Annals of Fuzzy Mathematics and Informatics Volume 8, No. 6, (December 2014), pp. 903–912 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On intuitionistic dimension functions

M. Kousalyaparasakthi, E. Roja, M. K. Uma

Received 24 January 2014; Revised 1 June 2014; Accepted 11 June 2014

ABSTRACT. In this paper, the concepts of intuitionistic small inductive dimension, intuitionistic \mathcal{AB} open set, intuitionistic partitions are introduced and studied. The concepts of intuitionistic large inductive dimension, intuitionistic addition theorem and intuitionistic product theorem are introduced and studied.

2010 AMS Classification: 54A40, 54E55

Keywords: Intuitionistic small inductive dimension, Intuitionistic large inductive dimension, Intuitionistic additition theorem, Intuitionistic product theorem.

Corresponding Author: M. Kousalyaparasakthi (koushi.1902@gmail.com)

1. INTRODUCTION

The concept of intuitionistic sets was introduced by coker [1]. In 1998, J.Donchev [4] introduced the concept of \mathcal{AB} - sets and decomposition of continuity. In this paper, the concepts of intuitionistic small inductive dimension, intuitionistic \mathcal{AB} open sets, intuitionistic partitions are introduced and studied. The concepts of intuitionistic large inductive dimension, intuitionistic addition theorem and intuitionistic product theorem are introduced and studied.

2. Preliminaries

Definition 2.1 ([1]). Let X be a non empty set. An *intuitionistic set* (IS for short) A is an object having the form $A = \langle x, A^1, A^2 \rangle$, where A^1 and A^2 are subsets of X satisfying $A^1 \cap A^2 = \emptyset$. The set A^1 is called the set of members of A, while A^2 is called the set of nonmembers of A. Every crisp set A on a nonempty set X is obviously an intuitionistic set having the form $\langle x, A, A^c \rangle$.

Definition 2.2 ([1]). Let X be a non empty set, $A = \langle x, A^1, A^2 \rangle$ and $B = \langle x, B^1, B^2 \rangle$ be intuitionistic sets on X, and let $\{A_i : i \in J\}$ be an arbitrary family of intuitionistic sets in X, where $A^i = \langle x, A_i^1, A_i^2 \rangle$.

(i) $A \subseteq B$ if and only if $A^1 \subseteq B^1$ and $A^2 \supseteq B^2$.

(ii) A = B if and only if $A \subseteq B$ and $B \subseteq A$.

(iii) $\overline{A} = \langle x, A^2, A^1 \rangle.$

(iv) $\bigcup A_i = \langle x, \cup A_i^1, \cap A_i^2 \rangle.$

(v) $\bigcap A_i = \langle x, \cap A_i^1, \cup A_i^2 \rangle.$

 $\text{(vi) } \phi_{\sim} = \langle x, \phi, X \rangle; \, X_{\sim} = \langle x, X, \phi \rangle.$

Definition 2.3 ([2]). An intuitionistic topology (IT for short) on a nonempty set X is a family T of intuitionistic set in X satisfying the following axioms:

(i) $\phi_{\sim}, X_{\sim} \in T$.

(ii) $G_1 \cap G_2 \in T$ for any $G_1, G_2 \in T$.

(iii) $\cup G_i \in T$ for any arbitrary family $\{G_i : i \in J\} \subseteq T$.

In this case the pair (X, T) is called an *intuitionistic topological space* (*ITS* for short) and any intuitionistic set in T is called an *intuitionistic open set*(*IOS* for short) in X. The complement \overline{A} of an intuitionistic open set A is called an *intuitionistic closed set* (*ICS* for short) in X.

Definition 2.4 ([2]). Let (X,T) be an intuitionistic topological space and $A = \langle X, A^1, A^2 \rangle$ be an intuitionistic set in X. Then the *closure* and *interior* of A are defined by

 $cl(A) = \cap \{K : K \text{ is an intuitionistic closed set in } X \text{ and } A \subseteq K\},\$

 $int(A) = \bigcup \{ G : G \text{ is an intuitionistic open set in } X \text{ and } G \subseteq A \}.$

It can be also shown that cl(A) is an intuitionistic closed set and int(A) is an intuitionistic open set in X, and A is an intuitionistic closed set in X iff cl(A) = A; and A is an intuitionistic open set in X iff int(A) = A.

Definition 2.5 ([7]). Let (X,T) be a topological space. A subset A in X is said to be *semi* - *open* if $A \subseteq cl(int(A))$.

Definition 2.6 ([7]). Let (X,T) be a topological space. A subset A in X is said to be *semi* - *closed* if $int(cl(A)) \subseteq A$

Definition 2.7 ([3]). Let (X,T) be a topological space. A subset S in X is said to be *semi* - *regular* if both semi - open and semi - closed.

Definition 2.8 ([4]). Let (X, T) be a topological space. A subset A in X is said to be an AB - set if $A = U \cap V$, where $U \in T$ and V is semi - regular. The family of all AB - sets of a space X will be denoted by AB(X).

