{δ} pre interior of (λ, M) is defined as follows

SF G_{δ} pre int $(\lambda, M) = \sqcup \{(\mu, N)/(\mu, N) \text{ is SF } G_{\delta} \text{ pre open and } (\mu, N) \sqsubseteq (\lambda, M) \}$

Definition 3.9. Let (X,T) be any soft fuzzy topological space and let $(x_r, \{x\})$ be any soft fuzzy point in (X,T). Then soft fuzzy G_{δ} pre interior of $(x_r, \{x\})$ is defined as follows

SF
$$G_{\delta}$$
 pre int $(x_r, \{x\}) = \sqcup \{(\mu, N)/(\mu, N) \text{ is SF } G_{\delta} \text{ pre open and } (\mu, N) \sqsubseteq (x_r, \{x\})\}$

Proposition 3.10. Let (X,T) be any soft fuzzy topological space. Let (λ, N) be any soft fuzzy set in (X,T). Then SF G_{δ} pre int (λ, N) is a soft fuzzy G_{δ} pre open set in (X,T).

Proof. It is easy to prove from the definition of SF G_{δ} pre interior of a soft fuzzy set.

Proposition 3.11. Let (X,T) be any soft fuzzy topological space and $(\lambda,M),(\mu,N)$ be soft fuzzy sets in (X,T). Then the following properties hold:

- (i) SF G_{δ} pre $int(\lambda, M) \sqsubseteq (\lambda, M)$.
- (ii) $(\lambda, M) \sqsubseteq (\mu, N) \Rightarrow SF G_{\delta} \ pre \ int(\lambda, M) \sqsubseteq SF G_{\delta} \ pre \ int(\mu, N)$.
- (iii) SF G_{δ} pre $int(SF G_{\delta})$ pre $int(\lambda, M) = SF G_{\delta}$ pre $int(\lambda, M)$.
- (iv) SF G_{δ} pre $int((\lambda, M) \sqcap (\mu, N)) \sqsubseteq SF G_{\delta}$ pre $int(\lambda, M) \sqcap SF G_{\delta}$ pre $int(\mu, N)$.
- (v) SF G_{δ} pre int(1, X) = (1, X).

Proof. Proof is obvious.

Definition 3.12. Let (X,T) be any soft fuzzy topological space and let (λ,M) be any soft fuzzy set in (X,T). Then soft fuzzy F_{σ} pre closure of (λ,M) is defined as follows

SF
$$F_{\sigma}$$
 pre cl $(\lambda, M) = \bigcap \{(\mu, N)/(\mu, N) \text{ is SF } F_{\sigma} \text{ pre closed and } (\mu, N) \supseteq (\lambda, M) \}$

Definition 3.13. Let (X,T) be any soft fuzzy topological space and let $(x_r,\{x\})$ be any soft fuzzy point in (X,T). Then soft fuzzy F_{σ} pre closure of $(x_r,\{x\})$ is defined as follows

SF
$$F_{\sigma}$$
 pre cl $(x_r, \{x\}) = \bigcap \{(\mu, N)/(\mu, N) \text{ is SF } F_{\sigma} \text{ pre closed and } (\mu, N) \supseteq (x_r, \{x\})\}$

Proposition 3.14. Let (X,T) be any soft fuzzy topological space. Let (λ, N) be any soft fuzzy set in (X,T). Then SF F_{σ} pre cl (λ, N) is a soft fuzzy F_{σ} pre closed set in (X,T).

Proof. It is easy to prove from the definition of SF F_{σ} pre closure of a soft fuzzy set.

Proposition 3.15. Let (X,T) be any soft fuzzy topological space and $(\lambda, M), (\mu, N)$ be soft fuzzy sets in (X,T). Then the following properties hold:

- (i) $(\lambda, M) \sqsubseteq SF F_{\sigma} precl(\lambda, M)$.
- (ii) $(\lambda, M) \sqsubseteq (\mu, N) \Rightarrow SF F_{\sigma}precl(\lambda, M) \sqsubseteq SF F_{\sigma}precl(\mu, N)$.
- (iii) $SF\ F_{\sigma}precl(SFF_{\sigma}precl(\lambda, M)) = SFF_{\sigma}precl(\lambda, M).$
- (iv) $SF \ F_{\sigma}precl((\lambda, M) \sqcup (\mu, N)) = SF \ F_{\sigma}precl(\lambda, M) \sqcup SF \ F_{\sigma}precl(\mu, N)$.
- (v) SF $F_{\sigma}precl(0,\phi) = (0,\phi)$.

Proof. Proof is obvious.

Proposition 3.16. For any soft fuzzy set (λ, M) in a soft fuzzy topological space (X, T) the following hold:

(i) SF F_{σ} pre $cl((1, X) - (\lambda, M)) = (1, X)$ - SF G_{δ} pre $int(\lambda, M)$.

(ii) SF G_{δ} pre $cl((1, X) - (\lambda, M)) = (1, X)$ - SF F_{σ} pre $cl(\lambda, M)$.

Proof. Proof is simple.

Definition 3.17. Let (X,T) be a soft fuzzy topological space. Let (λ, N) be a soft fuzzy set in (X,T). Then (λ, N) is said to be *soft fuzzy regular* G_{δ} *pre open* if $(\lambda, N) = \text{SF } G_{\delta}$ pre int ($\text{SF } F_{\sigma}$ pre cl (λ, N)).

Definition 3.18. Let (X,T) be a soft fuzzy topological space. Let (λ, N) be a soft fuzzy set in (X,T). Then (λ, N) is said to be *soft fuzzy regular* F_{σ} *pre closed* if $(\lambda, N) = \operatorname{SF} F_{\sigma}$ pre cl $(\operatorname{SF} G_{\delta})$ pre int (λ, N) .

Proposition 3.19.

- (i) The soft fuzzy F_{σ} pre closure of a soft fuzzy G_{δ} pre open set is soft fuzzy regular F_{σ} pre closed.
- (ii) The soft fuzzy G_{δ} pre interior of a soft fuzzy F_{σ} pre closed set is soft fuzzy regular G_{δ} pre open.

Proof.

(i) Let (λ, M) be a soft fuzzy G_{δ} pre open set of a soft fuzzy topological space (X, T).

Therefore SF G_{δ} pre int(SF F_{σ} pre $cl(\lambda, M)$) \sqsubseteq SF F_{σ} pre $cl(\lambda, M)$.

$$SFF_{\sigma}precl(SFG_{\delta}preint(SFF_{\sigma}precl(\lambda, M))) \sqsubseteq SFF_{\sigma}precl(SFF_{\sigma}precl(\lambda, M))$$

$$\sqsubseteq SFF_{\sigma}precl(\lambda, M).$$

Now (λ, M) is soft fuzzy G_{δ} pre open set.

$$(\lambda, M) \sqsubseteq SFF_{\sigma}precl(\lambda, M)$$

$$SFG_{\delta}preint(\lambda, M) \sqsubseteq SFG_{\delta}preint(SFF_{\sigma}precl(\lambda, M))$$

$$\Rightarrow (\lambda, M) \sqsubseteq SFG_{\delta}preint(SFF_{\sigma}precl(\lambda, M))$$

$$SFF_{\sigma}precl(\lambda, M) \sqsubseteq SFF_{\sigma}precl(SFG_{\delta}preint(SFF_{\sigma}precl(\lambda, M)))$$

Hence SF F_{σ} pre cl (λ, M) = SF F_{σ} pre cl $(\text{SF } G_{\delta} \text{ pre int}(\text{SF } F_{\sigma} \text{ pre cl}(\lambda, M)))$.

(ii) Let (λ, M) be a soft fuzzy F_{σ} pre closed set of a soft fuzzy topological space (X, T).

Therefore SF F_{σ} pre cl(SF G_{δ} pre int (λ, M)) \supseteq SF G_{δ} pre int (λ, M) .

SF G_{δ} pre $\operatorname{int}(SFF_{\sigma}$ pre $\operatorname{cl}(SF G_{\delta}$ pre $\operatorname{int}(\lambda, M))) \supseteq SF G_{\delta}$ pre $\operatorname{int}(SF G_{\delta}$ pre $\operatorname{int}(\lambda, M))$.

SF G_{δ} pre int(SF F_{σ} pre cl(SF G_{δ} pre int(λ, M))) $\supseteq SFG_{\delta}$ pre int(λ, M).

