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Abstract. In this article, we define a new type of coupled contraction
mapping in fuzzy metric spaces having a partially ordering and obtain a
coupled coincidence point theorem by using aHadžić type t-norm. The two
mappings considered here are assumed to be compatible. Several corollaries
are derived from our theorem. The main theorem of this paper is illustrated
with an example which shows that the corollaries are actually contained
in the theorem. By an application of the coincidence point theorem in
fuzzy metric spaces, a corresponding result is obtained in metric spaces.
An example is discussed in the metric space context. Our work extends
some existing results.
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1. Introduction

In this paper we consider a coupled coincidence problem in fuzzy metric spaces.
There are several independent definitions of fuzzy metric spaces in the literature
as, for instances [9, 11, 18, 20] out of which we consider here the definition given
by George and Veeramani [9]. On this fuzzy metric space fixed point theory has a
developed literature. The theory is not a mere extension of the ordinary fixed point
theory. In fact, due to the inherent flexibility of the fuzzy concepts, the fuzzy metric
space is sometimes more versatile than the ordinary metric and, in most of the cases,
a theory built in its context naturally has more freedom than the corresponding
theory in metric spaces. For some inherent issues of fuzzy metric spaces we refer to
[1, 6, 7, 14, 15, 16, 17, 23, 24, 25, 28, 29, 33]. There are also applications of fuzzy
metric concepts to real life situations as, for instance, in [4, 26] an application has
been made to colour delection problems.
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Coupled fixed point was introduced by Guo et al [12]. A coupled contraction
mapping principle was established by Bhaskar et al [2] in partially ordered metric
spaces. The result was extended to coincidence point problems by Ciric et al [8]
under two different set of conditions. In [5], the well known concept of compatible
mappings was extended to the context of coupled and single mappings. Afterwards,
there have appeared a large number of articles on this chapter of fixed point theory,
some of there are noticed in [3, 22, 27, 31].

In fuzzy metric spaces Zhu et al [34] were first to correctly work out a fuzzy fixed
point theorem. Afterwards, a coupled coincidence point result was established by
Choudhury et al [6], Hu [16]. The purpose of this paper is to prove a coincidence
point result for compatible mappings in a fuzzy metric space which has Hadžić type
t-norm under the assumption of a new inequality.

In a separate section we apply the theorem to obtain coupled coincidence point
results in metric spaces. Some existing results on coupled coincidence points are ex-
tended, as instances [2, 3, 5]. The results of this paper are illustrated with examples.
One example shows that extensions are actual improvement of the above mentioned
work.

2. Preliminaries

Definition 2.1 ([13, 32]). A binary operation ∗ : [0, 1]2 −→ [0, 1] is called a t-norm
if the following properties are satisfied:
(i) ∗ is associative and commutative,
(ii) a ∗ 1 = a for all a ∈ [0, 1],
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

Some examples of continuous t-norm are a ∗M b = min{a, b}, a ∗P b = ab. Sev-
eral aspects of the theory of t-norms with examples are given comprehensively by
Klement et al in their book [19].

George and Veeramani in their paper [9] introduced the following definition of
fuzzy metric space. We will be concerned only with this definition of fuzzy metric
space.

Definition 2.2 ([9]). The 3-tuple (X,M, ∗) is called a fuzzy metric space in the
sense of George and Veeramani if X is a non-empty set, ∗ is a continuous t-norm
and M is a fuzzy set on X2 × (0,∞) satisfying the following conditions for each
x, y, z ∈ X and t, s > 0:
(i)M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s) and
(v) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, 0 < r < 1, the open ball
B(x, t, r) with center x ∈ X is defined by

B(x, t, r) = {y ∈ X : M(x, y, t) > 1− r}.
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A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1
such that B(x, t, r) ⊂ A. Let τ denote the family of all open subsets of X. Then τ
is a topology and is called the topology on X induced by the fuzzy metric M . This
topology is metrizable as we indicated above.

