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Abstract. After making a comparative study of soft topology and usual
topology, we introduce the concept of soft topological group and study its
various properties. We are interested especially in whether or not familiar
results from topological group theory remain true in the context of soft
topological group. Finally, based on the observation that soft topological
group is a special case of soft uniform space, results motivated from the
theory of uniform space are presented.
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1. Introduction

When one wants to understand (or describe) any object from the physical world,
one usually build a model of the object and define the notion of the exact solution of
the model. Unfortunately, because of the high complexity of the model for instance,
it is quite often difficult to find such an exact solution. Also, even if one succeeds in
obtaining a solution, it is sometimes dangerous to believe that the obtained solution
describes the object perfectly, due to, for example, various uncertainties in the initial
data triggered by an (inevitable) error in a measurement.

The importance of developing frameworks which enable us to handle problems
with vagueness and uncertainties is then apparent. Indeed, several attempts have
already been made: Examples includes the theory of Fuzzy sets by Zadeh [18] and the
theory of Rough sets by Pawlak [14]. The starting point of this work - Molodtsov’s
soft sets [12] - was proposed also in this line of research. Molodtsov’s one of the moti-
vations for introducing this mathematical tool is to overcome some of the difficulties
the traditional theories have. It also aims at modeling wide range of problems from,
e.g, physical science, economics and engineering. Indeed, Molodtsov [12] has already
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presented applications of his theory to operations research, game theory, probability
theory and so on.

Although somewhat different from the initial motivation, the investigation of
mathematical aspects of soft sets is of interest as well. Many authors have con-
tributed to this field: Maji et al. [11] defined and studied basic notions of soft set
theory. The study of soft topological space was started by Shabir and Naz [15], and
independently by Çağman et al. [3]. The notion of soft group was introduced by
Aktaş and Çağman [1], and intensive research on this concept has been carried out
since then.

This paper introduces the concept of soft topological group and studies its various
properties. After fixing basic terminology in section 2, we provide several results
on soft topology in section 3, where comparative study of soft topology and usual
topology will be made. Soft topological group is defined in section 4 and its various
properties as well as comparison to (usual) topological group are presented there. In
section 5, we analyze soft topological group from a more general perspective, namely
soft uniform space, a concept introduced by Çetkin and Aygün [4]. This paper will
conclude with suggestions for future research.

2. Preliminaries

Definition 2.1 ([12]). Let U be an initial universe and E be a set of parameters.
Then a soft set over U is a function F : E → P(U).

F (e) can informally be taken as the set of e-approximate elements of the soft set.
From now on, we will sometimes identify a soft set F : E → P(U) with a subset

of E × U . We shall use symbols F, F ′, . . . for soft sets.

Definition 2.2. Let ϕ : U → U ′ be a function and F (resp. F ′) be a soft set over
U (resp. U ′) with a parameter set E. Then ϕ(F ) (resp. ϕ−1(F ′)) is the soft set on
U ′ (resp. U) defined by (ϕ(F ))(e) = ϕ(F (e)) (resp. (ϕ−1(F ))(e) = ϕ−1(F (e))).

In what follows, we use tilde (̃·) to distinguish “soft” objects from usual ones. For

example, for a subset X of U , X̃ denotes the soft set satisfying that X̃(e) = X for
all e ∈ E.

Soft versions of basic relations (resp. operations) on sets are obtained by requiring
the relations (resp. applying the operations) at each parameter.

Definition 2.3 ([11]). Let F and F ′ be soft sets over U . Then

• (Soft subset) F is a soft subset of F ′, denoted by F ⊂̃F ′, if F (e) ⊂ F ′(e)
for all e ∈ E.

• (Soft equality) F is soft equal to F ′, denoted by F =̃F ′, if both F ⊂̃F ′ and
F ′ ⊂̃F hold.

• (Soft intersection) The soft intersection of F and F ′, denoted by F ∩̃F ′, is
defined by (F ∩̃F ′)(e) = F (e) ∩ F ′(e) for every e ∈ E.

• (Soft union) The soft union of F and F ′, denoted by F ∪̃F ′, is defined by
(F ∪̃F ′)(e) = F (e) ∪ F ′(e) for every e ∈ E.

• (Soft complement) The soft complement of F , denoted by F c̃, is defined by
F c̃(e) = U \ F (e) (e ∈ E).
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For properties of these relations and operations, we refer the reader to [3].

Definition 2.4. Let x be an element of U and F be a soft set over U . We say that
x is a soft element of F , denoted by x ∈̃F , if x ∈ F (e) for all parameters e ∈ E.

Unless E is singleton, x /̃∈F and ∀e ∈ E (x /∈ F (e)) are different. This simple fact
plays a key role throughout this paper.

Note that, even if ∀x ∈ U (x ∈̃F ⇒ x ∈̃F ′) holds, it can happen that F /̃⊂F ′.
This means that ( ∈̃ , =̃ ) provides a counter-model of the axiom of extensionality.

In particular, it should be noted that being soft non-empty — ∃x ∈ U (x /̃∈F ) — is

not the same as being non-empty — F /̃= ∅̃.

3. Soft topology

This section introduces several soft topological concepts and studies them. We
assume that the reader has a background in general topology. Information from [5]
and [10] is perfectly enough for our purpose.

Definition 3.1 ([3, 15]). A family τ of soft sets over U is called a soft topology on
U if the following three conditions are satisfied:

• ∅̃ and Ũ are in τ ,
• τ is closed under finite soft intersection,
• τ is closed under (arbitrary) soft union.

We refer to a triplet ⟨U, τ, E⟩ as a soft topological space. Each member of τ is
called a soft open set. Throughout this paper, ⟨U, τ, E⟩ stands for a soft topological
space.

Definition 3.2 ([15]). For any soft set F over U , the soft closure of F , denoted by

C̃l(F ), is the soft intersection of all soft closed supersets of F .

Familiar concepts from general topology, such as interior, boundary and limit
points, are generalized to the setting of soft sets in a natural way. Interested readers
are asked to consult related articles [3, 8, 15]. However, at the referee’s request, let
us remind the reader of at least the following concepts here:

Definition 3.3. Let x be an element of the universe U . A soft set F is called a soft
neighborhood of x if there exists a soft open set F ′ such that x ∈̃F ′ ⊂̃F .

The collection of all soft neighborhoods of x is called the soft neighborhood system
of x.

Definition 3.4. Let B be a family of soft sets closed under finite soft intersection.

Then the soft topology generated by the base B is {∅̃, Ũ} ∪ {
∪̃
I | I ⊂ B}.