Definition 2.9 ([5]). Let (X,T) be a topological spaces. A *boundary* of a subset V in X is denoted and defined as $\partial V = cl(V) \cap cl(\overline{V})$.

3. INTUITIONISTIC SMALL INDUCTIVE DIMENSION

Notation 3.1. Let (X, T) be an intuitionistic topological space and $A = \langle x, A^1, A^2 \rangle$ be an intuitionistic set in X.

(i) cl(A) denotes Icl(A).

(ii) int(A) denotes Iint(A).

Definition 3.2. Let (X,T) be an intuitionistic topological space. An intuitionistic set $A = \langle x, A^1, A^2 \rangle$ in X is said to be *intuitionistic semi* - *open* if $A \subseteq Icl(Iint(A))$.

Definition 3.3. Let (X, T) be an intuitionistic topological space. An intuitionistic set $A = \langle x, A^1, A^2 \rangle$ in X is said to be *intuitionistic semi* - *closed* if $Iint(Icl(A)) \subseteq A$.

Definition 3.4. Let (X,T) be an intuitionistic topological space. An intuitionistic set $S = \langle x, S^1, S^2 \rangle$ in X is said to be *intuitionistic semi* - *regular* if both intuitionistic semi - open and intuitionistic semi - closed.

Example 3.5. Let (X,T) be an intuitionistic topological space. Let $X = \{a, b, c\}$ and $T = \{X_{\sim}, \phi_{\sim}, \langle \{a\}, \{b, c\} \rangle, \langle \{c\}, \{a, b\} \rangle, \langle \{a, b\}, \{c\} \rangle, \langle \{a, c\}, \{b\} \rangle \}$. Let $A = \langle \{a, b\}, \{c\} \rangle$ be an intuitionistic set now A is *intuitionistic semi* - *regular*.

Definition 3.6. Let (X,T) be an intuitionistic topological space. A subset $A = \langle x, A^1, A^2 \rangle$ in X is said to be an *intuitionistic* \mathcal{AB} open-set if $A = U \cap V$, where $U = \langle x, U^1, U^2 \rangle \in T$ and $V = \langle x, V^1, V^2 \rangle$ is an intuitionistic semi - regular. The complement \overline{A} of an intuitionistic \mathcal{AB} open-set A is called an intuitionistic \mathcal{AB} closed-set.

Example 3.7. Let (X,T) be an intuitionistic topological space. Let $X = \{a, b, c\}$ and $T = \{X_{\sim}, \phi_{\sim}, \langle \{a\}, \{b, c\} \rangle, \langle \{b\}, \{a\} \rangle, \langle \{a, b\}, \phi \rangle \}$. Let $A = \langle \{a\}, \{b, c\} \rangle$ be an intuitionistic set now A is intuitionistic \mathcal{AB} - open set.

Definition 3.8. Let (X, T) be an intuitionistic topological space and $A = \langle x, A^1, A^2 \rangle$ be an intuitionistic set in X. Then the *intuitionistic* \mathcal{AB} *interior* ($I\mathcal{AB}int$ for short) of A are defined by

 $I\mathcal{AB}int(A) = \bigcup \{ G = \langle x, G^1, G^2 \rangle : G \text{ is an intuitionistic } \mathcal{AB} \text{ open set in } X \text{ and } G \subseteq A \}.$

Definition 3.9. Let (X, T) be an intuitionistic topological space and $A = \langle x, A^1, A^2 \rangle$ be an intuitionistic set in X. Then the *intuitionistic* \mathcal{AB} closure (I \mathcal{ABcl} for short) of A are defined by

 $I\mathcal{AB}cl(A) = \cap \{K = \langle x, K^1, K^2 \rangle : K \text{ is an intuitionistic } \mathcal{AB} \text{ closed set in } X \text{ and } A \subseteq K \}.$

Notation 3.10. Let (X, T) be an intuitionistic topological space and $U = \langle x, U^1, U^2 \rangle$ be an intuitionistic set, $x \in U$ denotes $x \in U^1$ and $x \notin U^2$.

Definition 3.11. Let (X, T) be an intuitionistic topological space. An *intuitionistic* \mathcal{AB} boundary of an intuitionistic set $V = \langle x, V^1, V^2 \rangle$ in X is denoted and defined as $I\mathcal{AB}\partial V = I\mathcal{AB}cl(V) \cap I\mathcal{AB}cl(\overline{V})$.

Definition 3.12. Let (X, T) be an intuitionistic topological space. An intuitionistic set $A = \langle x, A^1, A^2 \rangle$ in X is said to be an *intuitionistic* \mathcal{AB} neighborhood of x if there exists an intuitionistic \mathcal{AB} open set $U = \langle x, U^1, U^2 \rangle$ such that $x \in U \subseteq A$.

Definition 3.13. Let (X, T) be an intuitionistic topological space and $A = \langle x, A^1, A^2 \rangle$ be an intuitionistic set of X is said to be an *intuitionistic dense* in X, if $I\mathcal{ABcl}(A) = X_{\sim}$.