Example 2.3 ([9]). Let X be the set of all real numbers and d be the Euclidean
metric by any set X and any metric d on X. Let a∗ b = min{a, b} for all a, b ∈ [0, 1].
For each t > 0, x, y ∈ X, let

M(x, y, t) =
t

t+ d(x, y)
.

Then (X,M, ∗) is a fuzzy metric space.

Definition 2.4 ([10]). Let (X,M, ∗) be a fuzzy metric space.
(i) A sequence {xn} inX is said to be convergent to a point x ∈ X if lim

n→∞
M(xn, x, t) =

1 for all t > 0.
(ii) A sequence {xn} in X is called a Cauchy sequence if for each 0 < ε < 1 and
t > 0, there exists a positive integer n0 such that M(xn, xm, t) > 1 − ε for each
n,m ≥ n0.
(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to
be complete.

The following lemma was proved by Grabiec [10] for fuzzy metric spaces de-
fined by Kramosil et al. The proof is also applicable to the fuzzy metric space given
in definition 2.2.

Lemma 2.5 ([10]). Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, .) is non-
decreasing for all x, y ∈ X.

Lemma 2.6 ([30]). M is a continuous function on X2 × (0,∞).

Our purpose in this paper is to prove a coupled coincidence point theorem for two
mappings in a complete fuzzy metric space which has a partial order defined on it.

Let (X,⪯) be a partially ordered set and F be a mapping from X to itself. The
mapping F is said to be non-decreasing if for all x1, x2 ∈ X, x1 ⪯ x2 implies F (x1) ⪯
F (x2) and non-increasing if for all x1, x2 ∈ X, x1 ⪯ x2 implies F (x1) ⪰ F (x2)[2].

Definition 2.7 ([2]). Let (X,⪯) be a partially ordered set and F : X × X → X
be a mapping. The mapping F is said to have the mixed monotone property if F
is non-decreasing in its first argument and is non-increasing in its second argument,
that is, if, for all x1, x2 ∈ X, x1 ⪯ x2 implies F (x1, y) ⪯ F (x2, y), for fixed y ∈ X
and, for all y1, y2 ∈ X, y1 ⪯ y2 implies F (x, y1) ⪰ F (x, y2), for fixed x ∈ X.

Definition 2.8 ([2]). Let (X,⪯) be a partially ordered set and F : X×X → X and
g : X → X be two mappings. The mapping F is said to have the mixed g-monotone
property if F is monotone g-non-decreasing in its first argument and is monotone
g-non-increasing in its second argument, that is, if, for all x1, x2 ∈ X, g(x1) ⪯ g(x2)
implies F (x1, y) ⪯ F (x2, y), for any y ∈ X and, for all y1, y2 ∈ X, g(y1) ⪯ g(y2)
implies F (x, y1) ⪰ F (x, y2), for any x ∈ X.
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Definition 2.9 ([2]). Let X be a nonempty set. An element (x, y) ∈ X×X is called
a coupled fixed point of the mapping F : X ×X → X if

F (x, y) = x, F (y, x) = y.

Further Lakshmikantham and Ćirić have introduced the concept of coupled coin-
cidence point.

Definition 2.10 ([21]). Let X be a nonempty set. An element (x, y) ∈ X ×X is
called a coupled coincidence point of a mappings F : X ×X → X and g : X → X if

g(x) = F (x, y), g(y) = F (y, x).

Definition 2.11 ([21]). Let X be a nonempty set and the mappings F : X×X → X
and g : X → X are commuting if for all x, y ∈ X

g(F (x, y)) = F (g(x), g(y)).

Compatibility between two mappings F : X×X → X and g : X → X, where (X, d)
is a metric space, was defined in [5]. It is an extension of the commuting condition.
Compatibility was used to obtain a coupled coincidence point result in the same
work.

Definition 2.12 ([5]). Let (X, d) be a metric space. The mappings F : X×X → X
and g : X → X are said to be compatible if

lim
n→∞

d(g(F (xn, yn)), F (g(xn), g(yn))) = 0

and
lim
n→∞

d(g(F (yn, xn)), F (g(yn), g(xn))) = 0,

whenever {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) =

x and lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y for some x, y ∈ X.