Definition 3.5. For any family S of soft sets, the soft topology generated by the
subbase S is the soft topology generated by the base {F1 ∩̃ · · · ∩̃Fk | F1, . . . , Fk ∈ S}.

The following examples may help the reader in understanding the difference be-
tween usual topology and soft topology:
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Example 3.6. (Soft closure cannot be characterized by soft neighborhood) In gen-
eral topology, we have the following equivalence for any subset A of a topological
space T : a point x is in the closure of A ⇐⇒ every neighborhood of x intersects A.
In soft topology, however, this equivalence is no longer true.

The soft analogue of the left-to-right direction is true: Take any A ⊂ U and x ∈ U

with x ∈̃ C̃l(Ã). Then every soft open neighborhood F ′ of x satisfies F ′ ∩̃ Ã /̃= ∅̃,

because if F ′ ∩̃ Ã =̃ ∅̃ then x ∈̃ C̃l(Ã) ⊂̃F ′c̃, contradicting the assumption that x ∈̃F ′.
On the other hand, the soft analogue of the right-to-left direction is not true.

In order to see this, let us employ the following soft topological space ⟨Z2, τ, E⟩,
where Z2 = Z/2Z (= {0̄, 1̄}), E := {e1, e2} and τ :=

{
∅̃, {(e1, 0̄)}, E × Z2

}
. Then

consider the set A := {1̄}. Since there is exactly one soft open set containing 0̄,

namely E×Z2, it holds that F
′ ∩̃ Ã /̃= ∅̃ for all soft neighborhood F ′ of 0̄. However,

a simple computation shows that C̃l(Ã) =̃ {(e1, 0̄)}c̃, and so 0̄ /̃∈ C̃l(Ã).

Example 3.7. (The non-equivalence of two ways to define a soft topology) It is a
well-known fact from general topology that giving a neighborhood system for each
point is equivalent to giving a topology. Soft topological spaces do not possess this
property: The two soft spaces ⟨Z2, τ, E⟩ and ⟨Z2, τ

′, E⟩ give an example, where τ
and E are as in the above example, and τ ′ := {∅̃, E × Z2}. While τ and τ ′ are
clearly different as soft topologies, they give rise to the same neighborhood system
for 0̄ and 1̄: in both spaces, 0̄ and 1̄ have the same unique soft neighborhood, namely
E × Z2.

Let us introduce the notion of continuity in the setting of soft set sets here.

Definition 3.8. Let ⟨U, τ, E⟩ and ⟨U ′, τ ′, E′⟩ be soft topological spaces, and ϕ :
U → U ′, ψ : E → E′ be functions. Then a function ψ × ϕ : E × U → E′ × U ′ is
called soft continuous if the following condition is satisfied:

(SC): For every x ∈ U and for every soft neighborhood F ′ of ψ(x), there exists
a soft neighborhood F of x such that ϕ(x) ∈̃ (ψ × ϕ)(F ) ⊂̃F ′.

Remark 3.9. Zorlutuna et al. [19] used slightly different definition in their paper:
For every x ∈ U and for every soft neighborhood F ′ of ϕ(x), there exists a soft
neighborhood F of x such that (ψ×ϕ)(F ) ⊂̃F ′. This definition has the disadvantage
that ψ(x) may not be a soft element of (ψ × ϕ)(F ). Here is a simple example:
ι × id : {e1} × {u} → {e1, e2} × {u}, where ι : {e1} → {e1, e2} is an embedding
and both soft spaces are discrete. Clearly, (ι × id)({e1} × {u}) is a soft subset of
{e!, e2} × {u}, but it does not have u (= id(u)) as a soft element. For this reason,
we prefer the condition (SC) rather than the one given in [19].

The purpose of this paper is to know which results from the topological group
theory remain valid in the context of soft topological group. Most properties studied
later are of the form “Given subgroups H,K of a group G, consider ...”, “Consider
the left action αL(g) : G→ G;x 7→ gx of g ∈ G. Then ...”. These results are on the
relationship between subgroups, connected subsets, etc., of a fixed group. In such
situations, we deal only with the same parameter set, namely the parameter set of
the fixed soft topological group. For our purpose, therefore, it suffices to focus on
the special case where E = E′ and ψ = id in studying the soft continuous function.
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Hence, in this paper, a soft continuous function always refers to the following simpler
version of the above definition:

Definition 3.10. ϕ : U → U ′ is called a soft continuous function from ⟨U, τ, E⟩ to
⟨U ′, τ ′, E⟩ if the following condition is satisfied:

(SC1): For every x ∈ U and for every soft neighborhood F ′ of ϕ(x), there
exists a soft neighborhood F of x such that ϕ(F ) ⊂̃F ′.

Note that, as the parameter set is identical in this case, it holds that ϕ(x) ∈̃ϕ(F )
without explicitly assuming so.

A bijection ϕ : U → U ′ is called a soft homeomorphism between ⟨U, τ, E⟩ and
⟨U ′, τ ′, E⟩ if both ϕ and ϕ−1 are soft continuous.

In order to make explicit the underlying soft topological structure, we sometimes
write ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ instead of just ϕ : U → U ′.

In general topology, there are several equivalent ways to define the notion of
continuity. It is then natural to ask whether this happens even in soft set theory or
not. In order to answer this question, let us introduce the following three conditions
on a function ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩:

(SC2): For every soft open set F ′ ∈ τ ′, the inverse image ϕ−1(F ′) is also soft
open.

(SC3): For every soft closed set F ′, the inverse image ϕ−1(F ′) is also soft
closed.

(SC4): For every soft set F , we have ϕ(C̃l(F )) ⊂̃ C̃l(ϕ(F )).

Theorem 3.11.
(i) The conditions (SC2), (SC3) and (SC4) are equivalent.
(ii) The condition (SC1) follows from but not imply (SC2).

Proof. (i) Firstly, we prove (SC3) from (SC4): Pick any soft closed set F ′. Then
we have ϕ(ϕ−1(F ′)) ⊂̃F ′. The soft closedness of F ′, together with the assumption

(SC4), implies that ϕ(C̃l(ϕ−1(F ′))) ⊂̃ C̃l(ϕ(ϕ−1(F ′))) ⊂̃F ′. Therefore, it holds that

C̃l(ϕ−1(F ′)) ⊂̃ϕ−1(F ′) ⊂̃ C̃l(ϕ−1(F ′)), which proves that ϕ−1(F ′) is soft closed.