Now (λ, M) is soft fuzzy F_{σ} pre closed set.

$$(\lambda, M) \supseteq SFG_{\delta}preint(\lambda, M)$$

$$SFF_{\sigma}precl(\lambda, M) \supseteq SFF_{\sigma}precl(SFG_{\delta}preint(\lambda, M))$$

$$(\lambda, M) \supseteq SFF_{\sigma}precl(SFG_{\delta}preint(\lambda, M))$$

$$SFG_{\delta}preint(\lambda, M) \supseteq SFG_{\delta}preint(SFF_{\sigma}precl(SFG_{\delta}preint(\lambda, M))).$$

Hence SF G_{δ} pre int (λ, M) = SF G_{δ} pre int $(\text{SF } F_{\sigma}\text{pre cl}(G_{\delta} \text{ pre int}(\lambda, M)))$.

Definition 3.20. Let (X,T) be a Soft fuzzy topological space and (λ, M) be a Soft fuzzy set in (X,T). Then, the *kernel* (in short, Ker) of (λ, M) is defined as,

$$\operatorname{Ker}(\lambda, M) = \sqcap \{(\mu, N) / (\mu, N) \text{ is a soft fuzzy open set and } (\lambda, M) \sqsubseteq (\mu, N) \}$$

Definition 3.21. A soft fuzzy set (λ, N) is called as a *Soft fuzzy quasicoincident* with a soft fuzzy set (μ, M) ,denoted by $(\lambda, N)q(\mu, M)$, if $\lambda(x) + \mu(x) \geq 1$, for some $x \in X$ and $M \cap N \neq \phi$.

Definition 3.22. A soft fuzzy set (λ, N) is called as a *Soft fuzzy non-quasicoincident* with a soft fuzzy set (μ, M) , denoted by $(\lambda, N)^{\neg}q(\mu, M)$, if $\lambda(x) + \mu(x) < 1$, for all $x \in X$ and $M \cap N = \phi$.

Proposition 3.23. Let A,B be the soft fuzzy sets of X. Then $A \neg qB \Leftrightarrow A \sqsubseteq (1-B)$.

Definition 3.24. Let (X,T) be any soft fuzzy topological space and let (λ,M) be any soft fuzzy set in (X,T). Then soft fuzzy G_{δ} pre kernel of (λ,M) is defined as follows

SF
$$G_{\delta}$$
 pre ker $(\lambda, M) = \bigcap \{(\mu, N)/(\mu, N) \text{ is SF } G_{\delta} \text{ pre open and } (\mu, N) \supseteq (\lambda, M) \}$

Proposition 3.25. Let (λ, N) be a soft fuzzy set in (X, T). Let (μ, M) be a soft fuzzy F_{σ} pre closed set in (X, T). Then (μ, M) q SF G_{δ} pre ker $(\lambda, N) \Leftrightarrow (\mu, M)$ q (λ, N) .

Proof. Let $(\mu, M)^{\neg} q(\lambda, N)$. Then $(\lambda, N) \sqsubseteq (1, X) - (\mu, M)$.

Now SF
$$G_{\delta}$$
 pre ker $(\lambda, N) \sqsubseteq$ SF G_{δ} pre ker $((1, X) - (\mu, M))$.
Since $((1, X) - (\mu, M))$ is soft fuzzy G_{δ} pre open set in (X, T) .
Then SF G_{δ} pre ker $(\lambda, N) \sqsubseteq ((1, X) - (\mu, M))$.

Which implies SF G_{δ} pre ker $(\lambda, N) \neg q(\mu, M)$. Conversely, SF G_{δ} pre ker $(\lambda, N) \neg q(\mu, M)$.

This implies that SF
$$G_{\delta}$$
 pre ker $(\lambda, N) \sqsubseteq ((1, X) - (\mu, M))$.
Now $(\lambda, N) \sqsubseteq \text{SF}G_{\delta}$ pre ker $(\lambda, N) \sqsubseteq ((1, X) - (\mu, M))$.
It follows that $(\mu, M) \neg q(\lambda, N)$.

4. Interrelations of soft fuzzy G_δ pre open sets among various soft fuzzy sets

Definition 4.1. Let (X,T) be a soft fuzzy topological space. Let (λ, N) be a soft fuzzy set in (X,T). Then (λ, N) is said to be *Soft fuzzy* α *open* $(\beta \text{ open})$ if $(\lambda, N) \sqsubseteq int(cl(int(\lambda, N)))[(\lambda, N) \sqsubseteq cl(int(cl(\lambda, N)))]$. The complement of a soft fuzzy α open $(\beta \text{ open})$ set is soft fuzzy α closed $(\beta \text{ closed})$.

Definition 4.2. Let (X, T) be a soft fuzzy topological space. Let (λ, N) be any soft fuzzy set in (X, T). Then (λ, N) is said to be *soft fuzzy* G_{δ}^* open set if $(\lambda, N) = (\mu, M) \sqcap (\gamma, L)$, where (μ, M) is soft fuzzy G_{δ} set and (γ, L) is soft fuzzy open set.

Definition 4.3. Let (X,T) be a soft fuzzy topological space. Let (λ, N) be any soft fuzzy set in (X,T). Then (λ, N) is said to be *soft fuzzy* $G_{\delta}\alpha$ *open set* if $(\lambda, N) = (\mu, M) \sqcap (\gamma, L)$, where (μ, M) is soft fuzzy G_{δ} set and (γ, L) is soft fuzzy α open set.

Definition 4.4. Let (X,T) be a soft fuzzy topological space. Let (λ, N) be any soft fuzzy set in (X,T). Then (λ, N) is said to be *soft fuzzy* $G_{\delta}\beta$ *open set* if $(\lambda, N) = (\mu, M) \sqcap (\gamma, L)$, where (μ, M) is soft fuzzy G_{δ} set and (γ, L) is soft fuzzy β open set.

Remark 4.5. Every soft fuzzy open set is soft fuzzy α open set.

Proposition 4.6. Every soft fuzzy G_{δ}^* set is soft fuzzy $G_{\delta}\alpha$ open.

Proof. Let (X,T) be any soft fuzzy topological space. Let (λ,N) be any soft fuzzy set in (X,T). Assume that (λ,N) is soft fuzzy G_{δ}^* . That is $(\lambda,N)=(\mu,M)\sqcap(\gamma,P)$, where (μ,M) is soft fuzzy G_{δ} set and (γ,P) is soft fuzzy open set. Since every soft fuzzy open set is soft fuzzy α open set. Thus (γ,P) is soft fuzzy α open set. Hence (λ,N) is soft fuzzy $G_{\delta}\alpha$ open set.

Remark 4.7. The converse of the above property need not be true as shown in the following example.

Example 4.8. Let $X = \{a, b, c, d\}$, $T = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3), (\lambda_4, M_4), (\lambda_5, M_5)\}$ where $\lambda_i : X \to [0,1]$ for i = 1, 2, 3, 4, 5 and $M_i \subseteq X$, for i = 1, 2, 3, 4, 5 are defined as follows $\lambda_1(a) = 0, \lambda_1(b) = 0.4, \lambda_1(c) = 0, \lambda_1(d) = 0.3; \lambda_2(a) = 0.7, \lambda_2(b) = 0, \lambda_2(c) = 0.8, \lambda_2(d) = 0; \lambda_3(a) = 0.7, \lambda_3(b) = 0.4, \lambda_3(c) = 0.8, \lambda_3(d) = 0.3; \lambda_4(a) = 0.7, \lambda_4(b) = 1, \lambda_4(c) = 0.8, \lambda_4(d) = 1; \lambda_5(a) = 1, \lambda_5(b) = 0.4, \lambda_5(c) = 1, \lambda_5(d) = 0.3; M_1 = \{b\}, M_2 = \{c\}, M_3 = \{b, c\}, M_4 = \{a, b, c\}, M_5 = \{b, c, d\}.$ Then (X, T) is a soft fuzzy topological space. Consider the soft fuzzy set (λ, M) where $\lambda : X \to [0,1]$ and $M \subset X$ are defined as $\lambda(a) = 1, \lambda(b) = 0.5, \lambda(c) = 1, \lambda(d) = 0.5$ and $M = \{a, b, c\}$.