Intuitively we can think that the functions F and g commute in the limit in the
situations where the functional values tend to the same point.

The following is the notion of compatibility in the fuzzy metric spaces.

Definition 2.13 ([6, 16]). Let (X,M, ∗) be a fuzzy metric space. The mappings
F : X ×X → X and g : X → X are said to be compatible if for all t > 0

lim
n→∞

M(g(F (xn, yn)), F (g(xn), g(yn), t) = 1

and
lim
n→∞

M(g(F (yn, xn)), F (g(yn), g(xn), t) = 1,

whenever {xn} and {yn} are sequences in X such that lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) =

x and lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y for some x, y ∈ X.

In the following lemma we establish that the compatibility in a metric space
implies that the compatibility in the corresponding fuzzy metric space of example
2.3. We use it to obtain a result in metric spaces in section 4.

Lemma 2.14 ([6]). Let (X, d) be a metric space. If the mappings F and g where
F : X × X → X and g : X → X are compatible in (X, d), then F and g are also
compatible in the corresponding fuzzy metric space (X,M, ∗).
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We use continuous Hadžić type t-norm in our theorem.

Definition 2.15 ([13]). A t-norm ∗ is said to be Hadžić type t-norm if the family
{∗p}p≥0 of its iterates defined for each s ∈ [0, 1] by

∗0(s) = 1, ∗p+1(s) = ∗(∗p(s), s) for all p ≥ 0, is equi-continuous at s = 1, that
is, given λ > 0 there exists η(λ) ∈ (0, 1) such that

1 ≥ s > η(λ) ⇒ ∗(p)(s) > 1− λ for all p ≥ 0.
For an example of a non trivial Hadžić type t-norm, we refer to [13].

We will require the result of the following lemma to establish our main theorem.

Lemma 2.16 ([6]). Let (X,M, ∗) be a fuzzy metric space with a Hadžić type t-norm
∗ such that M(x, y, t) → 1 as t → ∞, for all x, y ∈ X. If the sequences {xn} and
{yn} in X are such that, for all n ≥ 1, t > 0,

M(xn, xn+1, t) ∗M(yn, yn+1, t) ≥ M(xn−1, xn,
t
k ) ∗M(yn−1, yn,

t
k )

where 0 < k < 1, then the sequences {xn} and {yn} are Cauchy sequences.

3. Major Section

Theorem 3.1. Let (X,M, ∗) be a complete fuzzy metric space with a Hadžić type
t-norm such that M(x, y, t) → 1 as t → ∞, for all x, y ∈ X. Let ⪯ be a partial order
defined on X. Let F : X ×X → X and g : X → X be two mappings such that F
has mixed g-monotone property and satisfies the following conditions:
(i) F (X ×X) ⊆ g(X),
(ii) g is continuous and monotonic increasing,
(iii) (g, F ) is a compatible pair,
(iv) M(F (x, y), F (u, v), kt) ∗M(F (y, x), F (v, u), kt)

≥ M(g(x), g(u), t) ∗M(g(y), g(v), t), (3.1)
for all x, y, u, v ∈ X, t > 0 with g(x) ⪯ g(u) and g(y) ⪰ g(v), where 0 < k < 1.
Also suppose either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n ≥ 0,(3.2)
(ii) if a non-increasing sequence {yn} → y, then yn ⪰ y for all n ≥ 0.(3.3)

If there are x0, y0 ∈ X such that g(x0) ⪯ F (x0, y0), g(y0) ⪰ F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x), that is, g and F have a
coupled coincidence point in X.