We then deduce (SC4) from (SC3): Note that F ⊂̃ϕ−1(C̃l(ϕ(F ))) holds for

any soft set F . So, by (SC3), we have C̃l(F ) ⊂̃ϕ−1(C̃l(ϕ(F ))). Therefore, we get

ϕ(C̃l(F )) ⊂̃ϕ(ϕ−1(C̃l(ϕ(F )))) =̃ C̃l(ϕ(F )).
The equivalence between (SC2) and (SC3) can easily be proved, so it is left to

the reader.
(ii) Assume (SC2). Then, for every x ∈ U and a soft open neighborhood F ′ of ϕ(x),
ϕ−1(F ′) is a soft open set having x as a soft element. Since ϕ(ϕ−1(F ′)) =̃F ′, we
have thus deduced (SC1) from (SC2).

For the last assertion, let us consider soft topological spaces Si := ⟨{u}, τi, {e1, e2}⟩
for i = 1, 2, where

τ1 =
{
∅̃, {(e1, u), (e2, u)}

}
,

τ2 =
{
∅̃, {(e2, u)}, {(e1, u), (e2, u)}

}
.

In both soft topologies, {e1, e2} × {u} is the unique soft neighborhood of the point
u. Hence id : S1 → S2 satisfies (SC1). However, id−1({(e2, u)}) is not soft open in
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S1, showing that the inverse images of soft open sets are, in general, not soft open.
Observe that, not only id : S1 → S2 but also id−1 : S2 → S1 satisfy (SC1). 2

From the above theorem, the reader will be able to see a crucial difference be-
tween soft topology and usual topology. However, when concerned is only the soft
elementhood relation ∈̃ , the difference may not be so big — The following proposi-
tion says that the inverse image of any soft open set is soft open modulo soft empty
set:

Proposition 3.12. Let ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ be a soft continuous function.
Then for every soft open set F ′ ∈ τ ′, there exists a soft open set F ∈ τ such that
∀x ∈ U

(
x ∈̃F ⇔ x ∈̃ϕ−1(F ′)

)
.

Proof. For any point x ∈ U with ϕ(x) ∈̃F ′, choose a soft open Fx ∈ τ such that

x ∈̃Fx and ϕ(Fx) ⊂̃F ′. Then F :=
∪̃

{Fx | x ∈ U satisfies ϕ(x) ∈̃F ′} is the desired
soft open set. 2

Remark 3.13. One may wonder why, unlike [2], we employed (SC1) as the defi-
nition of soft continuity. We would like to answer this question as follows: If we use
(SC2) (or any other equivalent conditions), it means that we are essentially dealing
with (not soft topological concepts on U but) usual topological concepts on E × U .
In order to make concepts more appropriate for the analysis of soft set theory, we
prefer (SC1) among others.

Zorlutuna et al. [19] investigated the notion of soft continuity given in Definition
3.8, which is more general than the notion employed in this paper. A more general
version of (SC2) also appear in the same paper (general in the sense that the
definition covers the case where the parameter set of the domain is different from
that of the range), and is claimed to be equivalent with the notion of soft continuity
given in Definition 3.8. However, their proof [19, Theorem 6.3] is not correct; these
are actually non-equivalent statements, as we have observed.

Separation axioms can also be generalized. For instance:

Definition 3.14. Let ⟨U, τ, E⟩ be a soft topological space. Then

(1) ⟨U, τ, E⟩ is a soft T0 space if for every elements x, y ∈ U with x ̸= y, there
exists a soft open set F such that either x ∈̃F ∧ ∀e ∈ E (y /∈ F (e)) or
y ∈̃F ∧ ∀e ∈ E (x /∈ F (e)) holds.

(2) ⟨U, τ, E⟩ is a soft T1 space if for every distinct elements x, x′ ∈ U , there
exist soft open sets F, F ′ such that both x ∈̃F ∧ ∀e ∈ E (x′ /∈ F (e)) and
x′ ∈̃F ′ ∧ ∀e ∈ E (x /∈ F ′(e)) hold.

(3) ⟨U, τ, E⟩ is a soft Hausdorff (or soft T2) space ([15]) if for every pair of dis-
tinct points x, x′ ∈ U , there exist soft open sets F, F ′ ∈ τ with x ∈̃F, x′ ∈̃F ′

and F ∩̃F ′ = ∅̃.
(4) ⟨U, τ, E⟩ is a soft regular space ([15]) if, for each x ∈ U , every soft neighbor-

hood of x contains a soft closed neighborhood of x.

Remark 3.15. The notion of a soft T0 space in Shabir and Naz’s paper [15] is
obtained if we replace ∀e ∈ E (y /∈ F (e)) (resp. ∀e ∈ E (x /∈ F (e))) in the above def-

inition by y /̃∈F (resp. x /̃∈F ). As has mentioned already, y /̃∈F is not equivalent to
∀e ∈ E (y /∈ F (e)) in general, so our definition here is different from their definition.
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From general topology, one knows that a topological space is regular, i.e., every
neighborhood of x contains a closed neighborhood for every point x, if and only if
any point x and a closed set C not containing x can be separated by open sets. The
soft version of this statement is not true, as the following example witnesses:

Example 3.16. (Non-equivalence of the two ways to define soft regularity) If we

endow a soft topology on Z2 by τ := {∅̃, {e2} × Z2, Z̃2}, where E := {e1, e2}, then
this soft space is soft regular, as each point has only one soft clopen neighborhood

Z̃2. However, no two soft open sets separate 0̄ from the soft closed set {e1} × Z2,
which does not have 0̄ as a soft element.

Proposition 3.17. Let ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ be a soft continuous injection.
(i) If ⟨U ′, τ ′, E⟩ is a soft T0 space, then so is ⟨U, τ, E⟩.
(ii) If ⟨U ′, τ ′, E⟩ is a soft T1 space, then so is ⟨U, τ, E⟩.
(iii) If ⟨U ′, τ ′, E⟩ is a soft Hausdorff space, then so is ⟨U, τ, E⟩.