Now,
$$int(cl(int(\lambda, M))) = int(cl(\lambda_3, M_3))$$

= $int(1, X)$
= $(1, X)$

Thus $int(cl(int(\lambda, M))) \supseteq (\lambda, M)$. Therefore (λ, M) is a soft fuzzy α open set. Consider the soft fuzzy G_{δ} set (λ_5, M_5) . Now, $(\lambda_5, M_5) \sqcap (\lambda, M) = (\delta, M_3)$. Where

 (δ, M_3) is defined as $\delta(a) = 1$, $\delta(b) = 0.4$, $\delta(c) = 1$, $\delta(d) = 0.3$ and $M_3 = \{b, c\}$. Therefore (δ, M_3) is a soft fuzzy $G_\delta \alpha$ open set. But (δ, M_3) is not a soft fuzzy G_δ^* set.

Remark 4.9. Every soft fuzzy α open set is soft fuzzy pre open set.

Proposition 4.10. Every soft fuzzy $G_{\delta}\alpha$ open set is soft fuzzy G_{δ} pre open set.

Proof. Let (X,T) be any soft fuzzy topological space. Let (λ, N) be any soft fuzzy set in (X,T). Assume that (λ, N) is soft fuzzy $G_{\delta}\alpha$ open set. That is $(\lambda, N) = (\mu, M) \sqcap (\gamma, P)$, where (μ, M) is soft fuzzy G_{δ} set and (γ, P) is soft fuzzy α open set.

$$Now, (\gamma, P) \sqsubseteq int(cl(int(\gamma, P)))$$

 $\sqsubseteq int(cl(\gamma, P))$

Therefore $(\gamma, P) \sqsubseteq \operatorname{int}(\operatorname{cl}(\gamma, P))$, which implies (γ, P) is soft fuzzy pre open set. Hence (λ, N) is soft fuzzy G_{δ} pre open set.

Remark 4.11. The converse of the above property need not be true as shown in the following example.

Example 4.12. Let $X = \{a, b, c, d\}$, $T = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3), (\lambda_4, M_4), (\lambda_5, M_5)\}$ where $\lambda_i : X \to [0,1]$ for i = 1, 2, 3, 4, 5 and $M_i \subseteq X$, for i = 1, 2, 3, 4, 5 are defined as follows $\lambda_1(a) = 0, \lambda_1(b) = 0.4, \lambda_1(c) = 0, \lambda_1(d) = 0.3; \lambda_2(a) = 0.7, \lambda_2(b) = 0, \lambda_2(c) = 0.8, \lambda_2(d) = 0; \lambda_3(a) = 0.7, \lambda_3(b) = 0.4, \lambda_3(c) = 0.8, \lambda_3(d) = 0.3; \lambda_4(a) = 0.7, \lambda_4(b) = 1, \lambda_4(c) = 0.8, \lambda_4(d) = 1; \lambda_5(a) = 1, \lambda_5(b) = 0.4, \lambda_5(c) = 1, \lambda_5(d) = 0.3; M_1 = \{b\}, M_2 = \{c\}, M_3 = \{b, c\}, M_4 = \{a, b, c\}, M_5 = \{b, c, d\}.$ Then (X, T) is a soft fuzzy topological space. Consider the soft fuzzy set (λ, M) where $\lambda : X \to [0,1]$ and $M \subset X$ are defined as $\lambda(a) = 0.4, \lambda(b) = 0, \lambda(c) = 0.7, \lambda(d) = 0$ and $M = \{c\}.$

Now,
$$int(cl(\lambda, M)) = int((\lambda_1, M_1)')$$

 $= (\lambda_2, M_2)$
 $\supseteq (\lambda, M)$
Therefore, $int(cl(\lambda, M)) \supseteq (\lambda, M)$.

Thus (λ, M) is a soft fuzzy pre open set. Consider the soft fuzzy G_{δ} set (λ_2, M_2) . Now $(\lambda_2, M_2) \sqcap (\lambda, M) = (\lambda, M)$ is a soft fuzzy G_{δ} pre open set. But (λ, M) is not soft fuzzy α open.

$$\begin{split} int(cl(int(\lambda,M))) &= int(cl(0,\phi)) \\ &= int(0,\phi) \\ &= (0,\phi) \\ int(cl(int(\lambda,M))) \not \supseteq (\lambda,M) \end{split}$$

Therefore, (λ, M) is not a soft fuzzy α open set. Hence (λ, M) is a soft fuzzy $G_{\delta}pre$ open set and it is not a soft fuzzy $G_{\delta}\alpha$ open set.

Remark 4.13. Every soft fuzzy pre open set is soft fuzzy β open set.

Proposition 4.14. Every soft fuzzy G_{δ} pre open set is soft fuzzy $G_{\delta}\beta$ open set.

Proof. Let (X,T) be any soft fuzzy topological space. Let (λ,N) be any soft fuzzy set in (X,T). Assume that (λ,N) is soft fuzzy G_{δ} pre open set. That is $(\lambda,N) = (\mu,M) \sqcap (\gamma,P)$, where (μ,M) is soft fuzzy G_{δ} set and (γ,P) is soft fuzzy pre open set.

$$Now, (\gamma, P) \sqsubseteq int(cl(\gamma, P))$$

 $\sqsubseteq cl(int(cl(\gamma, P)))$

Therefore (γ, P) is soft fuzzy β open set. Hence (λ, N) is soft fuzzy $G_{\delta}\beta$ open set. \square

Remark 4.15. The converse of the above property need not be true as shown in the following example.

Example 4.16. Let $X = \{a, b, c, d\}$, $T = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3), (\lambda_4, M_4), (\lambda_5, M_5)\}$ where $\lambda_i : X \to [0,1]$ for i = 1, 2, 3, 4, 5 and $M_i \subseteq X$, for i = 1, 2, 3, 4, 5 are defined as follows $\lambda_1(a) = 0.6, \lambda_1(b) = 0, \lambda_1(c) = 0.2, \lambda_1(d) = 0;$ $\lambda_2(a) = 0, \lambda_2(b) = 0.5, \lambda_2(c) = 0, \lambda_2(d) = 0.1; \lambda_3(a) = 0.6, \lambda_3(b) = 0.5, \lambda_3(c) = 0.2,$ $\lambda_3(d) = 0.1; \lambda_4(a) = 0.6, \lambda_4(b) = 1, \lambda_4(c) = 0.2, \lambda_4(d) = 1; \lambda_5(a) = 1, \lambda_5(b) = 0.5,$ $\lambda_5(c) = 1, \lambda_5(d) = 0.1; M_1 = \{a\}, M_2 = \{c\}, M_3 = \{a, c\}, M_4 = \{a, d, c\},$ $M_5 = \{a, b, c\}.$ Then (X, T) is a soft fuzzy topological space. Consider the soft fuzzy set (λ, M) where $\lambda : X \to [0,1]$ and $M \subset X$ are defined as $\lambda(a) = 0.4,$ $\lambda(b) = 0.5, \lambda(c) = 0.2, \lambda(d) = 0.3$ and $M = \{c\}.$

Now,
$$cl(int(cl(\lambda, M))) = cl(int(\lambda_1, M_1)')$$

 $= cl(\lambda_2, M_2)$
 $= (\lambda_1, M_1)'$
Therefore, $cl(int(cl(\lambda, M))) \supseteq (\lambda, M)$.

Thus (λ, M) is soft fuzzy β open. Consider the soft fuzzy G_{δ} set (λ_4, M_4) . Now $(\lambda_4, M_4) \sqcap (\lambda, M) = (\lambda, M)$ is a soft fuzzy $G_{\delta}\beta$ open set. But (λ, M) is not soft fuzzy pre open.

$$int(cl(\lambda, M)) = int((\lambda_1, M_1)')$$

= (λ_2, M_2)
 $int(cl(\lambda, M)) \not\supseteq (\lambda, M)$

Thus (λ, M) is a soft fuzzy $G_{\delta}\beta$ open set and it is not a soft fuzzy G_{δ} pre open set.

Remark 4.17. From the results obtained above the following implications are obtained.

$$softfuzzyG^*_{\delta}$$
 \downarrow
 $softfuzzyG_{\delta}\alpha openset$
 \downarrow
 $softfuzzyG_{\delta}preopenset$
 \downarrow
 $softfuzzyG_{\delta}\beta openset$
 $graph graph gr$

5. Soft fuzzy G_{δ} -pre continuous functions and their interrelations among various soft fuzzy continuous functions

Definition 5.1. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. A function $f:(X,T)\to (Y,S)$ is said to be *soft fuzzy* G_{δ} -pre continuous, if the inverse image of every soft fuzzy open set in (Y,S) is soft fuzzy G_{δ} pre open in (X,T).