Proof. Starting with x0, y0 in X, we define the sequences {xn} and {yn} in X as
follows:

g(x1) = F (x0, y0) and g(y1) = F (y0, x0),
g(x2) = F (x1, y1) and g(y2) = F (y1, x1),

and in general, for all n ≥ 0,
g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn). (3.4)

This construction is possible by the condition (i) of the theorem.
Next, we prove that for all n ≥ 0,

g(xn) ⪯ g(xn+1) (3.5)
and

g(yn) ⪰ g(yn+1). (3.6)
893
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From the conditions on x0, y0, we have g(x0) ⪯ F (x0, y0) = g(x1)
and g(y0) ⪰ F (y0, x0) = g(y1). Therefore (3.5) and (3.6) hold for n = 0.
Let (3.5) and (3.6) hold for some n = m. As F has the mixed g-monotone property
and g(xm) ⪯ g(xm+1), g(ym) ⪰ g(ym+1), it follows that
g(xm+1) = F (xm, ym) ⪯ F (xm+1, ym) and F (ym+1, xm) ⪯ F (ym, xm) = g(ym+1).

(3.7)
Also, for the same reason, we have

F (xm+1, ym) ⪯ F (xm+1, ym+1) = g(xm+2)
and g(ym+2) = F (ym+1, xm+1) ⪯ F (ym+1, xm). (3.8)

Then, from (3.7) and (3.8),
g(xm+1) ⪯ g(xm+2) and g(ym+1) ⪰ g(ym+2).

Then, by induction, (3.5) and (3.6) hold for all n ≥ 0.
Due to (3.4), (3.5) and (3.6), from (3.1), for all t > 0, n ≥ 1, we have

M(g(xn), g(xn+1), kt) ∗M(g(yn), g(yn+1), kt)
= M(F (xn−1, yn−1), F (xn, yn), kt)∗M(F (yn−1, xn−1), F (yn, xn), kt)
≥ M(g(xn−1), g(xn), t) ∗M(g(yn−1), g(yn), t). (by (3.1)) (3.9)

From (3.9), by an application of Lemma 2.16, we conclude that {g(xn)} and {g(yn)}
are Cauchy sequences. Since X is complete, there exist x, y ∈ X such that

lim
n→∞

g(xn) = x and lim
n→∞

g(yn) = y. (3.10)

Therefore, lim
n→∞

g(xn+1) = lim
n→∞

F (xn, yn) = x and lim
n→∞

g(yn+1) = lim
n→∞

F (yn, xn) =
y.
Since (g, F ) is a compatible pair, using continuity of g, we have

g(x) = lim
n→∞

g(g(xn+1)) = lim
n→∞

g(F (xn, yn)) = lim
n→∞

F (g(xn), g(yn)) (3.11)

and
g(y) = lim

n→∞
g(g(yn+1)) = lim

n→∞
g(F (yn, xn)) = lim

n→∞
F (g(yn), g(xn)). (3.12)

Now assume that(a) holds. Then by continuity of F , from (3.11), (3.12) and by using
(3.10), we have
g(x) = lim

n→∞
g(F (xn, yn)) = lim

n→∞
F (g(xn), g(yn)) = F ( lim

n→∞
g(xn), lim

n→∞
g(yn)) =

F (x, y)
and g(y) = lim

n→∞
g(F (yn, xn)) = lim

n→∞
F (g(yn), g(xn)) = F ( lim

n→∞
g(yn), lim

n→∞
g(xn)) =

F (y, x).
which implies that g(x) = F (x, y) and g(y) = F (y, x).
Next we assume that (b) holds.
By (3.5), (3.6) and (3.10), we have that {g(xn)} is a non-decreasing sequence with
g(xn) → x and {g(yn)} is a non-increasing sequence with g(yn) → y as n → ∞.
Then, by (3.2) and (3.3), it follows that, for all n ≥ 0,

g(xn) ⪯ x and g(yn) ⪰ y.
Since g is monotonic increasing,

g(g(xn)) ⪯ g(x) and g(g(yn)) ⪰ g(y). (3.13)
Now, for all t > 0, n ≥ 0, we have

M(F (x, y), g(F (xn, yn)), t) ≥ M(F (x, y), g(g(xn+1)), kt)
∗M(g(g(xn+1)), g(F (xn, yn)), (t− kt)). (3.14)

M(F (y, x), g(F (yn, xn)), t) ≥ M(F (y, x), g(g(yn+1)), kt)
∗M(g(g(yn+1)), g(F (yn, xn)), (t− kt)). (3.15)
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From (3.14) and (3.15), for all t > 0, we have
M(F (x, y), g(F (xn, yn)), t) ∗M(F (y, x), g(F (yn, xn)), t)

≥ [M(F (x, y), g(g(xn+1)), kt)∗M(g(g(xn+1)), g(F (xn, yn)), (t−kt))]
∗[M(F (y, x), g(g(yn+1)), kt)∗M(g(g(yn+1)), g(F (yn, xn)), (t−kt))].