Proof. We prove only (iii), as the other items can be proved similarly. Take distinct
points x and y from U . By assumption, we can separate ϕ(x) from ϕ(y) by soft open
sets, say F ′

x, F
′
y. By the soft continuity of ϕ, we find soft open neighborhoods Fx, Fy

of x, y, respectively, satisfying that ϕ(Fx) ⊂̃F ′
x and ϕ(Fy) ⊂̃F ′

y. It is then clear that
this Fx and Fy separate x from y. 2

One will naturally ask whether soft regularity is also preserved under soft home-
omorphisms or not. This question is answered in the negative:

Example 3.18. (Soft regularity is not always preserved by soft homeomorphisms)
The identity function id : ⟨Z3, τ1, E⟩ → ⟨Z3, τ2, E⟩ gives a negative answer, where
E := {e1, e2}, τ1 and τ2 are generated by the following subbases, respectively:

Subbase for τ1 :
{
∅̃, E × {0̄, 1̄} , E × {2̄} ,{(e1, 0̄) , (e2, 0̄) , (e2, 1̄)} ,

{(e1, 1̄) , (e1, 2̄) , (e2, 2̄)} , E × Z3

}
,

Subbase for τ2 :
{
∅̃, E × {0̄, 1̄} , E × {2̄} ,{(e1, 0̄) , (e2, 0̄) , (e2, 1̄)} , E × Z3

}
.

The reader will be able to check that the identity function on Z3 is indeed a soft
homeomorphism. It is also clear that the soft topological space ⟨Z3, τ1, E⟩ is soft reg-
ular. However, in ⟨Z3, τ2, E⟩, no soft closed set is a soft subset of a soft neighborhood
{(e1, 0̄), (e2, 0̄), (e2, 1̄)} of 0̄. Hence, ⟨Z3, τ2, E⟩ is not soft regular.

We want to introduce the concept of soft compactness as well. But before doing
so, we first need to define what do we mean by soft coverings.

Definition 3.19. A family C of soft open sets over U is said to be a soft open
covering of U if for every x ∈ U there exists an F ∈ C such that x ∈̃F .

The reader may have realized that there could be another formulation of soft open

covering: C is a “soft open covering” of U if
∪̃

F∈CF =̃E×U — Actually, Aygünoğlu
and Aygün [2] employed this condition as a definition of soft open covering in their
paper. For the reason similar to the one explained in Remark 3.13, we prefer the
Definition 3.19.
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Definition 3.20. A soft space ⟨U, τ, E⟩ is soft compact if, for any soft open covering
C of ⟨U, τ, E⟩, there exist F1, . . . , Fn ∈ C such that {F1, . . . , Fn} is a soft open
covering.

Likewise, one can define a a soft open covering of a subset V of U , and a soft
compact subset of U . For more information, see [6].

As in the usual topology, soft compactness is preserved by soft continuous func-
tions:

Proposition 3.21. Let ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ be a soft continuous function,
and V ⊂ U be a subset. If V is soft compact with respect to τ , then so is ϕ(V ) with
respect to τ ′.

Proof. Let C′ be a soft open covering of ϕ(V ). For each v ∈ V , there exists an
F ′
v ∈ C′ such that ϕ(v) ∈̃F ′

v. Since ϕ is soft continuous, there exists a soft open
neighborhood Fv of v such that ϕ(Fv) ⊂̃F ′

v. Then the family {Fv | v ∈ V } is a soft
covering of V . By the soft compactness of V , there exist v1, . . . , vn ∈ V such that
{Fvi}ni=1 is a soft covering of V . Then, since ϕ(Fvi) ⊂̃F ′

vi
, {F ′

vi
}ni=1 is a soft covering

of ϕ(V ). 2

It would be interesting to examine also the concept of connectedness in the context
of soft set theory:

Definition 3.22. A subset X of U is called soft connected if, for any soft open
covering {F1, F2} of X subject to the condition that /∃x ∈ X (x ∈̃F1∧ x ∈̃F2), either

∀x ∈ X (x /̃∈F1) or ∀x ∈ X (x /̃∈F2) holds.

It should again be noted that we did not employ the following possible formulation
of soft connectedness: X is “soft connected” if for any soft disjoint soft open sets
F1, F2 with F1 ∪̃F2 =̃ X̃, either F1 =̃ ∅̃ or F2 =̃ ∅̃ holds. The reason for our choice
here is similar to that for the choice of soft continuity and soft compactness.

Proposition 3.23. Let X1 and X2 be subsets of U having non-empty intersection.
If both X1 and X2 are soft connected, then so is X1 ∪X2.

Proof. Take any soft open covering {F1, F2} of X1 ∪ X2. Since {F1, F2} is a soft

open covering also of X1, we assume ∀z ∈ X1 (z /̃∈F1) without loss of generality. In

particular, x /̃∈F1 holds for any x ∈ X1 ∩ X2. Assume for the contradiction that
there were a z ∈ X2 such that z ∈̃F1. Then, since {F1, F2} is a soft open covering

also of X2, it would hold that ∀z ∈ X2 (z /̃∈F2). In particular, we would have x /̃∈F2

for every x ∈ X1 ∩X2, which gives a contradiction. Thus, ∀z ∈ X2 (z /̃∈F1) holds;

so we have obtained ∀z ∈ X1 ∪X2 (z /̃∈F1). 2

Corollary 3.24. For each point x ∈ U , the soft connected component of x, i.e., the
largest soft connected subset of U containing x, exists.

Proposition 3.25. Let ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ be a soft homeomorphism. Then
X ⊂ U is soft connected if and only if ϕ(X) is soft connected.

Proof. Let X be a soft connected subset of U . Select an arbitrary soft open covering
{F ′

1, F
′
2} of ϕ(X). By Proposition 3.12, there exist soft open sets Fi ∈ τ such that
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ϕ(Fi) ⊂ F ′
i and ∀y ∈ U ′ (y ∈̃F ′

i ⇔ y ∈̃ϕ(Fi)) (i = 1, 2). Hence, for each x ∈ X,
exactly one of x ∈̃F1 and x ∈̃F2 holds. Since X is soft connected, there is no loss of
generality in assuming ∀x ∈ X (x /̃∈F1). In this case, we have ∀y ∈ ϕ(X) (y /̃∈ϕ(F1)),

and so ∀y ∈ ϕ(X) (y /̃∈F ′
1). Therefore, we have proved that left-to-right direction.

The converse direction follows from the same argument applied to ϕ−1. 2

Let us say that a property P of soft topological spaces is a soft topological property
if the following condition holds for any soft space ⟨U, τ, E⟩: A soft space ⟨U, τ, E⟩
has the property P ⇐⇒ Every soft space which is soft homeomorphic to ⟨U, τ, E⟩
has the property P . Then, the following theorem follows from Proposition 3.21 and
3.25 at once:

Theorem 3.26. Soft compactness and soft connectedness are soft topological prop-
erties. 2

Topological properties such as compactness and connectedness behave well with
product. We would like to examine here several properties defined so far in connec-
tion with soft product. In order to do so, we first have to make precise what soft
product is:

Definition 3.27. For any soft topological spaces ⟨U, τ, E⟩ and ⟨U ′, τ ′, E⟩, the set
{F × F ′ | F ∈ τ, F ′ ∈ τ ′} generates a soft topology τ× on U × U ′. The soft space
⟨U × U ′, τ×, E⟩ is called the soft product of ⟨U, τ, E⟩ and ⟨U ′, τ ′, E⟩.