Proposition 5.2. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. For a function $f:(X,T)\to (Y,S)$, the following are equivalent.

- (i) f is soft fuzzy G_{δ} -pre continuous.
- (ii) The inverse image of every soft fuzzy closed set in (Y,S) is soft fuzzy F_{σ} pre closed in (X,T).

Proposition 5.3. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. For a function $f:(X,T)\to (Y,S)$, the following are equivalent.

- (i) f is soft fuzzy G_{δ} -pre continuous.
- (ii) For each $(\lambda, M) \in (Y,S)$, f^{-1} $(int(\lambda, M)) \sqsubseteq SFG_{\delta}$ pre $int(f^{-1}(\lambda, M))$.
- (iii) For each $(\lambda, M) \in (Y,S)$, SF F_{σ} pre $cl(f^{-1}(\lambda, M)) \sqsubseteq f^{-1}(cl(\lambda, M))$.

Proof.

(i) \Rightarrow (ii) Assume that f is soft fuzzy G_{δ} -pre continuous. Let (λ, M) be any soft fuzzy set in (Y,S). int (λ, M) is soft fuzzy open set in (Y,S). Since f is soft fuzzy G_{δ} -pre continuous, $f^{-1}(int(\lambda, M))$ is soft G_{δ} pre open in (X,T). Since $f^{-1}(int(\lambda, M)) \sqsubseteq f^{-1}(\lambda, M)$.

SF
$$G_{\delta}$$
 pre $\operatorname{int}(f^{-1}(\operatorname{int}(\lambda, M))) \subseteq \operatorname{SF}G_{\delta}$ pre $\operatorname{int}(f^{-1}(\lambda, M))$.

Which implies $f^{-1}(int(\lambda, M)) \subseteq SFG_{\delta}$ pre $int(f^{-1}(\lambda, M))$.

(ii) \Rightarrow (iii) For each soft fuzzy set $(\lambda, M) \in (Y,S)$,

 f^{-1} (int(λ, M)) \sqsubseteq SF G_{δ} pre int($f^{-1}(\lambda, M)$).

$$(1,X) - f^{-1}(int(\lambda,M)) \supseteq (1,X) - SFG_{\delta}preint(f^{-1}(\lambda,M))$$
$$f^{-1}(1,Y) - f^{-1}(int(\lambda,M)) \supseteq SFF_{\sigma}precl((1,X) - f^{-1}(\lambda,M))$$
$$f^{-1}((1,Y) - int(\lambda,M)) \supseteq SFF_{\sigma}precl(f^{-1}(1,Y) - f^{-1}(\lambda,M))$$

$$f^{-1}(cl((1,Y)-(\lambda,M))) \supseteq SFF_{\sigma}precl(f^{-1}((1,Y)-(\lambda,M)))$$
 for each soft fuzzy set $((1,Y)-(\lambda,M)) \in (Y,S)$.

(iii) \Rightarrow (i) Assume that for each soft fuzzy set (λ, M) in (Y,S)SF F_{σ} pre $cl(f^{-1}(\lambda, M)) \sqsubseteq f^{-1}(cl(\lambda, M))$. Let (λ, M) be any soft fuzzy closed set

in (Y,S). That is $cl(\lambda,M) \subseteq f$ ($cl(\lambda,M)$). But $f^{-1}(\lambda,M) \subseteq f^{-1}(\lambda,M)$. But $f^{-1}(\lambda,M) \subseteq SFF_{\sigma}$ pre $cl(f^{-1}(\lambda,M)) \subseteq f^{-1}(\lambda,M)$.

Therefore
$$f^{-1}(\lambda, M) = F_{\sigma}$$
 pre $cl(f^{-1}(\lambda, M))$.

Hence f is soft fuzzy G_{δ} -pre continuous.

Proposition 5.4. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. For a bijective function $f:(X,T)\to (Y,S)$, the following are equivalent.

(i) f is soft fuzzy G_{δ} -pre continuous.

(ii) For each
$$(\lambda, M) \in (X, T)$$
, $f(SFG_{\delta} pre int(\lambda, M)) \supseteq int(f(\lambda, M))$.

(iii) For each
$$(\lambda, M) \in (X, T), f(SFF_{\sigma} \text{ pre } cl(\lambda, M)) \sqsubseteq cl(f(\lambda, M)).$$

Proof.

(i) \Rightarrow (ii) Assume that f is soft fuzzy G_{δ} -pre continuous. Let (λ, M) be any soft fuzzy closed set in (X, T). Then $f(\lambda, M)$ is a soft fuzzy set in (Y,S). Now int $(f(\lambda, M))$ is a soft fuzzy open set in (Y,S). By assumption $f^{-1}(\text{int}(f(\lambda, M)))$ is a soft fuzzy G_{δ} pre open set in (X,T). We know that $\text{int}(f(\lambda, M)) \sqsubseteq f(\lambda, M)$. Since f is bijective, $f^{-1}(\text{int}(f(\lambda, M))) \sqsubseteq f^{-1}(f(\lambda, M)) = (\lambda, M)$.

$$\Rightarrow SFG_{\delta}$$
 pre $\operatorname{int}(f^{-1}(\operatorname{int}(f(\lambda, M)))) \sqsubseteq SFG_{\delta}$ pre $\operatorname{int}(\lambda, M)$.

By assumption, $f^{-1}(int(f(\lambda, M))) = SFG_{\delta}$ pre $int(f^{-1}(int(f(\lambda, M))))$.

Therefore
$$f^{-1}(int(f(\lambda, M))) \subseteq SFG_{\delta}$$
 pre int (λ, M) .

Thus $int(f(\lambda, M)) \sqsubseteq f(SFG_{\delta} \text{ pre int } (\lambda, M)).$

(ii) \Rightarrow (iii) For each soft fuzzy set $(\lambda, M) \in (X,T)$, $f(SFG_{\delta} \text{ pre int}(\lambda, M)) \supseteq \text{int}(f(\lambda, M))$.

$$(1,Y) - f(SFG_{\delta}preint(\lambda,M)) \sqsubseteq (1,Y) - int(f(\lambda,M))$$

$$f(1,X) - f(SFG_{\delta}preint(\lambda,M)) \sqsubseteq cl((1,Y) - f(\lambda,M))$$

$$f((1,X) - SFG_{\delta}preint(\lambda,M)) \sqsubseteq cl(f((1,X) - (\lambda,M)))$$

$$f(SFF_{\sigma} \text{ pre cl}((1,X) - (\lambda,M))) \sqsubseteq cl(f((1,X) - (\lambda,M)))$$
 for each soft fuzzy set $((1,X) - (\lambda,M)) \in (X,T)$.

(iii) \Rightarrow (i) Assume that for each soft fuzzy set (λ, M) in (X, T), $f(SFF_{\sigma} \text{ pre cl}(\lambda, M)) \sqsubseteq cl(f(\lambda, M))$. Let (λ, M) be any soft fuzzy closed set in(Y,S). That is $cl(\lambda, M) = (\lambda, M)$. By assumption $f(SFF_{\sigma} \text{ pre cl}(f^{-1}(\lambda, M))) \sqsubseteq cl(f(f^{-1}(\lambda, M)))$. Thus SF F_{σ} pre cl $(f^{-1}(\lambda, M)) \sqsubseteq f^{-1}(\lambda, M)$. But $f^{-1}(\lambda, M) \sqsubseteq SFF_{\sigma}$ pre cl $(f^{-1}(\lambda, M))$.

Therefore
$$f^{-1}(\lambda, M) = SFF_{\sigma}precl(f^{-1}(\lambda, M)).$$

Hence f is soft fuzzy G_{δ} -pre continuous.

Theorem 5.5. Let (X,T),(Y,S) and (Z,R) be any three soft fuzzy topological spaces. A function $f:(X,T)\to (Y,S)$ be soft fuzzy G_{δ} -pre continuous and $g:(Y,S)\to (Z,R)$ be soft fuzzy continuous function. Then $gof:(X,T)\to (Z,R)$ is soft fuzzy G_{δ} -pre continuous.