Taking n → ∞ on the both sides of the above inequality, for all t > 0,
lim

n→∞
[M(F (x, y), g(F (xn, yn)), t) ∗M(F (y, x), g(F (yn, xn)), t)]

≥ lim
n→∞

[M(F (x, y), g(g(xn+1)), kt) ∗M(g(g(xn+1)), g(F (xn, yn)), (t− kt))]

∗ lim
n→∞

[M(F (y, x), g(g(yn+1)), kt) ∗M(g(g(yn+1)), g(F (yn, xn)), (t− kt))],

that is,
M(F (x, y), lim

n→∞
g(F (xn, yn)), t) ∗M(F (y, x), lim

n→∞
g(F (yn, xn)), t)

≥ [M(F (x, y), lim
n→∞

g(g(xn+1)), kt) ∗M( lim
n→∞

g(g(xn+1)), lim
n→∞

g(F (xn, yn)), (t− kt))]

∗[M(F (y, x), lim
n→∞

g(g(yn+1)), kt) ∗M( lim
n→∞

g(g(yn+1)), lim
n→∞

g(F (yn, xn)), (t− kt))],

(by lemma 2.6)
that is, M(F (x, y), g(x), t) ∗M(F (y, x), g(y), t)

≥ [M(F (x, y), lim
n→∞

g(F (xn, yn)), kt) ∗M(g(x), g(x), (t− kt))]

∗ [M(F (y, x), lim
n→∞

g(F (yn, xn)), kt) ∗M(g(y), g(y), (t− kt))],

(by (3.11))
that is, M(F (x, y), g(x), t) ∗M(F (y, x), g(y), t)

≥ lim
n→∞

[M(F (x, y), g(F (xn, yn)), kt) ∗ 1]
∗ lim

n→∞
[M(F (y, x), g(g(F (yn, xn))), kt) ∗ 1].

(by lemma 2.6)
≥ lim

n→∞
[M(F (g(xn), g(yn)), F (x, y), kt) ∗M(F (g(yn), g(xn)), F (y, x), kt)]

≥ lim
n→∞

[M(g(g(xn)), g(x), t) ∗M(g(g(yn)), g(y), t)]

(by (3.1) and using (3.13))
= M( lim

n→∞
g(g(xn)), g(x), t) ∗M( lim

n→∞
g(g(yn)), g(y), t)

= M(g(x), g(x), t) ∗M(g(y), g(y), t) (by (3.11))
= M(g(x), g(x), t) ∗M(g(y), g(y), t)
= 1 ∗ 1
= 1,

that is, M(F (x, y), g(x), t) ∗M(F (y, x), g(y), t) ≥ 1.
Therefore M(F (x, y), g(x), t) = 1 and M(F (y, x), g(y), t) = 1,
which implies that g(x) = F (x, y) and g(y) = F (y, x).
This completes the proof of the theorem. □

Corollary 3.2. Let (X,M, ∗) be a complete fuzzy metric space with a Hadžić type
t-norm such that M(x, y, t) → 1 as t → ∞, for all x, y ∈ X. Let ⪯ be a partial order
defined on X. Let F : X ×X → X and g : X → X be two mappings such that F
has mixed g-monotone property and satisfies the following conditions:
(i) F (X ×X) ⊆ g(X),
(ii) g is continuous and monotonic increasing,
(iii)(g, F ) is a commuting pair,
(iv)M(F (x, y), F (u, v), kt) ∗M(F (y, x), F (v, u), kt)

≥ M(g(x), g(u), t) ∗M(g(y), g(v), t),
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for all x, y, u, v ∈ X, t > 0 with g(x) ⪯ g(u) and g(y) ⪰ g(v), where 0 < k < 1.
Also suppose either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n ≥ 0,
(ii) if a non-increasing sequence {yn} → y, then yn ⪰ y for all n ≥ 0.