Definition 3.14. An intuitionistic small inductive dimension of X is denoted I-ind(X), and is defined as follows:

- (i) We say that the intuitionistic dimension of a space X, (I-ind(X)) is -1 iff $X = \phi_{\sim}$.
- (ii) $I\text{-ind}(X) \leq n$ if for every point $x \in X$ and for every intuitionistic \mathcal{AB} open set $U = \langle x, U^1, U^2 \rangle$ there exists an intuitionistic \mathcal{AB} open set $V = \langle x, V^1, V^2 \rangle$, $x \in V$ such that $I\mathcal{ABcl}(V) \subseteq U$ and $I\text{-ind}(I\mathcal{AB\partial V}) \leq n-1$. Where $I\mathcal{AB\partial V}$ is an intuitionistic \mathcal{AB} boundary of V.
- (iii) I-ind(X) = n if (ii) is true for n, but false for n 1.
- (iv) I-ind $(X) = \infty$ if for every n, I-ind $(X) \le n$ is false.

Definition 3.15. Let R^I be a real line. An interval $I = \langle (a, b), (c, d) \rangle$ is said to be an intuitionistic interval if (a, b) and (c, d) are disjoint.

Example 3.16. Let's show that I-ind (R^{I}) is 1.

For each $x \in \mathbb{R}^{I}$, lets select an intuitionistic neighborhood V and an intuitionistic set $U = \langle (a, b), (c, d) \rangle$, I-ind $(I\mathcal{AB}\partial U) = I$ -ind $\langle \{a, b\}, \{c, d\} \rangle = 0$. This implies that I-ind $(\mathbb{R}^{I}) \leq 1$.

so it is enough to prove that I-ind (R^{I}) is not 0. But that is easy. If I-ind $(R^{I})=0$, that means that an intuitionistic set U exists such that I-ind $(I\mathcal{AB}\partial U)=-1 \Leftrightarrow I\mathcal{AB}\partial U = \phi_{\sim} \Leftrightarrow U$ is intuitionistic clopen, but if U is intuitionistic clopen, R^{I} is intuitionistic disconnected. Because R^{I} is intuitionistic connected we get that I-ind $(R^{I})>0$. So finally, I-ind $(R^{I})=1$.

Proposition 3.17. If $Y \subseteq X$ then I-ind $(Y) \leq I$ -ind(X).

Proof. By induction, it is true for I-ind(X) = -1. If I-ind(X) = n, for every point $y \in X$ there is an intuitionistic \mathcal{AB} neighborhood $V = \langle x, V^1, V^2 \rangle$, with an intuitionistic \mathcal{AB} open set $U = \langle x, U^1, U^2 \rangle$, $I\mathcal{ABcl}(V) \subseteq U$ such that I-ind $(I\mathcal{AB\partial}V) \leq n-1$.

Note that $V_Y = Y \cap V$ is an intuitionistic \mathcal{AB} neighborhood in Y and U_Y is an intuitionistic \mathcal{AB} open in Y. By induction, it is enough to show that $I\mathcal{AB}\partial U_Y \subseteq I\mathcal{AB}\partial U$.

Because then I-ind $(\partial U_Y) \leq n-1$, and therefore I-ind $(Y) \leq n = I$ - ind(X)(By definition 3.13). And indeed $I\mathcal{ABcl}(U_y) \subseteq IABcl(U)$,

$$egin{aligned} I\mathcal{AB}\partial U_y &= I\mathcal{AB}cl(U_y) \cap I\mathcal{AB}cl(U_y) \ &\subseteq I\mathcal{AB}cl(U) \cap I\mathcal{AB}cl(\overline{U}) \ &\subseteq I\mathcal{AB}\partial U. \end{aligned}$$

Hence proved.

Definition 3.18. Let (X,T) be an intuitionistic topological space. Let $A = \langle x, A^1, A^2 \rangle$ and $B = \langle x, B^1, B^2 \rangle$ a pair of disjoint intuitionistic sets of the space (X,T), we say that an intuitionistic set $L = \langle x, L^1, L^2 \rangle \subseteq X$ is an intuitionistic partition between A and B if there exist intuitionistic \mathcal{AB} open sets $U = \langle x, U^1, U^2 \rangle$ and $W = \langle x, W^1, W^2 \rangle$ in (X,T) satisfying $A \subseteq U$, $B \subseteq W$ such that $W \cap U = \phi_{\sim}$ and $L = \overline{U} \cap \overline{W}$.

Proposition 3.19. I-ind(X) $\leq n \Leftrightarrow$ For every point x and every intuitionistic AB closed set B there is an intuitionistic partition L, such that I-ind(L) $\leq n - 1$.