Proposition 5.6. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be soft fuzzy G_{δ} -pre continuous function then the following hold. (i) $f(SF G_{\delta} \text{ pre int } (\lambda,N)) \sqsubseteq \ker(f(\lambda,N))$, for every soft fuzzy subset (λ,N) of (X,T).

(ii) SF G_{δ} pre int $(f^{-1}(\mu, M)) \sqsubseteq f^{-1}(ker(\mu, M))$, for every soft fuzzy subset (μ, M) of (Y,S).

Proof.

(i) Let (λ, N) be any soft fuzzy set in (X, T). Then $\ker(f(\lambda, N))$ is a soft fuzzy open set in (Y,S). By assumption, f^{-1} ($\ker(f(\lambda, N))$) is a soft fuzzy G_{δ} pre open set in (X,T).

```
NowSFG_{\delta}preint(\lambda, N) \sqsubseteq SFG_{\delta}preint(f^{-1}(f(\lambda, N)))\sqsubseteq SFG_{\delta}preint(f^{-1}(ker(f(\lambda, N))))\sqsubseteq f^{-1}(ker(f(\lambda, N)))
```

Hence $f(SFG_{\delta})$ pre int (λ, N) $\sqsubseteq \ker(f(\lambda, N))$, for any soft fuzzy set (λ, N) in (X, T). (ii) Let (μ, M) be any soft fuzzy set in (Y,S). Then $\ker(\mu, M)$ is a soft fuzzy open set in (Y,S). By assumption, $f^{-1}(\ker(\mu, M))$ is a soft fuzzy G_{δ} pre open set in (X,T).

```
Now f^{-1}(\mu, M) \sqsubseteq f^{-1}(\ker(\mu, M)).

Thus SF G_{\delta} pre int (f^{-1}(\mu, M)) \sqsubseteq SFG_{\delta} pre int (f^{-1}(\ker(\mu, M))).

\Rightarrow SFG_{\delta}preint(f^{-1}(\mu, M)) \sqsubseteq f^{-1}(\ker(\mu, M)), for any soft fuzzy set (\mu, M) in (Y,S).
```

Remark 5.7. The converse of the above property need not be true as shown in the following examples.

Example 5.8. Let X={a,b,c,d}, T={(0, φ), (1,X), (λ₁, M₁),(λ₂, M₂), (λ₃, M₃), (λ₄, M₄), (λ₅, M₅)} where λ_i: X → [0,1] for i= 1,2,3,4,5 and M_i fori=1,2,3,4,5 are defined as follows λ₁(a) = 0.6, λ₁(b) = 0, λ₁(c) = 0.2, λ₁(d) = 0; λ₂(a) = 0, λ₂(b) = 0.5, λ₂(c) = 0, λ₂(d) = 0.1; λ₃(a) = 0.6, λ₃(b) = 0.5, λ₃(c) = 0.2, λ₃(d) = 0.1; λ₄(a) = 0.6, λ₄(b) = 1, λ₄(c) = 0.2, λ₄(d) = 1; λ₅(a) = 1, λ₅(b) = 0.5, λ₅(c) = 1, λ₅(d) = 0.1; M₁ = {a}, M₂ = {c}, M₃ = {a, c}, M₄ = {a, d, c}, M₅ = {a, b, c} and Y={p, q, r, s}, S={((0, φ), (1,Y), (μ, N))} where μ : X → [0,1] and N is defined by μ(p) = 0.4, μ(q) = 0.5, μ(r) = 0.2, μ(s) = 0.3; N = {r}. Let f : (X,T) → (Y,S) be the identity function. For the soft fuzzy set (λ₂, M₂), f(SFG_δ pre int (λ₂, M₂)) $\sqsubseteq \ker(f(λ_2, M_2))$. But f is not soft fuzzy $G_δ$ -pre continuous.

Example 5.9. Consider the soft fuzzy topology and function defined in the above example. Let (μ_1, N_1) be the soft fuzzy set in (X, T), $\mu_1 : X \to [0,1]$ and N_1 is defined by $\mu_1(p) = 0$, $\mu_1(q) = 0.5$, $\mu_1(r) = 0$, $\mu_1(s) = 0.1$; $N_1 = \{c\}$, such that G_{δ} pre int $(f^{-1}(\mu_1, N_1)) \sqsubseteq f^{-1}(\ker(\mu_1, N_1))$. But f is not soft fuzzy G_{δ} -pre continuous.

Definition 5.10. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. A function $f:(X,T)\to (Y,S)$ is said to be soft fuzzy G^*_{δ} continuous $(G_{\delta}\alpha$ -continuous, $G_{\delta}\beta$ -continuous) if the inverse image of every soft fuzzy open set in (Y,S) is soft fuzzy G^*_{δ} open $(G_{\delta}\alpha$ open, $G_{\delta}\beta$ open) in (X,T).

Proposition 5.11. Every soft fuzzy G_{δ}^* -continuous function is soft fuzzy $G_{\delta}\alpha$ -continuous.

Proof. Proof is obvious \Box

Remark 5.12. The converse of the above property need not be true as shown in the following example.

Example 5.13. Let $X = \{a, b, c, d\}$, $T = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3), (\lambda_4, M_4), (\lambda_5, M_5)\}$ where $\lambda_i : X \to [0, 1]$ for i = 1, 2, 3, 4, 5 and $M_i \subseteq X$, for i = 1, 2, 3, 4, 5 are defined as follows $\lambda_1(a) = 0, \lambda_1(b) = 0.4, \lambda_1(c) = 0, \lambda_1(d) = 0.3;$ $\lambda_2(a) = 0.7, \lambda_2(b) = 0, \lambda_2(c) = 0.8, \lambda_2(d) = 0;$ $\lambda_3(a) = 0.7, \lambda_3(b) = 0.4, \lambda_3(c) = 0.8,$ $\lambda_3(d) = 0.3;$ $\lambda_4(a) = 0.7, \lambda_4(b) = 1, \lambda_4(c) = 0.8,$ $\lambda_4(d) = 1;$ $\lambda_5(a) = 1, \lambda_5(b) = 0.4,$ $\lambda_5(c) = 1, \lambda_5(d) = 0.3;$ $M_1 = \{b\}, M_2 = \{c\}, M_3 = \{b, c\}, M_4 = \{a, b, c\},$ $M_5 = \{d, b, c\}.$ Then (X, T) is a soft fuzzy topological space. Let $Y = \{p, q, r, s\}, S = \{((0, \phi), (1, Y), (\mu_1, N_1), (\mu_2, N_2)\}$ where $\mu_i : Y \to [0, 1]$ for i = 1, 2 and $N_i \subseteq Y$, for i = 1, 2 are defined as follows $\mu_1(p) = 1, \mu_1(q) = 0.4, \mu_1(r) = 1, \mu_1(s) = 0.3;$ $\mu_2(p) = 0, \mu_2(q) = 0.4, \mu_2(r) = 0, \mu_2(s) = 0.3;$ $N_1 = \{q, r\}, N_2 = \{q\}.$ Then (Y, S) is a soft fuzzy topological space. Let $f : (X, T) \to (Y, S)$ be a function defined as f(a) = p, f(b) = q, f(c) = r, f(d) = s. Then f is soft fuzzy G_δ continuous but not soft fuzzy G_δ continuous. Consider the soft fuzzy set (μ_1, N_1) in $(Y, S), f^{-1}(\mu_1, N_1)$ is not soft fuzzy G_δ open in (X, T).

Proposition 5.14. Every soft fuzzy $G_{\delta}\alpha$ -continuous function is soft fuzzy G_{δ} precontinuous.

Proof. Proof is obvious. \Box

Remark 5.15. The converse of the above property need not be true as shown in the following example.