If there are x0, y0 ∈ X such that g(x0) ⪯ F (x0, y0), g(y0) ⪰ F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x), that is, g and F have a
coupled coincidence point in X.

Proof. Since a commuting pair is also a compatible pair, the result of the corollary
3.2 follows from theorem 3.1. □

Later, by an example, we will show that the corollary 3.2 is properly contained
in theorem 3.1.

The following corollary is a fixed point result.

Corollary 3.3. Let (X,⪯) be a partially ordered set and let (X,M, ∗) be a complete
fuzzy metric space with a Hadžić type t-norm such that M(x, y, t) → 1 as t → ∞,
for all x, y ∈ X. Let ⪯ be a partial order defined on X. Let F : X × X → X
be a mapping such that F has mixed monotone property and satisfies the following
condition:

M(F (x, y), F (u, v), kt) ∗M(F (y, x), F (v, u), kt) ≥ M(x, u, t) ∗M(y, v, t),
for all x, y, u, v ∈ X, t > 0 with x ⪯ u and y ⪰ v, where 0 < k < 1. Also suppose
either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n ≥ 0,
(ii) if a non-increasing sequence {yn} → y, then yn ⪰ y for all n ≥ 0.

If there exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0), y0 ⪰ F (y0, x0), then there exist
x, y ∈ X such that x = F (x, y) and y = F (y, x), that is, F has a coupled fixed point
in X.

Proof. The proof follows by putting g = I, the identity function, in theorem 3.1. □

Example 3.4. Let (X,⪯) is the partially ordered set withX = [0, 1] and the natural
ordering ≤ of the real numbers as the partial ordering ⪯. Let for all t > 0, x, y ∈ X,

M(x, y, t) = e
−
|x− y|

t .
Let a ∗ b = min{a, b} for all a, b ∈ [0, 1]. Then (X,M, ∗) is a complete fuzzy metric
space such that M(x, y, t) → 1 as t → ∞, for all x, y ∈ X.
Let the mapping g : X → X be defined as

g(x) = 5
6x

2 for all x ∈ X
and the mapping F : X ×X → X be defined as

F (x, y) =
x2 − y2

4
.
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Then F (X ×X) ⊆ g(X) and F satisfies the mixed g-monotone property.
Let {xn} and {yn} be two sequences in X such that

lim
n→∞

F (xn, yn) = a, lim
n→∞

g(xn) = a,

lim
n→∞

F (yn, xn) = b and lim
n→∞

g(yn) = b.

Now, for all n ≥ 0,
g(xn) =

5
6x

2
n, g(yn) =

5
6y

2
n,

F (xn, yn) =
x2
n−y2

n

4
and

F (yn, xn) =
y2
n−x2

n

4 .
Then necessarily a = 0 and b = 0.
It then follows from lemma 2.6 that, for all t > 0,

lim
n→∞

M(g(F (xn, yn)), F (g(xn), g(yn), t) = 1

and
lim

n→∞
M(g(F (yn, xn)), F (gyn), g(xn)), t) = 1.

Therefore the mappings F and g are compatible in X.
Now we show that the condition (3.1) holds.

|F (x, y)− F (u, v)| ≤ 1

2
|g(x)− g(u)|+ 1

2
|g(y)− g(v)|, x ≥ u, y ≤ v (3.16)

and

|F (y, x)− F (v, u)| ≤ 1

2
|g(y)− g(v)|+ 1

2
|g(x)− g(u)|, x ≥ u, y ≤ v. (3.17)