Proof. If $x \in X$ and $B = \langle x, B^1, B^2 \rangle$ is an intuitionistic \mathcal{AB} closed set, then there is an intuitionistic set $V = \langle x, V^1, V^2 \rangle$ such that $I\mathcal{AB}cl(V) \cap B = \phi_{\sim}$. By definition of *I*-ind, there is an $I\mathcal{AB}cl(U) \subseteq V$, where $U = \langle x, U^1, U^2 \rangle$, $x \in U$, $I - ind(I\mathcal{AB}\partial U) \leq n-1$. Now, let $W = I\mathcal{AB}cl(U)$ and $L = I\mathcal{AB}\partial U$. Hence $I - ind(L) \leq n-1$.

Conversely, let $x \in X$ and V be an intuitionistic \mathcal{AB} neighborhood x. An intuitionistic set $B = \overline{V}$ is intuitionistic \mathcal{AB} closed and therefore there are $U = \langle x, U^1, U^2 \rangle, W = \langle x, W^1, W^2 \rangle$ such that $x \in U, B \subseteq W$. Note that by definition of $B, U \subseteq V$. Now \overline{W} is intuitionistic \mathcal{AB} closed, therefore $I\mathcal{ABcl}(U) \subseteq \overline{W}$ and obviously $I\mathcal{ABcl}(U) \subset I\mathcal{ABcl}(U) \subset \overline{W}$

and

$$I\mathcal{AB}\partial U = I\mathcal{AB}cl(U) \cap I\mathcal{AB}cl(\overline{U}) \subset \overline{U}$$

Therefore $I\mathcal{AB}\partial U \subseteq \overline{U} \cap \overline{W} = L$. So that $I\text{-ind}(I\mathcal{AB}\partial U) \leq n-1$. Hence $I\text{-ind}(X) \leq n$.

Definition 3.20. An intuitionistic topological space is called *intuitionistic separable* if it contains a countable, intuitionistic dense subset.

Definition 3.21. An *intuitionistic metrizable space* is an intuitionistic topological space that is homeomorphic to an intuitionistic metric space.

Proposition 3.22. If X is an intuitionistic zero-dimensional separable metric space, then for every pair A, B of disjoint intuitionistic closed subsets of X the empty set is an intuitionistic partition between A and B, that is there exists an intuitionistic open and intuitionistic closed set $U \subset X$ such that $A \subset U$ and $B \subset X \setminus U$.

Proof. The proof is similar to Theorem 1.2.6[5] with suitable modification.

Proposition 3.23. Let M be an intuitionistic subspace of a metric space X and A, B a pair of disjoint intuitionistic closed sets of X. For every intuitionistic partition L' in the space M between $M \cap \overline{V_1}$ and $M \cap \overline{V_2}$, where V_1, V_2 are intuitionistic open sets of X such that $A \subset V_1$, $B \subset V_2$ and $\overline{V_1} \cap \overline{V_2} = \phi_{\sim}$, there exists an intuitionistic partition L in the space X between A and B which satisfies the inclusion $M \cap L \subset L'$.

Proof. The proof is similar to Lemma 1.2.9[5] with suitable modification.

Proposition 3.24. If X is an arbitrary intuitionistic metric space and Z is an intuitionistic zero-dimensional separable subspace of X, then for all intuitionistic closed set A, B of X, $A \cap B = \phi_{\sim}$ there is an intuitionistic partition between them L, such that $L \cap Z = \phi_{\sim}$.

Proof. The proof is similar to Theorem 1.2.11[5] with suitable modification.

Proposition 3.25. X is an intuitionistic separable metrizable space, then I-ind(X) $\leq n \Leftrightarrow X$ is the union of two intuitionistic sub spaces, Y,Z such that I-ind(Y) $\leq n-1$, I-ind(Z) ≤ 0 .

Proof. The proof is similar to Theorem 3.9[8] with suitable modification.

Proposition 3.26. For every intuitionistic \mathcal{AB} closed sets A and B of an intuitionistic separable metric space X, I-ind(X) $\leq n$, there is an intuitionistic partition L, such that I-ind(L) $\leq n - 1$.

Proof. We can decompose X into two intuitionistic spaces Y, Z by Proposition 3.24 I - $ind(Y) \leq n-1$, I-ind (Z)= 0. By Proposition 3.23, There is an intuitionistic partition L between an intuitionistic sets $A = \langle x, A^1, A^2 \rangle$, $B = \langle x, B^1, B^2 \rangle$ and $L \cap Z = \phi_{\sim} \Rightarrow L \subseteq Y$ and I- $ind(L) \leq n-1$ as an intuitionistic subspace of Y. \Box

Proposition 3.27. Let X be an intuitionistic separable metric spaces, I - $ind(X) \leq n \iff Then$ for every sequence of $(A_1, B_1) \dots (A_{n+1}, B_{n+1})$ of an intuitionistic \mathcal{AB} closed disjoint sets. An intuitionistic partitions $L_1 \dots L_{n+1}$ exist such that they have an empty intersection.