Example 5.16. Let $X = \{a, b, c, d\}$, $T = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3), (\lambda_4, M_4), (\lambda_5, M_5)\}$ where $\lambda_i : X \to [0,1]$ for i = 1, 2, 3, 4, 5 and $M_i \subseteq X$, for i = 1, 2, 3, 4, 5 are defined as follows $\lambda_1(a) = 0, \lambda_1(b) = 0.4, \lambda_1(c) = 0, \lambda_1(d) = 0.3; \lambda_2(a) = 0.7, \lambda_2(b) = 0, \lambda_2(c) = 0.8, \lambda_2(d) = 0; \lambda_3(a) = 0.7, \lambda_3(b) = 0.4, \lambda_3(c) = 0.8, \lambda_3(d) = 0.3; \lambda_4(a) = 0.7, \lambda_4(b) = 1, \lambda_4(c) = 0.8, \lambda_4(d) = 1; \lambda_5(a) = 1, \lambda_5(b) = 0.4, \lambda_5(c) = 1, \lambda_5(d) = 0.3; M_1 = \{b\}, M_2 = \{c\}, M_3 = \{b, c\}, M_4 = \{a, b, c\}, M_5 = \{d, b, c\}.$ Then (X, T) is a soft fuzzy topological space. Let $Y = \{p, q, r\}$, S = $\{(0, \phi), (1, Y), (\mu_1, N_1), (\mu_2, N_2)\}$ where $\mu_i : Y \to [0, 1]$ for i=1,2 and $N_i \subseteq Y$, for i = 1, 2 are defined as follows $\mu_1(p) = 0.4, \mu_1(q) = 0, \mu_1(r) = 0.7; \mu_2(p) = 0.4, \mu_2(q) = 0.3, \mu_2(r) = 0.7; N_1 = \{r\}, N_2 = \{q, r\}.$ Then (Y, S) is a soft fuzzy topological space. Let $f : (X, T) \to (Y, S)$ be a function defined as f(a) = p, f(b) = q, f(c) = r, f(d) = q. Then f is soft fuzzy $G_\delta pre$ continuous but not soft fuzzy $G_\delta \alpha$ continuous. Consider the soft fuzzy set (μ_1, N_1) in $(Y, S), f^{-1}(\mu_1, N_1)$ is not soft fuzzy $G_\delta \alpha$ open in (X, T).

Proposition 5.17. Every soft fuzzy G_{δ} -pre continuous function is soft fuzzy $G_{\delta}\beta$ -continuous.

Proof. Proof is obvious. \Box

Remark 5.18. The converse of the above property need not be true as shown in the following example.

Example 5.19. Let $X = \{a, b, c, d\}$, $T = \{(0, \phi), (1, X), (\lambda_1, M_1), (\lambda_2, M_2), (\lambda_3, M_3), (\lambda_4, M_4), (\lambda_5, M_5)\}$ where $\lambda_i : X \to [0,1]$ for i = 1, 2, 3, 4, 5 and $M_i \subseteq X$, for i = 1, 2, 3, 4, 5 are defined as follows $\lambda_1(a) = 0.6, \lambda_1(b) = 0, \lambda_1(c) = 0.2, \lambda_1(d) = 0; \lambda_2(a) = 0, \lambda_2(b) = 0.5, \lambda_2(c) = 0, \lambda_2(d) = 0.1; \lambda_3(a) = 0.6, \lambda_3(b) = 0.5, \lambda_3(c) = 0.2,$

 $\lambda_3(d)=0.1;\ \lambda_4(a)=0.6,\ \lambda_4(b)=1,\ \lambda_4(c)=0.2,\ \lambda_4(d)=1;\ \lambda_5(a)=1,\ \lambda_5(b)=0.5,\ \lambda_5(c)=1,\ \lambda_5(d)=0.1;\ M_1=\{a\},\ M_2=\{c\},\ M_3=\{a,c\},\ M_4=\{a,d,c\},\ M_5=\{a,b,c\}.$ Then (X,T) is a soft fuzzy topological space. Let $Y=\{p,q,r,s\}$, $S=\{((0,\phi),\ (1,Y),\ (\mu,N)\}$ where $\mu:Y\to[0,1]$ and $N\subset Y$ are defined as $\mu(p)=0.4,\ \mu(q)=0.5,\ \mu(r)=0.2;\ \mu(s)=0.3,\ N=\{r\}.$ Then (Y,S) is a soft fuzzy topological space. Let $f:(X,T)\to(Y,S)$ be a function defined as f(a)=p, f(b)=q, f(c)=r, f(d)=s. Then f is soft fuzzy $G_\delta \beta$ continuous but not soft fuzzy G_δ precontinuous. Consider the soft fuzzy set (μ,N) in (Y,S), $f^{-1}(\mu,N)$ is not soft fuzzy G_δ pre open in (X,T).

6. Soft fuzzy G_{δ} -pre irresolute function and its properties

Definition 6.1. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. A function $f:(X,T)\to (Y,S)$ is said to be *soft fuzzy* G_{δ} -pre irresolute, if the inverse image of every soft fuzzy G_{δ} pre open set in (Y,S) is soft fuzzy G_{δ} pre open in (X,T).

Theorem 6.2. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. For a function $f:(X,T)\to (Y,S)$, the following are equivalent.

- (i) f is soft fuzzy G_{δ} -pre irresolute.
- (ii) The inverse image of every soft fuzzy F_{σ} pre closed set in(Y,S) is soft fuzzy F_{σ} pre closed in (X,T).

Proposition 6.3. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. For a bijective function $f:(X,T)\to (Y,S)$ the following are equivalent.

- (i) f is soft fuzzy G_{δ} -pre irresolute.
- (ii) For each $(\lambda, M) \in (X, T)$, $f(SFF_{\sigma} pre cl(\lambda, M)) \sqsubseteq SFF_{\sigma} pre cl(f(\lambda, M))$.
- (iii) For each $(\mu, N) \in (Y, S)$, \widehat{SF} F_{σ} pre $cl(f^{-1}(\mu, N)) \sqsubseteq f^{-1}(SFF_{\sigma}$ pre $cl(\mu, N))$.

Proof.

(i) \Rightarrow (ii) Assume that f is soft fuzzy G_{δ} -pre irresolute. Let (λ, M) be any soft fuzzy set in (X, T). Then SF F_{σ} pre $\operatorname{cl}(f(\lambda, M))$ is a soft fuzzy F_{σ} pre closed set in (Y,S). By assumption $f^{-1}(SFF_{\sigma} \operatorname{pre} \operatorname{cl}(f(\lambda, M)))$ is a soft fuzzy F_{σ} pre closed set in (X,T). Hence $(\lambda, M) \sqsubseteq f^{-1}(f(\lambda, M)) \sqsubseteq f^{-1}(SFF_{\sigma} \operatorname{pre} \operatorname{cl}(f(\lambda, M)))$. Which implies SF F_{σ} pre $\operatorname{cl}(\lambda, M) \sqsubseteq f^{-1}(SFF_{\sigma} \operatorname{pre} \operatorname{cl}(\lambda, M))$. Therefore $f(SFF_{\sigma} \operatorname{pre} \operatorname{cl}(\lambda, M)) \sqsubseteq SFF_{\sigma} \operatorname{pre} \operatorname{cl}(f(\lambda, M))$.

(ii) \Rightarrow (iii) For each soft fuzzy set $(\lambda, M) \in (X, T), f(SFF_{\sigma} \text{ pre cl}(\lambda, M)) \sqsubseteq SFF_{\sigma}$ pre cl $(f(\lambda, M))$. Let (μ, N) be a soft fuzzy set in (Y,S). Therefore, $f^{-1}(\mu, N)$ is a soft fuzzy set in (X,T).

By assumption, $f(SFF_{\sigma}precl(f^{-1}(\mu, N))) \subseteq SFF_{\sigma}precl(f(f^{-1}(\mu, N)))$. $f(SFF_{\sigma}precl(f^{-1}(\mu, N))) \subseteq SFF_{\sigma}precl(\mu, N)$.

Hence SF F_{σ} pre $\operatorname{cl}(f^{-1}(\mu, N)) \sqsubseteq f^{-1}(SFF_{\sigma} \operatorname{pre} \operatorname{cl}(\mu, N))$.

(iii) \Rightarrow (i) Assume that for each soft fuzzy set (μ, N) in (Y,S) $SFF_{\sigma}precl(f^{-1}(\mu, N)) \sqsubseteq f^{-1}(SFF_{\sigma}precl(\mu, N))$. Let (γ, P) be a soft fuzzy F_{σ} pre closed set in (Y,S). That is SF F_{σ} pre cl $(\gamma, P) = (\gamma, P)$. By assumption SF F_{σ} pre cl $(f^{-1}(\gamma, P)) \sqsubseteq f^{-1}(SFF_{\sigma}$ pre cl (γ, P)). Thus SF F_{σ} pre cl $(f^{-1}(\gamma, P)) \sqsubseteq f^{-1}(\gamma, P)$. But $f^{-1}(\gamma, P) \sqsubseteq SFF_{\sigma}$ pre cl $(f^{-1}(\gamma, P))$. Therefore $f^{-1}(\gamma, P) = SFF_{\sigma}$ pre cl $(f^{-1}(\gamma, P))$. Hence f is soft fuzzy G_{δ} -pre irresolute.