From (3.16), for all t > 0 and 0 < k < 1, we have

e−
|F (x,y)−F (u,v)|

kt ≥ e−
[ 1
2
|g(x)−g(u)|+1

2
|g(y)−g(v)|]

t

≥ e−
|g(x)−g(u)|

2t .e−
|g(y)−g(v)|

2t

=
√
e−

|g(x)−g(u)|
t .e−

|g(y)−g(v)|
t

≥ min{e−
|g(x)−g(u)|

t , e−
|g(y)−g(v)|

t },
e−

|F (x,y)−F (u,v)|
kt ≥ min{M(g(x), g(u), t),M(g(y), g(v), t)}. (3.18)

Similarly from (3.17), we have

e−
|F (y,x)−F (v,u)|

kt ≥ min{M(g(x), g(u), t),M(g(y), g(v), t)}. (3.19)
From (3.18) and (3.19), we have

min{M(F (x, y), F (u, v), kt),M(F (y, x), F (v, u), kt)}
≥ min{M(g(x), g(u), t),M(g(y), g(v), t)},

that is, M(F (x, y), F (u, v), kt) ∗M(F (y, x), F (v, u), kt)
≥ M(g(x), g(u), t) ∗M(g(y), g(v), t).

Hence (3.1) holds.
Thus all the conditions of Theorem 3.1 are satisfied. Then, by an application of
the Theorem 3.1, we conclude that g and F have a coupled coincidence point. Here
(0, 0) is a coupled coincidence point of g and F in X.

Remark 3.5. In the Example 3.4, the functions g and F do not commute. Hence
Corollary 3.2 cannot be applied to this example. This shows that Theorem 3.1
properly contains its Corollary 3.2.

897



Binayak S. Choudhury et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 6, 889–901

4. Application in metric space

In this section we apply Theorem 3.1 of the previous section to obtain present a
coupled coincidence point result in partially ordered metric spaces. Several existing
results [2, 3, 5] are hereby extended.

Theorem 4.1. Let (X,⪯) be a partially ordered set and d be a metric on X such
that (X, d) is a complete metric space. Let F : X ×X → X and g : X → X be two
mappings such that F has the mixed g-monotone property and satisfies the following
condition:

max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} ≤ k
2 [d(g(x), g(u))+d(g(y), g(v))],

(4.1)
for all x, y, u, v ∈ X with g(x) ⪯ g(u) and g(y) ⪰ g(v), where 0 < k < 1. Suppose
F (X × X) ⊆ g(X), g is continuous and (g, F ) is a compatible pair. Also suppose
either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n ≥ 0,
(ii) if a non-increasing sequence {yn} → y, then yn ⪰ y for all n ≥ 0.

If there are x0, y0 ∈ X such that g(x0) ⪯ F (x0, y0), g(y0) ⪰ F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x), that is, g and F have a
coupled coincidence point in X.

Proof. For all x, y ∈ X and t > 0, we define
M(x, y, t) = t

t+d(x,y)

and a ∗ b = min{a, b}. Then, as noted earlier, (X,M, ∗) is a complete fuzzy metric
space.
Further, from the above definition, M(x, y, t) → 1 as t → ∞, for all x, y ∈ X.
Using Lemma 2.15, we conclude that (g, F ) is a compatible pair in this fuzzy metric
space. Next we show that the inequality (4.1) implies (3.1). If otherwise, from (3.1),
for some t > 0, x, y, u, v ∈ X with g(x) ⪯ g(u) and g(y) ⪰ g(v), we have

min{ t
t+ 1

k d(F (x,y),F (u,v))
, t
t+ 1

k d(F (y,x),F (v,u))
} < min{ t

t+d(g(x),g(u)) ,
t

t+d(g(y),g(v))},
Form the above inequality, we have
either t

t+ 1
k d(F (x,y),F (u,v))

< min{ t
t+d(g(x),g(u)) ,

t
t+d(g(y),g(v))} (4.2)

or t
t+ 1

k d(F (y,x),F (v,u))
} < min{ t

t+d(g(x),g(u)) ,
t

t+d(g(y),g(v))}. (4.3)

From (4.2), we have
t+ 1

kd(F (x, y), F (u, v)) > t+ d(g(x), g(u)) and

t+ 1
kd(F (x, y), F (u, v)) > t+ d(g(y), g(v)).