Here, F × F ′ is the soft set over U × U ′ defined by (F × F ′)(e) := F (e) × F ′(e)
for all e ∈ E.

(1) Soft T0 spaces, soft T1 spaces and soft Hausdorff spaces
Assume ⟨U, τ, E⟩ and ⟨U ′, τ ′, E⟩ are soft T0 spaces. Take distinct pairs

(x, x′), (y, y′) ∈ U × U ′. Without loss of generality, we assume x ̸= y. Since
⟨U, τ, E⟩ is a soft T0 space, there exists a soft open set F such that either
x ∈̃F ∧ ∀e ∈ E

(
y /∈ F (e)

)
or y ∈̃F ∧ ∀e ∈ E

(
x /∈ F (e)

)
holds. Then we

have either of the following:

(x, x′) ∈̃F × Ũ ∧ ∀e ∈ E
(
(y, y′) /∈ F (e)× U

)
or

(y, y′) ∈̃F × Ũ ∧ ∀e ∈ E
(
(x, x′) /∈ F (e)× U

)
.

Therefore, we have shown:

Proposition 3.28. The soft product of any two soft T0 spaces is also a soft
T0 space. 2

Similarly, we can prove

Proposition 3.29. The soft product of any two soft T1 spaces is also a soft
T1 space. 2

Proposition 3.30 ([17]). The soft product of any two soft Hausdorff spaces
is also a soft Hausdorff space. 2

(2) Soft regular spaces
Set U := Z2 and E := {e1, e2, e3}. Define soft topologies τ1, τ2 on U by

τ1 := {∅̃, {(e2, 1̄)}, E ×U} and τ2 :=
{
∅̃, {(e1, 0̄)}, {(e3, 0̄)}, E × U

}
. Since,
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in both soft topological spaces, every point x ∈ U has only one soft clopen
neighborhood E × U , it is obvious that both soft spaces are soft regular.
Observe that, no soft closed neighborhood of (1̄, 0̄) ∈ U × U is a soft subset
of the following soft open neighborhood of (1̄, 0̄):{
(e1, (0̄, 0̄)) , (e1, (1̄, 0̄)) , (e2, (1̄, 0̄)) , (e2, (1̄, 1̄)) , (e3, (0̄, 0̄)) , (e3, (1̄, 0̄))

}
Thus, the soft product of two soft regular spaces ⟨U, τ1, E⟩, ⟨U, τ2, E⟩ is not
soft regular.

(3) Soft compact spaces
For topological spaces, the product of compact spaces is also compact —

This fact is proved with the Axiom of Choice for infinite product (known as
Tychonoff’s theorem), and even without any extra assumption for the case
of finite product. This is not always true for soft topological spaces.

Example 3.31. Let us consider the following soft topological spaces ⟨Z, τ1, E⟩,
⟨Z, τ2, E⟩, where E := {e1, e2} and

τ1 :=
{
∅̃, E × Z

}
∪ {{e1} × S | S is a subset of Z} ,

τ2 :=
{
∅̃, E × Z

}
∪ {{e2} × S | S is a subset of Z} .

Note that, in both soft spaces, E × Z is the unique soft neighborhood of i
for each i ∈ Z. It is then easy to see that both soft spaces are soft compact
(and also soft connected).

Then, in the soft product space, the soft set

Fi1,i2 := {(e1, (i1, j)) | j ∈ Z} ∪̃ {(e2, (k, i2)) | k ∈ Z}

is a soft open neighborhood of (i1, i2) for each (i1, i2) ∈ Z× Z. It is readily
verified that a soft open covering {Fi1,i2}i1,i2∈Z of Z×Z has no finite subset
which soft covers Z×Z. This shows that the soft product does not preserve
soft compactness.

(4) Soft connected spaces
The same soft spaces from Example 3.31 shows that soft connectedness

is not preserved by taking soft product. (For example, soft open sets F0,0

and
∪̃
{Fi1,i2 | (i1, i2) ̸= (0, 0)} witness that the soft product is not soft con-

nected.) A natural question would be “Is the soft product of soft connected
spaces also soft connected when the two spaces are identical?” Even for that
situation, we have the negative answer.

Example 3.32. Consider the following soft topology τ on Z2 with a pa-
rameter set E = {e1, e2}:

τ :=
{
∅̃, {(e1, 1̄) , (e2, 0̄)}, {(e1, 0̄) , (e2, 1̄)}, E × Z2

}
Since both 0̄ and 1̄ have only one soft neighborhood E×Z2, the soft topolog-
ical space ⟨Z2, τ, E⟩ is soft connected. An easy computation shows that both
E × {(0̄, 1̄), (1̄, 0̄)} and E × {(0̄, 0̄), (1̄, 1̄)} are soft open in the soft product
space. Hence this soft product is not soft connected.
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Remark 3.33. The above soft topological space ⟨Z2, τ, E⟩ is an example
of soft topological group (see the next section). Therefore, we find that the
soft connectedness is not preserved by taking binary soft product even if the
soft space is a soft topological group.

What makes it difficult to handle several properties in the context of soft set theory
comes from the following fact.

Proposition 3.34. For any x0, x1 ∈ U and a soft set F on U × U , the following
conditions are not equivalent:
(i) F is a soft neighborhood of (x0, x1),
(ii) There exist soft open sets F0, F1 such that x0 ∈̃F0, x1 ∈̃F1 and F0 × F1 ⊂̃F .