Proposition 6.4. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. Let $f:(X,T)\to (Y,S)$ be soft fuzzy G_{δ} -pre irresolute function then the following hold. (i) $f(SF G_{\delta} \text{ pre int } (\lambda,N)) \sqsubseteq SF G_{\delta} \text{ pre ker}(f(\lambda,N))$, for every soft fuzzy subset (λ,N) of (X,T).

(ii) SF G_{δ} pre int $(f^{-1}(\mu, M)) \sqsubseteq f^{-1}(SF G_{\delta})$ pre $ker(\mu, M)$, for every soft fuzzy subset (μ, M) of (Y,S).

Proof.

(i) Let (λ, N) be any soft fuzzy set in (X, T). Then SF G_{δ} pre $\ker(f(\lambda, N))$ is a soft fuzzy G_{δ} pre open set in (Y,S). By assumption, f^{-1} (SF G_{δ} pre $\ker(f(\lambda, N))$) is a soft fuzzy G_{δ} pre open set in (X,T).

Now SF G_{δ} pre int $(\lambda, N) \subseteq SFG_{\delta}$ pre int $(f^{-1}(f(\lambda, N))) \subseteq SFG_{\delta}$ pre int $(f^{-1}(SF G_{\delta} \text{ pre ker}(f(\lambda, N))))$.

 $\Rightarrow SFG_{\delta}preint(\lambda, N) \sqsubseteq f^{-1}(SFG_{\delta}preker(f(\lambda, N))).$

Hence $f(SFG_{\delta} \text{ pre int } (\lambda, N)) \subseteq SFG_{\delta} \text{ pre } \ker(f(\lambda, N))$, for any soft fuzzy set (λ, N) in (X, T).

(ii) Let (μ, M) be any soft fuzzy set in (Y,S). Then SF G_{δ} pre $\ker(\mu, M)$ is a soft fuzzy G_{δ} pre open set in (Y,S). By assumption, f^{-1} (SF G_{δ} pre $\ker(\mu, M)$)) is a soft fuzzy G_{δ} pre open set in (X,T).

Now $f^{-1}(\mu, M) \sqsubseteq f^{-1}(SF G_{\delta} \text{ pre ker}(\mu, M))$. Thus SF G_{δ} pre int $(f^{-1}(\mu, M)) \sqsubseteq SFG_{\delta}$ pre int $(f^{-1}(SFG_{\delta} \text{ pre ker}(\mu, M)))$. $\Rightarrow SFG_{\delta}$ pre int $(f^{-1}(\mu, M)) \sqsubseteq f^{-1}(SFG_{\delta} \text{ pre ker}(\mu, M)))$, for any soft fuzzy set (μ, M) in (Y,S).

Remark 6.5. The converse of the above property need not be true as shown in the following examples.

Example 6.6. Let X={a,b,c,d}, T={(0, φ), (1,X), (λ₁, M₁),(λ₂, M₂), (λ₃, M₃), (λ₄, M₄), (λ₅, M₅)} where λ_i: X → [0,1] for i= 1,2,3,4,5 and M_i fori=1,2,3,4,5 are defined as follows λ₁(a) = 0.6, λ₁(b) = 0, λ₁(c) = 0.2, λ₁(d) = 0; λ₂(a) = 0, λ₂(b) = 0.5, λ₂(c) = 0, λ₂(d) = 0.1; λ₃(a) = 0.6, λ₃(b) = 0.5, λ₃(c) = 0.2, λ₃(d) = 0.1; λ₄(a) = 0.6, λ₄(b) = 1, λ₄(c) = 0.2, λ₄(d) = 1; λ₅(a) = 1, λ₅(b) = 0.5, λ₅(c) = 1, λ₅(d) = 0.1; M₁ = {a}, M₂ = {c}, M₃ = {a, c}, M₄ = {a, d, c}, M₅ = {a, b, c} and Y={p, q, r, s}, S={((0, φ), (1,Y), (μ, N))} where μ: X → [0,1] and N is defined by μ(p) = 0.4, μ(q) = 0.5, μ(r) = 0.2, μ(s) = 0.3; N = {r}. Let f: (X,T) → (Y,S) be the identity function. For the soft fuzzy set (λ₂, M₂), f(SFG_δ pre int (λ₂, M₂)) \sqsubseteq SFG_δ pre ker(f(λ₂, M₂)). But f is not soft fuzzy G_δ-pre irresolute.

Example 6.7. Consider the soft fuzzy topology and function defined in the above example. Let (μ_1, N_1) be the soft fuzzy set in $(X, T), \mu_1 : X \to [0,1]$ and N_1 is defined by $\mu_1(p) = 0, \mu_1(q) = 0.5, \mu_1(r) = 0, \mu_1(s) = 0.1; N_1 = \{c\}$, such that SF G_{δ} pre int $(f^{-1}(\mu_1, N_1)) \sqsubseteq f^{-1}(SF G_{\delta})$ pre $\ker(\mu_1, N_1)$. But f is not soft fuzzy G_{δ} -pre irresolute.

Proposition 6.8. Let (X,T),(Y,S) and (Z,R) be any three soft fuzzy topological spaces. A function $f:(X,T)\to (Y,S)$ be soft fuzzy G_{δ} -pre irresolute and $g:(Y,S)\to (Y,S)$

- (Z,R) be soft fuzzy G_{δ} -pre continuous function. Then $gof:(X,T)\to (Z,R)$ is soft fuzzy G_{δ} -pre continuous.
 - 7. Soft fuzzy G_{δ} -pre connected space, soft fuzzy G_{δ} -pre compact space and soft fuzzy G_{δ} -pre normal space

Definition 7.1. A soft fuzzy topological space (X,T) is said to be a *soft fuzzy Connected space* if it has no proper soft fuzzy set which is both soft fuzzy open and soft fuzzy closed set.

Definition 7.2. A soft fuzzy topological space (X,T) is said to be *soft fuzzy* G_{δ} -pre connected if it has no proper soft fuzzy set which is both soft fuzzy G_{δ} pre open and soft fuzzy F_{σ} pre closed set. [A soft fuzzy set (λ, M) in a soft fuzzy topological space (X,T) is proper if $(\lambda, M) \neq (0, \phi)$ and $(\lambda, M) \neq (1, X)$.]

Proposition 7.3. A soft fuzzy topological space (X,T) is soft fuzzy G_{δ} -pre connected if and only if it has no proper soft fuzzy G_{δ} pre open sets (λ, M) and (μ, N) such that

$$(\lambda, M) + (\mu, N) = (1, X).$$

Proof. Suppose that (X,T) is soft fuzzy G_{δ} -pre connected. Assume that (X,T) has proper soft fuzzy G_{δ} pre open sets (λ,M) and (μ,N) such that $(\lambda,M)+(\mu,N)=(1,X)$.

$$Now(\lambda, M) + (\mu, N) = (1, X).$$

$$\Rightarrow (\lambda, M) = (1, X) - (\mu, N).$$

 \Rightarrow (λ, M) is soft fuzzy F_{σ} pre closed and soft fuzzy G_{δ} pre open set in (X, T).

Thus (X,T) is not soft fuzzy G_{δ} -pre connected. Which is a contradiction. Conversely,

(X,T) has no proper soft fuzzy G_{δ} pre open sets (λ,M) and (μ,N) such that $(\lambda,M)+(\mu,N)=(1,X)$. Assume that (X,T) is not soft fuzzy G_{δ} -pre connected. Then there exists a proper soft fuzzy set (λ,M) which is both soft fuzzy F_{σ} pre closed and soft fuzzy G_{δ} pre open set in (X,T).

Thus
$$(\mu, N) = (1, X) - (\lambda, M)$$
.

Since
$$(\lambda, M) \neq (0, \phi)$$
 and $(1, X)$; $(\mu, N) \neq (0, \phi)$ and $(1, X)$.

Thus there exists a proper soft fuzzy set (μ, N) which is both soft fuzzy F_{σ} pre closed and soft fuzzy G_{δ} pre open set in (X, T) such that $(\lambda, M) + (\mu, N) = (1, X)$. Which is a contradiction.