Combining the above two inequalities, we have that
d(F (x, y), F (u, v)) > k

2 [d(g(x), g(u)) + d(g(y), g(v))]. (4.4)
Similarly from (4.3), we have

d(F (y, x), F (v, u)) > k
2 [d(g(y), g(v)) + d(g(x), g(u))]. (4.5)

By (4.4) and (4.5), we have
max{d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} > k

2 [d(g(x), g(u)) + d(g(y), g(v))],
which is a contradiction with (4.1).
The proof is then completed by an application of Theorem 3.1. □
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Corollary 4.2. Let (X,⪯) be a partially ordered set and d be a metric on X such
that (X, d) is a complete metric space. Let F : X ×X → X and g : X → X be two
mappings such that F has the mixed g-monotone property and satisfies the following
condition:

[d(F (x, y), F (u, v))+d(F (y, x), F (v, u))] ≤ k[d(g(x), g(u))+d(g(y), g(v))],(4.6)
for all x, y, u, v ∈ X with g(x) ⪯ g(u) and g(y) ⪰ g(v), where 0 < k < 1. Suppose
F (X × X) ⊆ g(X), g is continuous and (g, F ) is a compatible pair. Also suppose
either
(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn ⪯ x for all n ≥ 0,
(ii) if a non-increasing sequence {yn} → y, then yn ⪰ y for all n ≥ 0.

If there are x0, y0 ∈ X such that g(x0) ⪯ F (x0, y0), g(y0) ⪰ F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x), that is, g and F have a
coupled coincidence point in X.

Proof. Since x+y
2 ≤ max{x, y}, the proof follows from Theorem 4.1. □

Example 4.3. Let (X,⪯) is the partially ordered set with X = [0, 1] and the
natural ordering ≤ of the real numbers as the partial ordering ⪯. Let x, y ∈ X,
d(x, y) = |x− y|.
Then (X, d) is a complete metric space.
Let the mapping g : X → X be defined as

g(x) = 5
6x

2 for all x ∈ X
and the mapping F : X ×X → X be defined as

F (x, y) =
x2 − 2y2

4
.

Then F (X ×X) ⊆ g(X) and F satisfies the mixed g-monotone property.
Let {xn} and {yn} be two sequences in X such that

lim
n→∞

F (xn, yn) = a, lim
n→∞

g(xn) = a,

lim
n→∞

F (yn, xn) = b and lim
n→∞

g(yn) = b.

Now, for all n ≥ 0,
g(xn) =

5
6x

2
n, g(yn) =

5
6y

2
n,

F (xn, yn) =
x2
n−y2

n

4
and

F (yn, xn) =
y2
n−x2

n

4 .
Then necessarily a = 0 and b = 0.
It then follows from lemma 2.6 that, for all t > 0,

lim
n→∞

d(g(F (xn, yn)), F (g(xn), g(yn), t) = 0

and
lim

n→∞
d(g(F (yn, xn)), F (gyn), g(xn)), t) = 0.

Therefore the mappings g and F are compatible in X. The mappings are not
commuting.
Now we show that the condition (4.6) holds.

|F (x, y)− F (u, v)| ≤ 3

10
|g(x)− g(u)|+ 3

5
|g(y)− g(v)|, x ≥ u, y ≤ v (4.7)
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and

|F (y, x)− F (v, u)| ≤ 3

10
|g(y)− g(v)|+ 3

5
|g(x)− g(u)|, x ≥ u, y ≤ v. (4.8)

Adding (4.7) and (4.8), we get the inequality (4.6) with k = 9
10 .

Here (0, 0) is the coupled coincidence point.

Remark 4.4. Theorem 4.1 is a generalization of a result of Berinde [corollary 1,
2]. Hence, in theorem, generalization, a number of results in [2, 5] are made. In the
above Example 4.3, the pair (g, F ) is compatible, but not commuting. This shows
that the improvement here is actual. If g = I is put in Corollary 4.2, then we have
a generalization of result of Bhaskar et al [2].

Acknowledgements. The suggestions of the learned referee are gratefully ac-
knowledged.
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