Proof. Firstly, note that (i) follows straightforwardly from (ii). To see that (i) does
not imply (ii), let us consider this soft space ⟨Z2, τ, E⟩, where E := {e1, e2} and τ
is generated by {∅̃, {(e1, 0̄)}, {(e2, 1̄)}, E × Z2}. An easy computation shows that
{(e1, (0̄, 0̄)), (e1, (1̄, 0̄)), (e2, (1̄, 0̄)), (e2, (1̄, 1̄))} is a soft open neighborhood of (1̄, 0̄).
Since both 0̄ and 1̄ have only one soft neighborhood E×Z2, it is then easy to observe
that the condition (ii) does not hold. 2

Proposition 3.35 ([8]). Let ⟨U, τ, E⟩ be a soft topological space. Then the family
τe := {F (e) | F ∈ τ} induces a topology on U for each parameter e ∈ E. 2

It is also straightforward to see that

Proposition 3.36. The family {F | ∀e ∈ E (F (e) ∈ τe)} is a soft topology. 2

The family given in the above proposition clearly contains the original soft topol-
ogy τ . One may expect that these are identical; in other words, we can recover the
original τ out of τe’s in this way. The next proposition states, however, that this is
not the case

Proposition 3.37. There exists a soft topological space ⟨U, τ, E⟩ for which τ is a
proper subset of {F | ∀e ∈ E (F (e) ∈ τe)}.

Proof. Consider τ := {∅̃, {(e1, 0̄), (e2, 1̄)}, {(e1, 1̄), (e2, 0̄)}, Z̃2} with U and E given
by U := Z2, E := {e1, e2}. Since both τe1 and τe2 are discrete, F := E×{0̄} satisfies
∀e ∈ E (F (e) ∈ τe) even though it is not soft open. 2

The difference between the soft topology τ and the family {τe}e∈E of topologies
can also be viewed in the light of (soft) closures. To this end, we use the soft
space ⟨Z3, τ, E⟩, with E = {e1, e2} and τ = {∅̃, {(e1, 2̄), (e2, 1̄), (e2, 2̄)}, E × Z3}.
Put H := {0̄}. Then, in the topological space ⟨Z3, τe1⟩, the closure Cl(H) of H
satisfies ∀x ∈ Z3

(
x ∈ Cl(H) ⇐⇒ x = 0̄ or 1̄

)
. On the other hand, we have

∀x ∈ Z3

(
x ∈̃ C̃l(H̃) ⇐⇒ x = 0̄

)
.

The rest of this section studies the relationship between a soft space ⟨U, τ, E⟩ and
the family {⟨U, τe⟩}e∈E of topological spaces in terms of several soft concepts defined
so far.

(1) Soft Hausdorffness
Shabir and Naz [15] obtained the following result:
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Proposition 3.38. ([15]) If ⟨U, τ, E⟩ is a soft Hausdorff space, then ⟨U, τe⟩
is a Hausdorff space for every parameter e ∈ E. 2

One may expect that the converse of the above proposition also holds.
This, however, is not the case: The soft space ⟨Z2, τ, E⟩ from Example 3.32
witnesses the failure of the converse implication. Clearly, both ⟨U, τe1⟩ and
⟨U, τe2⟩ are Hausdorff spaces, as they are discrete. However, both 0̄ and 1̄
have only one soft clopen neighborhood E ×Z2; hence this soft space is not
a soft Hausdorff space.

(2) Soft continuity
Given a function ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩, it would be natural to ask

how the soft continuity of the function ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ is related
to the continuity of ϕ : ⟨U, τe⟩ → ⟨U ′, τ ′e⟩ for all e ∈ E. The following two
examples shows that these two continuities are independent:

Example 3.39. Let us consider the +1 (mod 2) function on ⟨Z2, τ, E⟩,
where E := {e1, e2} and τ is a soft topology on Z2 generated by:{

∅̃, {(e1, 0̄), (e2, 1̄)}, {(e1, 1̄), (e2, 0̄)}, E × {1̄}, E × Z2

}
.

Since both ⟨Z2, τe1⟩ and ⟨Z2, τe2⟩ are discrete spaces, the +1 (mod 2) func-
tion is clearly continuous in both spaces. However, this function is not soft
continuous at 0̄, as 0̄ has only one soft neighborhood E × Z2 while 1̄ has
E×{1̄} as a soft neighborhood. Thus we find that ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩
is not always a soft continuous function even if ϕ : ⟨U, τe⟩ → ⟨U ′, τ ′e⟩ is con-
tinuous at every e ∈ E.

Example 3.40. We then give a soft topology on Z with a parameter set
E = {e1, e2} by

τ :=
{
∅̃, E × Z

}
∪
{
{e1} × S | S is a non-empty subset of Z \ {5}

}
.

Then, the function − : Z → Z;x 7→ −x is not continuous at 5 with respect
to the topology τe1 . However, it is soft continuous as a function on ⟨Z, τ, E⟩,
as every point i ∈ Z has only one soft neighborhood E × Z. This example
shows that the continuity of ϕ : ⟨U, τe⟩ → ⟨U ′, τ ′e⟩ for every e ∈ E does not
follow from the soft continuity of ϕ.

(3) Soft compactness
Firstly, let us consider the soft space ⟨Z, τ, E⟩, where E := {e1, e2} and

τ := {∅̃, E × Z} ∪ {{e1} ×A | A ⊂ Z is non-empty} . Observe that any soft
open covering of ⟨Z, τ, E⟩ has E × Z as an element. Hence ⟨Z, τ, E⟩ is soft
compact. On the other hand, the topological space ⟨Z, τe1⟩ is discrete and
is not compact. This shows that, even if E is finite, the soft compactness of
⟨U, τ, E⟩ does not imply the compactness of ⟨U, τe⟩ for all e ∈ E.

Our next example uses an ordinal number ω + 1 (= {0, 1, 2, . . . , ω}) and
E := {e1, e2}. Let τ be the soft topology on ω + 1 generated by

{∅̃, F ′, E × (ω + 1)} ∪ {Fn | n ∈ ω}, where
F ′ := {(e1, α), (e2, ω) | 5 ≤ α ≤ ω} and Fn := {(e1, n), (e2, α) | α ∈ ω + 1}.
It is not hard to see that both ⟨ω + 1, τe1⟩ and ⟨ω + 1, τe2⟩ are compact.
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However, {F ′, F0, F1 . . . } is a soft open covering of which no finite subset
soft covers ω + 1. From this example, we see that even if ⟨U, τe⟩ is compact
for every e ∈ E, the soft space ⟨U, τ, E⟩ is not necessarily soft compact.

(4) Soft non-connectedness
Consider the soft space ⟨Z2, τ, E⟩, where E := {e1, e2} and τ is the

soft topology on Z2 generated by {∅̃, {(e1, 1̄)}c̃, {(e2, 0̄)}c̃, E × Z2}. Then
{{(e1, 1̄)}c̃, {(e2, 0̄)}c̃} soft covers Z2, witnessing that Z2 is not soft con-
nected. However, we see at once that both ⟨Z2, τe1⟩ and ⟨Z2, τe2⟩ are con-
nected. This shows that the soft non-connectedness of ⟨U, τ, E⟩ does not
entail the connectedness of ⟨U, τe⟩ for every e ∈ E.