Proof. Let us take $A_1 = \langle x, A_1^1, A_1^2 \rangle$, $B_1 = \langle x, B_1^1, B_1^2 \rangle$ by Proposition 3.25, we can find an intuitionistic partition L_1 , $I - ind(L_1) \leq n - 1$. Let us take $A_2 = \langle x, A_2^1, A_2^2 \rangle$, $B_2 = \langle x, B_2^1, B_2^2 \rangle$ and $M = L_1$. we can find an intuitionistic partition L_2 such that $I - ind(M \cap L_2) \leq n - 2$.

Let us take $A_i = \langle x, A_i^1, A_i^2 \rangle$, $B_i = \langle x, B_i^1, B_1^i \rangle$ and let $M = L_1 \cap L_2 \cap \dots \dots L_{i-1}$. we can find an intuitionistic partition L_i such that $I - ind(M \cap L_i) = n - i$. When we go to do $A_{n+1} = \langle x, A_{n+1}^1, A_{n+1}^2 \rangle$, $B_{n+1} = \langle x, B_{n+1}^1, B_{n+1}^2 \rangle$, we have $I - ind(L_1 \cap L_2 \cap \dots \dots L_{n+1}) \leq -1 \iff L_1 \cap L_2 \cap \dots \cap L_{n+1} = \phi_{\sim}$.

4. INTUITIONISTIC LARGE INDUCTIVE DIMENSION

Definition 4.1. (X,T) is an intuitionistic \mathcal{AB} normal space if, given any intuitionistic disjoint \mathcal{AB} closed sets $E = \langle x, E^1, E^2 \rangle$ and $F = \langle x, F^1, F^2 \rangle$, there are an intuitionistic \mathcal{AB} neighborhood $U = \langle x, U^1, U^2 \rangle$ of E and an intuitionistic \mathcal{AB} neighborhood $V = \langle x, V^1, V^2 \rangle$ of F that are also intuitionistic disjoint.

Definition 4.2. An intuitionistic large inductive dimension of intuitionistic \mathcal{AB} normal space X is denoted *I*- $\mathcal{I}nd(X)$ and is defined as follows:

- (i) We say that the intuitionistic dimension of a space X, $I-\mathcal{I}nd(X)$ is -1 iff $X = \phi_{\sim}$.
- (ii) $I \mathcal{I}nd(X) \leq n$ if for every intuitionistic \mathcal{AB} closed set $C = \langle x, C^1, C^2 \rangle \subseteq X$ and for every intuitionistic \mathcal{AB} open set $U = \langle x, U^1, U^2 \rangle$ there exists an intuitionistic \mathcal{AB} open $V = \langle x, V^1, V^2 \rangle, C \subseteq V$ such that $I\mathcal{ABcl}(V) \subseteq U$ and $I\mathcal{I}nd(\mathcal{AB\partial V}) \leq n-1$. Where $I\mathcal{AB\partial V}$ is an intuitionistic boundary of V.
- (iii) $I \mathcal{I} n d(X) = n$ if (ii) is true for n, but false for n-1.
- (iv) $I \mathcal{I} n d(X) = \infty$ if for every n, $I \mathcal{I} n d(X) \le n$ is false.

Proposition 4.3. An intuitionistic \mathcal{AB} normal space X satisfies the inequality $I \cdot \mathcal{I}nd(X) \leq n$ iff for every pair E and F of disjoint intuitionistic \mathcal{AB} closed set of X exists an intuitionistic partition L between $A = \langle x, A^1, A^2 \rangle$ and $B = \langle x, B^1, B^2 \rangle$ such that $I \cdot \mathcal{I}nd(L) \leq n - 1$.

Proof. Proof is obvious.

Proposition 4.4. For every intuitionistic separable space X we have I-ind(X)= $I-\mathcal{I}nd(X)$

Proof. For every intuitionistic \mathcal{AB} normal space X we have $I - ind(X) \leq I - \mathcal{I}nd(X)$ by definition. To show that $I - \mathcal{I}nd(X) \leq I - ind(X)$ we will use induction with respect to I - ind(X), clearly one can suppose that $I - ind(X) < \infty$.

If $I \cdot ind(X) = -1 \Rightarrow I \cdot ind(X) \leq I \cdot Ind(X)$. Assume that the inequality is proven for all intuitionistic separable metric space X of $I \cdot ind(X) < n$ and consider an intuitionistic separable metric space X such that $I \cdot ind(X) = n$.

Let $A = \langle x, A^1, A^2 \rangle$ and $B = \langle x, B^1, B^2 \rangle$ be a pair of intuitionistic disjoint \mathcal{AB} closed subset of X, by Proposition 3.26, there exists an intuitionistic partition L between A and B such that $I - ind(L) \leq n - 1$, by the inductive assumption for every k < n, $I - \mathcal{I}nd(L) \leq n - 1$ and according to the Proposition 4.4, $I - \mathcal{I}nd(X) \leq n$ and finally we get $I - \mathcal{I}nd(X) \leq I - ind(X) \Rightarrow \mathcal{I} - Ind(X) = I - ind(X)$. \Box

5. Intuitionistic Addition theorem

Proposition 5.1. Let X be an intuitionistic \mathcal{AB} normal space and Y be an intuitionistic dense subset of X. Let also A and B be disjoint intuitionistic subset of $X;M = \langle x, M^1, M^2 \rangle$ and $N = \langle x, N^1, N^2 \rangle$ are intuitionistic \mathcal{AB} open sets of X and $A \subset M$, $B \subset N$, $I\mathcal{AB}cl_XM \cap I\mathcal{AB}cl_XN = \phi_{\sim}$. Assume that C_Y be an intuitionistic partition between the intuitionistic sets $I\mathcal{AB}cl_XM \cap Y$ and $I\mathcal{AB}cl_XN \cap Y$ in Y. Then there exists an intuitionistic partition C in the intuitionistic space X between A and B such that $C \cap Y = C_Y$.