Proposition 7.4. The following statements are equivalent for a soft fuzzy topological space (X,T).

- (i) (X,T) is soft fuzzy G_{δ} -pre connected.
- (ii) There exist no soft fuzzy G_{δ} pre open sets $(\lambda, M) \neq (0, \phi)$ and $(\mu, N) \neq (0, \phi)$ such that $(\lambda, M) + (\mu, N) = (1, X)$.
- (iii) There exist no soft fuzzy F_{σ} pre closed sets $(\lambda, M) \neq (1, X)$ and $(\mu, N) \neq (1, X)$ such that $(\lambda, M) + (\mu, N) = (1, X)$.

Proof.

(i) \Rightarrow (ii) Assume that (X,T) is soft fuzzy G_{δ} -pre connected. Then by the above property, it has no proper soft fuzzy G_{δ} pre open sets (λ, M) and (μ, N) such that $(\lambda, M) + (\mu, N) = (1, X)$.

(ii) \Rightarrow (iii) Assume that there exist no soft fuzzy G_{δ} pre open sets $(\lambda, M) \neq (0, \phi)$ and $(\mu, N) \neq (0, \phi)$ such that $(\lambda, M) + (\mu, N) = (1, X)$. Suppose that there exist soft fuzzy F_{σ} pre closed sets $(\lambda, M) \neq (1, X)$ and $(\mu, N) \neq (1, X)$ such that $(\lambda, M) + (\mu, N) = (1, X)$. Then $(1, X) - (\lambda, M) \neq (0, \phi)$ is a non-zero soft fuzzy G_{δ} pre open set. Similarly $(1, X) - (\mu, N) \neq (0, \phi)$ is a non-zero soft fuzzy G_{δ} pre open set.

$$Now(1, X) - (\lambda, M) + (1, X) - (\mu, N) = (1, X) + (1, X) - [(\lambda, M) + (\mu, N)].$$

= $(1, X) + (1, X) - (1, X).$
= $(1, X)$.

Which is a contradiction.

(iii) \Rightarrow (i) Assume that there exist no soft fuzzy F_{σ} pre closed sets $(\lambda, M) \neq (1, X)$ and $(\mu, N) \neq (1, X)$ such that $(\lambda, M) + (\mu, N) = (1, X)$. Suppose that (X, T) is not soft fuzzy G_{δ} -pre connected. There exists a proper soft fuzzy set (λ, M) which is both soft fuzzy F_{σ} pre closed and soft fuzzy G_{δ} pre open set in (X, T). Then $(1, X) - (\lambda, M)$ is a proper soft fuzzy F_{σ} pre closed set. Also by assumption (λ, M) is soft fuzzy F_{σ} pre closed. Now $(\lambda, M) + (1, X) - (\lambda, M) = (1, X)$. Which is a contradiction.

Proposition 7.5. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ is soft fuzzy G_{δ} -pre continuous surjection and (X,T) is soft fuzzy G_{δ} -pre connected, then (Y,S) is soft fuzzy connected.

Proposition 7.6. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ is soft fuzzy G_{δ} -pre irresolute surjection and (X,T) is soft fuzzy G_{δ} -pre connected, then (Y,S) is soft fuzzy G_{δ} -pre connected.

Definition 7.7. A soft fuzzy topological space (X,T) is said to be a *soft fuzzy* G_{δ} pre compact if whenever $\sqcup_{i\in I}(\lambda_i,M_i)=(1,X),\ (\lambda_i,M_i)$ is soft fuzzy G_{δ} pre open, $i\in I$, there is a finite subset J of I with $\sqcup_{j\in J}(\lambda_i,M_i)=(1,X)$.

Proposition 7.8. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ is soft fuzzy G_{δ} -pre continuous bijection and (X,T) is soft fuzzy G_{δ} -pre compact, then (Y,S) is soft fuzzy compact.

Proposition 7.9. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. If $f:(X,T)\to (Y,S)$ is soft fuzzy G_{δ} -pre irresolute bijection and (X,T) is soft fuzzy G_{δ} -pre compact, then (Y,S) is soft fuzzy G_{δ} -pre compact.

Definition 7.10. Let (X,T) and (Y,S) be any two soft fuzzy topological spaces. A function $f:(X,T)\to (Y,S)$ is said to be *soft fuzzy closed function*, if the image of every soft fuzzy closed set in (X,T) is soft fuzzy closed in (Y,S).

Definition 7.11. A soft fuzzy topological space (X,T) is said to be a *soft fuzzy normal space*, if for each pair of disjoint soft fuzzy closed sets (λ, N) and (μ, M) of (X,T), there exist open sets (δ, L) and (γ, K) with $(\lambda, N) \sqsubseteq (\delta, L)$ and $(\mu, M) \sqsubseteq (\gamma, K)$ such that $(\delta, L) \sqcap (\gamma, K) = (0, \phi)$.

Definition 7.12. A soft fuzzy topological space (X,T) is said to be a *soft fuzzy* G_{δ} -pre normal space, if for each pair of disjoint soft fuzzy closed sets (λ, N) and (μ, M) of (X,T), there exists G_{δ} pre open sets (δ, L) and (γ, K) with $(\lambda, N) \sqsubseteq (\delta, L)$ and $(\mu, M) \sqsubseteq (\gamma, K)$ such that $(\delta, L) \sqcap (\gamma, K) = (0, \phi)$.

Proposition 7.13. If f is soft fuzzy G_{δ} - pre continuous, soft fuzzy closed ,injective function and (Y,S) is soft fuzzy Normal space, then (X,T) is soft fuzzy G_{δ} -pre normal space.

Proof. Let (λ, N) and (μ, M) be any two disjoint soft fuzzy closed sets of (X, T). Since f is a soft fuzzy closed function and injective, $f(\lambda, N)$ and $f(\mu, M)$ are disjoint closed sets of (Y,S). Since (Y,S) is soft fuzzy Normal, there exist disjoint soft fuzzy open sets (δ, L) and (γ, K) of (Y,S) with $f(\lambda, N) \sqsubseteq (\delta, L)$ and $f(\mu, M) \sqsubseteq (\gamma, K)$ such that $(\delta, L) \sqcap (\gamma, K) = (0, \phi)$. Now, $(\lambda, N) \sqsubseteq f^{-1}(f(\lambda, N)) \sqsubseteq f^{-1}(\delta, L)$ and $(\mu, M) \sqsubseteq f^{-1}(f(\mu, M)) \sqsubseteq f^{-1}(\gamma, K)$. Since f is a soft fuzzy G_{δ} -pre continuous function, $f^{-1}(\delta, L)$ and $f^{-1}(\gamma, K)$ are soft fuzzy G_{δ} pre open sets of (X, T). Now, $f^{-1}(\delta, L) \sqcap f^{-1}(\gamma, K) = f^{-1}((\delta, L) \sqcap (\gamma, K)) = f^{-1}(0, \phi) = (0, \phi)$. Hence, (X, T) is a soft fuzzy G_{δ} -pre normal space.

Proposition 7.14. If f is soft fuzzy G_{δ} -pre irresolute, soft fuzzy closed,injective function and (Y,S) is soft fuzzy G_{δ} -pre normal space, then (X,T) is soft fuzzy G_{δ} -pre normal space.

Proof. Proof is similar to the above property.

References

- [1] G. Balasubramanian, Maximal fuzzy topologies, Kybernetika (Prague) 31(5) (1995) 459-464.
- [2] G. Balasubramanian, Fuzzy β open sets and fuzzy β -separation axioms, Kybernetika (Prague) 35(2) (1999) 215–223.
- [3] A. S. Bin shahna, On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy Sets and Systems 44 (1991) 303-408.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [5] P. Smets, The degree of belief in a fuzzy event, Inform. Sci. 25 (1981) 1–19.
- [6] M. Sugeno, An introductory Survey of fuzzy control, Inform. Sci. 36 (1985) 59-83.
- [7] Ismail U. Tiryaki, Fuzzy sets over the poset I, Hacet. J. Math. Stat. 37(2) (2008) 143–166.
- [8] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

V. VISALAKSHI (visalkumar_cbe@yahoo.co.in)

Research Scholar, Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamilnadu, India

M. K. UMA(mkuma70@yahoo.com)

Associate Professor, Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamilnadu, India

E. ROJA (AMV_1982@rediffmail.com)

Associate Professor, Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamilnadu, India