For the converse direction, we employ another soft topological space
⟨Z3, τ, E⟩, where E := {e1, e2} and

τ := {∅̃, {(e1, 0̄), (e2, 0̄), (e2, 1̄)}, {(e1, 1̄), (e1, 2̄), (e2, 2̄)}, E × Z3}.

One can check straightforwardly that ⟨Z3, τei⟩ is non-connected for each
i = 1, 2, while ⟨Z3, τ, E⟩ is soft-connected.

Remark 3.41. Needless to say, all negative results around soft continuous func-
tion presented in this section are negative with the more general definition of soft
continuous function (Definition 3.8). Note, on the other hand, that the proofs of
the most positive results related to soft continuity given in this section do not rest
on the fact that the parameter set of domain is identical with that of the range.
Therefore we obtain proofs of the same assertion with more general interpretation
of soft continuous function once we replace the words “soft continuous function” in
those proofs by “soft continuous function (in the sense of Definition 3.8)”. Those
results are Propositions 3.12, 3.17, 3.21, 3.25 and Theorem 3.26.

4. Soft topological group

In this section, we introduce the concept of soft topological group, and investigate
its properties. Those who do not have a background in the theory of topological
group can consult, e.g, [7]. Before proceeding any further, let us see one example.

Example 4.1. Let ⟨R, τ, E⟩ be a soft topological space, where E := {e1, e2} and τ
is a soft topology on R generated by the following subbase:{

∅̃, E × R
}
∪ {E × (−ε, ε) | ε > 0} ∪

{
{(e1, r)} | r ∈ R

}
∪
{
{(e2, x) | r − ε < x < r + ε} | r ∈ R, ε > 0, 0 /∈ (r − ε, r + ε)

}
If we view R as an additive group (R,+), then −1 : R → R is soft continuous. This
can be seen from the fact that if a soft set F is in the above subbase of τ , then F−1

is also in the subbase.
We then claim that + : R × R → R is soft continuous. The soft continuity at

(a, b) with a, b ̸= 0 is easy, and so left to the reader. Suppose a = 0 and b ̸= 0. For
any soft neighborhood F of b, {(e1, b), (e2, x) | b− ε < x < b+ ε} ⊂̃F holds for some
ε > 0. Then, for ε′ > 0 small enough, it holds that (0, b) ∈̃F ′ and that the image
of F ′ by + is a soft subset of {(e1, b), (e2, x) | b− ε < x < b+ ε}( ⊂̃F ), where F ′ is

1013



Takanori Hida/Ann. Fuzzy Math. Inform. 8 (2014), No. 6, 1001–1025

given by({
(e1, 0)

}
×
{
(e1, b)

})
∪̃
((
E × (−ε′, ε′)

)
×

{
(e2, x) | b− ε′ < x < b+ ε′

})
.

This shows that + is soft continuous at (0, b). The reader will be able to prove the
soft continuity at (a, 0) with a ̸= 0 and also at (0, 0).

However, this soft space ⟨R, τ, E⟩ does not satisfy the following condition:

• For every (r1, r2) ∈ R× R and a soft neighborhood F of r1 + r2 ∈ R, there
exist soft neighborhoods F1 and F2 of r1 and r2, respectively, such that
F1 + F2 ⊂̃F

To see this, take a soft neighborhood {(e1, 5), (e2, x) | 4 < x < 6} of 5. Ob-
serve that, for every soft neighborhood F of 0, there exists an εF > 0 such that
(E × (−εF , εF )) ⊂̃F . Then one finds that no soft neighborhood F ′ of 5 satis-
fies F + F ′ ⊂̃ {(e1, 5), (e2, x) | 4 < x < 6}, by noting that (F + F ′)(e1) contains
(5− εF , 5 + εF ).

For our purposes, it is convenient to have, for every (g, h) ∈ G × G and a soft
neighborhood F of g ·h ∈ G, soft neighborhoods Fg and Fh of g and h, respectively,
such that Fg · Fh ⊂̃F . The above example shows that this property does not follow
from the soft continuity of the group operation · : G×G→ G with the soft product
topology on G×G. (The reader should remind Proposition 3.34 here. In soft product
topology, not all soft neighborhood F of (x0, x1) ∈ U × U contains a soft set of the
form F0 × F1 with x0 ∈̃F0 and x1 ∈̃F1.) Hence we have to explicitly require this
property in the definition of soft topological group. Here is the definition:

Definition 4.2. Let G = (G, ·, 1G) be a group, where 1G is the neutral element of
G. We say that ⟨G, τ,E⟩ is a soft topological group if τ is a soft topology on G with
a parameter set E and the following conditions are satisfied:

• For every (g, h) ∈ G×G and a soft neighborhood F of g · h ∈ G, there exist
soft neighborhoods Fg and Fh of g and h, respectively, such that Fg ·Fh ⊂̃F .

• The inversion function −1 : G→ G is soft continuous.

In what follows, ⟨G, τ,E⟩ stands for a soft topological group. We use the symbol
e only for parameters and not for the neutral element of the group G; The neutral
element will be denoted by 1G, or just 1 when no confusion can arise. Also, we will
write gh for g · h, (g, h ∈ G).

Remark 4.3. In the literature, e.g., [1], the terminology soft group is used to refer
to a soft set F such that F (e) is a subgroup of G for every e ∈ E. Here, we do not
require for each soft open set to be a soft group — Our concept is literally a soft
topological structure on a group. We chose this definition for the following reason:
The notion of soft topological group should be a natural extension of the usual
notion of topological group. In particular, when the parameter set E is singleton,
two definitions should coincide. If, however, we require for each soft open set to
be a soft group, two notions are different even when E is singleton. (Consider the
discrete topological space (Z,+), in which not all open sets are subgroup.) The
reader, therefore, should keep in mind that our definition of soft topological group
is different from [13, 16].
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Proposition 4.4. ⟨G, τ,E⟩ is a soft topological group ⇐⇒ For every x, y ∈ G and
for every soft open set F with xy−1 ∈̃F , there exist soft open sets F1, F2 such that
x ∈̃F1, y ∈̃F2 and F1F

−1
2 ⊂̃F .