Proof. Let $U = \langle x, U^1, U^2 \rangle$ and $V = \langle x, V^1, V^2 \rangle$ be any two disjoint intuitionistic \mathcal{AB} - open subsets of Y such that $Y \setminus C_Y = U \cup V$, $I\mathcal{AB}cl_X M \cap Y \subset U$ and $I\mathcal{AB}cl_X N \cap Y \subset V$. Put $Y_1 = U \cup C_Y, Y_2 = V \cup C_Y$ and $X_i = I\mathcal{AB}cl_X Y_i$ for each i = 1, 2. It is easy to see that

- (i) $Y_1 = \langle y, Y_1^1, Y_1^2 \rangle$ and $Y_2 = \langle y, Y_2^1, Y_2^2 \rangle$ are intuitionistic \mathcal{AB} closed subset of Y and $Y = Y_1 \cup Y_2, C_Y = Y_1 \cap Y_2$.
- (ii) $X_1 = \langle x, X_1^1, X_1^2 \rangle$ and $X_2 = \langle x, X_2^1, X_2^2 \rangle$ are intuitionistic \mathcal{AB} closed subset of X and $X = I\mathcal{ABcl}_X Y = I\mathcal{ABcl}_X (Y_1 \cup Y_2) = I\mathcal{ABcl}_X (Y_1) \cup I\mathcal{ABcl}_X (Y_2)$ $= X_1 \cup X_2.$

(iii) $X_i \cap Y = Y_i$ for each i = 1, 2.

Moreover, we have $X_1 \cap B = \langle x, B^1, B^2 \rangle = \phi_{\sim}$ (because $Y_1 \cap (I\mathcal{AB}cl_X N \cap Y) = \phi_{\sim}$, so $Y_1 \cap N = \phi_{\sim}$ and consequently, $I\mathcal{AB}cl_X Y_1 \cap N = \phi_{\sim}$).

Analogously, we get $X_2 \cap A = \langle x, A^1, A^2 \rangle = \phi_{\sim}$. Put $U = \langle x, U^1, U^2 \rangle = X \setminus X_2, V = \langle x, V^1, V^2 \rangle = X \setminus X_1$ and $C = X_1 \cap X_2$. Observe that U and V are disjoint intuitionistic \mathcal{AB} open sets of the intuitionistic space X and $A \subset U$, $B \subset V$ and $C = X \setminus (U \cup V)$. In addition we have $C \cap Y = (X_1 \cap Y) \cap (X_2 \cap Y) = Y_1 \cap Y_2 = C_Y$. \Box

Remark 5.2. Let X be an intuitionistic space, x be a point of $X, B = \langle x, B^1, B^2 \rangle$ is an intuitionistic \mathcal{AB} closed set of X and $x \notin B$. Put $U = \langle x, U^1, U^2 \rangle = X \setminus B$. In the intuitionistic space X let us consider intuitionistic \mathcal{AB} open subsets $M = \langle x, M^1, M^2 \rangle$, $V = \langle x, V^1, V^2 \rangle$ and $W = \langle x, W^1, W^2 \rangle$ such that

$$x \in M \subset I\mathcal{AB}cl(M) \subset V \subset I\mathcal{AB}cl(V) \subset W \subset I\mathcal{AB}cl(W) \subset U$$

put $N = \langle x, N^1, N^2 \rangle = X \setminus I\mathcal{ABcl}(W)$. It is evident that $B \subset N$ and $I\mathcal{ABcl}(M) \cap I\mathcal{ABcl}(N) = \phi_{\sim}$. Let Y be an intuitionistic subset of X. In Y let us consider an intuitionistic \mathcal{AB} open subset $P = \langle x, P^1, P^2 \rangle$ such that $I\mathcal{ABcl}(M) \cap Y \subset P \subset V \cap Y$. It is evident that $I\mathcal{ABcl}_YP \subset I\mathcal{ABcl}_Y(V \cap Y) \subset I\mathcal{ABcl}_Y(V) \cap Y \subset W \cap Q$

 $Y \subset Y \setminus I\mathcal{ABclN}$. So the $I\mathcal{ABd}_YP$ is an intuitionistic partition between the sets $I\mathcal{ABclM} \cap Y$, $I\mathcal{ABclN} \cap Y$ in Y. By trI-ind, trI- $\mathcal{I}nd$ we will denote the natural transfinite extension of I-ind trI- $\mathcal{I}nd$.

Proposition 5.3. Let X be an intuitionistic space and Y be an intuitionistic dense subset of X with trI-Ind $Y = \alpha$, where α is an intuitionistic ordinal number \geq 0. Then for each point $x \in X$ and every intuitionistic AB closed set $B \subset X$ such that $x \notin B$ there exist an intuitionistic partition C in X between the intuitionistic point x and the intuitionistic set B such that trI-Ind $(C \cap Y) < \alpha$. In particular, if trI-Ind(Y) = 0 then $C \subset X \setminus Y$.

Proof. Let us choose intuitionistic \mathcal{AB} open subsets $M = \langle x, M^1, M^2 \rangle$, $N = \langle x, N^1, N^2 \rangle$ and $V = \langle x, V^1, V^2 \rangle$ of the intuitionistic space (X, T) as in Remark 5.2. In the intuitionistic space (Y, T) by our assumption there exists an intuitionistic \mathcal{AB} open set $P = \langle x, P^1, P^2 \rangle$ such that $I\mathcal{AB}clM \cap Y \subset P \subset V \cap Y$ and trI- $\mathcal{I}nd\mathcal{AB}\partial_Y P < \alpha$.

Moreover, the intuitionistic set $I\mathcal{AB}\partial_Y P$ is an intuitionistic partition between the sets $I\mathcal{AB}clM \cap Y, I\mathcal{AB}clN \cap Y$ in Y. By proposition 5.2 there is an intuitionistic partition C in X between the intuitionistic point x and the intuitionistic set $B = \langle x, B^1, B^2 \rangle$ such that $C \cap Y = I\mathcal{AB}\partial_Y P$.

6. Intuitionistic product theorem

Definition 6.1. Let d be an intuitionistic dimension function which is monotone with respect to intuitionistic \mathcal{AB} - closed subsets. Then the *intuitionistic finite* sum dimension function for d holds in an intuitionistic \mathcal{AB} normal space (X, T) (in intuitionistic dimension $k \geq 0$ ($I\mathcal{F}SDF(d)$ in short) (respectively ($I\mathcal{F}SDF(d,k)$, if d ($A \cup B$) = $max\{dA, dB\}$ for every intuitionistic \mathcal{AB} - closed in X intuitionistic sets $A = \langle x, A^1, A^2 \rangle$ and $B = \langle x, B^1, B^2 \rangle$ (such that $dA, dB \leq k$). For any intuitionistic space X,let us define

$$I\mathcal{F}SDF(d, X) = \begin{cases} \infty, & \text{if } I\mathcal{F}SDF(d) \text{hold in } X; \\ \min\{k \ge 0 : I\mathcal{F}SDF(d, k) \\ \text{does not hold in } X\}, & \text{otherwise.} \end{cases}$$

It is evident that either $0 \leq I\mathcal{F}SDF(d,k) \leq dX - 1$ or $I\mathcal{F}SDF(d,k) = \infty$.

Moreover, for every intuitionistic \mathcal{AB} closed set A in X we have $I\mathcal{F}SDF(d, A) \geq I\mathcal{F}SDF(d, X)$, and if $dA \leq I\mathcal{F}SDF(d, X)$ then $I\mathcal{F}SDF(d)$ holds in A.

Remark 6.2. Let (X, T) and (Y, T) be any two intuitionistic \mathcal{AB} normal space, I-ind $(X \times Y) \leq I$ -ind(X) + I-ind(Y) if $I\mathcal{F}SDF(ind)$ holds in the intuitionistic space X and Y.

The proof is similar to (problem 2.4 H[6]) with suitable modification.

Remark 6.3. Let (X,T) and (Y,T) be any two intuitionistic \mathcal{AB} normal spaces with I-ind $X = m \ge 0$ and I-ind $Y = n \ge 0$ then

$$I - ind(X \times Y) = \begin{cases} m+n, & \text{if } m=0 \text{ or } n=0;\\ 2(m+n)-1, & \text{otherwise.} \end{cases}$$

Remark 6.4. Let (X,T) be an intuitionistic \mathcal{AB} normal space. Let A and B be any two intuitionistic \mathcal{AB} closed subsets such that $A \cup B = X_{\sim}$ then $I - indX \leq max\{I - indA, I - indB\} + 1$.

Proposition 6.5. Let X and Y be an intuitionistic space and $A = \langle x, A^1, A^2 \rangle$ and $B = \langle x, B^1, B^2 \rangle$ are intuitionistic \mathcal{AB} closed sets of X and Y, respectively. Assume that I-ind $A \leq I\mathcal{F}SDF(\text{I-ind}, X)$ and I-ind $B \leq I\mathcal{F}SDF(\text{I-ind}, Y)$. Then I-ind $(A \times B) \leq I$ -indA + I-indB.

Proof. Observe that $I\mathcal{F}SDF(ind)$ holds in the subspaces $A = \langle x, A^1, A^2 \rangle$ and $B = \langle x, B^1, B^2 \rangle$. Hence by Remark 6.2, $I\text{-ind}(A \times B) \leq I\text{-ind}A + I\text{-ind}B$. Hence proved.

Proposition 6.6. Let (X,T) be an intuitionistic space and trI-indX = 0. Then trI-ind $(X \times Y) = trI$ -indY for any intuitionistic space Y.

Proof. Proof is obvious.

Proposition 6.7. Let (X,T) and (Y,T) be any two intuitionistic spaces with Iind $X \le m \ge 0$ and I-ind $Y \le n \ge 0$. Assume that IFSDF(I-ind, X), IFSDF(Iind, $Y) \ge k$ for some $k = 0, 1, \dots, or\infty$. Then

$$I - ind(X \times Y) \le \begin{cases} m+n & \text{if } n = 0, m = 0, \text{or } m, n \le k, ; \\ 2(m+n) - k - 1 & \text{otherwise.} \end{cases}$$

Proof. Observe that the proposition is valid for k = 0 (by Remark 6.3) and $k = \infty$ (by Remark 6.2). Assume that k is an integer ≥ 1 . Note that the proposition holds if

either $m, n \leq k$ (by proposition 6.5) or m = 0, or n = 0 (by proposition 6.6).

Let us prove the statement for the remained part of the set $\{m, n \ge 0\}$.Put s = m + n. It would be enough if we prove that I-ind $(X \times Y) \le 2s - k - 1$,for $s \ge k + 1$. Apply induction.Observe that for s = k + 1 the inequality evidently holds.Suppose that the inequality is valid for all s : k + 1 < s < r.

Let now s = r and $m, n \ge 1$ for each point $p \in X \times Y$ and every intuitionistic \mathcal{AB} open neighborhood W of p let us choose a rectangular intuitionistic \mathcal{AB} open neighborhood $U \times V \subset W$ of this point such that

$$I$$
-ind $(I\mathcal{AB}\partial U) \leq m-1$ and I -ind $(I\mathcal{AB}\partial V) \leq n-1$

Observe that $I\mathcal{AB}\partial(U \times V) = (I\mathcal{AB}\partial U \times I\mathcal{AB}clV) \cup (I\mathcal{AB}clU \times I\mathcal{AB}\partial V)$ and *I-ind* $I\mathcal{AB}\partial(U \times V) \leq max\{I-indI(\mathcal{AB}\partial U \times I\mathcal{AB}clV), I-ind(I\mathcal{AB}clU \times I\mathcal{AB}\partial V)\} + 1$ (By Definition 6.4). Moreover, we have

 $IFSDF(I-ind, IAB\partial U), IFSDF(I-ind, IABclU), IFSDF(I-ind, IAB\partial V),$ $IFSDF(I-ind, IABclV) \ge k$. (by the proposition condition

$$I\mathcal{F}SDF(I\text{-}ind, X) \ge k \text{ and } I\mathcal{F}SDF(I\text{-}ind, Y) \ge k)$$

This allow us to apply induction. By induction assumption,

 $max\{I\text{-}ind(I\mathcal{AB}\partial U \times I\mathcal{AB}clV), I\text{-}ind(I\mathcal{AB}clU \times I\mathcal{AB}\partial V)\} \leq 2(r-1) - 1 - k.$

 $max\{I\text{-}ind(I\mathcal{AB}\partial U \times I\mathcal{AB}clV), I\text{-}ind(I\mathcal{AB}clU \times I\mathcal{AB}\partial V)\} \leq 2r - 3 - k.$

So by Remark 6.4 we get I-ind $(I\mathcal{AB}\partial U \times V) \leq 2r - 3 - k + 1 = 2r - 2 - k$. Hence the inequality I-ind $(X \times Y) \leq 2r - 1 - k$ holds. Acknowledgements. The authors would like to thank the referee for reading the paper carefully and giving very valuable suggestions and remarks.

References

- D. Coker, A note on intuitionistic sets and intuitionistic points, Turkish J. Math. 20 (1996) 343–351.
- [2] D. Coker, An introduction to intuitionistic topological spaces, BUSEFAL, 81 (2000) 51–56.
- [3] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18 (1987) 226–233.
- [4] J. Donchev, Between A- and B-sets, Math Balkanica, New Ser., 12 (1988) 295-302.
- [5] R. Engelking, Dimension theory, 1978.
- [6] R. Engelking, Theory of Dimension, Finite and Infinite, Heldermann-Verlag, Lemgo, 1995.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [8] Yuval Kohavi and Hadar Davdovich, Topological dimensions, Hausdorff dimensions and fractals, May 2006.

M. KOUSALYAPARASAKTHI (koushi.1902@gmail.com)

Research scholar, Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

<u>E. ROJA</u> (AMV_1982@rediffmail.com)

Associate Professor, Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

<u>M. K. UMA</u> (mkuma70@yahoo.co.in)

Associate professor, Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India