Proof. Left-to-right: By the definition of the soft topological group, there exist soft
open sets F ′

1, F
′
2 such that x ∈̃F ′

1, y
−1 ∈̃F ′

2 and F ′
1F

′
2 ⊂̃F . By the soft continuity

of the inversion, there exists a soft open set F ′′
2 satisfying y ∈̃F ′′

2 and (F ′′
2 )

−1 ⊂̃F ′
2.

Hence we have x ∈̃F ′
1, y ∈̃F ′′

2 and F ′
1(F

′′
2 )

−1 ⊂̃F ′
1F

′
2 ⊂̃F .

Right-to-left: Let F be a soft open set such that x−1 ∈̃F . Since x−1 = 1 ·x−1, there
exist soft open sets F1, F2 such that 1 ∈̃F1, x ∈̃F2 and F1F

−1
2 ⊂̃F . In particular, we

have F−1
2 ⊂̃F , which shows that the inversion is soft continuous.

Let F be a soft open set satisfying xy ∈̃F . By noting xy = x(y−1)−1, we find soft
open sets F1, F2 such that x ∈̃F1, y

−1 ∈̃F2 and F1F
−1
2 ⊂̃F . Since we have already

shown that −1 : G → G is soft continuous, we find a soft open set F ′
2 such that

y ∈̃F ′
2 and (F ′

2)
−1 ⊂̃F2. Thus, we have F1F

′
2 =̃F1((F

′
2)

−1)−1 ⊂̃F1F
−1
2 ⊂̃F . This

completes the proof of the soft continuity of · : G×G→ G. 2

Observe that it does not follow from the soft continuity of the two operations
· : G × G → G, −1 : G → G that αL(g) : G → G;x 7→ gx is soft continuous for
every g ∈ G. Indeed, the soft topological space ⟨R, τ, E⟩ given in Example 4.1 is a
witness: Although both · : G × G → G and −1 : G → G are soft continuous in
the soft space, the function αL(r) is not soft continuous at 0 for every r ∈ R \ {0}.
However, we have

Proposition 4.5. Let g be an arbitrary element of a group G. Then
(i) αL(g) : G → G;x 7→ gx (resp. αR(g) : G → G;x 7→ xg) is a soft homeomor-
phism.
(ii) β(g) : G→ G;x 7→ gxg−1 is a soft homeomorphism. 2

Proof. For any h, x ∈ G and a soft neighborhood F of hx, by the definition of soft
topological group, there exist soft neighborhood Fh and Fx of h and x respectively
such that Fh ·Fx ⊂̃F . Hence we have αL(h)(Fx) =̃h ·Fx ⊂̃Fh ·Fx ⊂̃F , showing that
αL(h) is soft continuous. Since αL(h) is soft continuous for every h ∈ G, in particular
for both g and g−1, the first claim follows at once by noting that αL(g)

−1 = αL(g
−1).

The second claim can be proved similarly. 2

As noted earlier in Theorem 3.11, soft open sets are not always preserved by soft
homeomorphisms. This is the case even when the underlying soft topological space
is a soft topological group.

Example 4.6. (Soft open sets are not always preserved by soft homeomorphisms)
Let E := {e1, e2} and consider the following soft topology τ on an additive group Z2:
τ = {∅̃, {(e1, 1̄)}, E × Z2}. The reader will be able to check easily that ⟨Z2, τ, E⟩ is
indeed a soft topological group. In this example, even though {(e1, 1̄)} is soft open,
αL(1̄)

−1({(e1, 1̄)}) = {(e1, 0̄)} is not soft open.

Here, we examine the relationship between ⟨G, τ,E⟩ and ⟨G, τe⟩:

Example 4.7. Let us consider the soft space ⟨Z2, τ, E⟩, with E = {e1, e2} and
τ is generated by

{
∅̃, {(e1, 1̄)}, {(e2, 0̄)}, E × Z2

}
. Note that both 0̄ and 1̄ have
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exactly one soft neighborhood, namely E × Z2. It is then evident that, with the
additive structure on Z2, the soft space ⟨Z2, τ, E⟩ is indeed a soft topological group.
However, a trivial verification shows that neither ⟨Z2, τe1⟩ = ⟨Z2, {∅̃, {1̄},Z2}⟩ nor
⟨Z2, τe2⟩ = ⟨Z2, {∅̃, {0̄},Z2}⟩ is a topological group.

Recall the soft space ⟨Z2, τ, E⟩ from Example 3.39. Here, we view Z2 as an
additive group. Then, both ⟨Z2, τe1⟩ and ⟨Z2, τe2⟩ are topological group, as τe1 and
τe2 are discrete. However, because αL(1̄) : Z2 → Z2 is not soft continuous at 0̄, the
soft space ⟨Z2, τ, E⟩ is not a soft topological group.

From the theory of topological group, one knows the following equivalence: A
topological group G is a T0 space ⇐⇒ G is a T1 space ⇐⇒ G is a Hausdorff space.
The following theorem is a soft analogue of this result:

Theorem 4.8. For any soft topological group ⟨G, τ,E⟩, the following are equivalent:
(i) ⟨G, τ,E⟩ is a soft T0 space;
(ii) ⟨G, τ,E⟩ is a soft T1 space;
(iii) ⟨G, τ,E⟩ is a soft Hausdorff space.

Proof. (iii) ⇒ (ii) and (ii) ⇒ (i) are easy, and left to the reader.

(i) ⇒ (ii): We first show that {̃1} is soft closed. For this, it suffices to prove that
every x(̸= 1) can be separated from 1 by a soft open set. Take an x ∈ G \ {1}
arbitrarily. By the assumption, there exists a soft open set F such that either
x ∈̃F ∧ ∀e ∈ E (1 /∈ F (e)) or 1 ∈̃F ∧ ∀e ∈ E (x /∈ F (e)) holds. If the first case
happens, we are done. In the second case, the soft continuity of αL(x) : G → G
and the inversion −1 : G → G guarantees the existence of a soft set F ′ satisfying
that x ∈̃F ′ and xF ′−1 ⊂̃F . Hence, we have F ′ ⊂̃F−1x. If 1 were in F ′(e) for some
e ∈ E, then we would have 1 = u−1x for some u ∈ F (e). But then, x is equal to
u (∈ F (e)), contradicting the assumption that ∀e ∈ E (x /∈ F (e)). Therefore, 1 is

not in F ′(e) for any e ∈ E, and hence {̃1} ∩̃F ′ =̃ ∅̃ holds for this soft neighborhood
F ′ of x.

Take any distinct x, y from G. Then, since x−1y is a soft element of a soft open set

{̃1}
c̃
, the soft continuity of αL(x

−1) implies the existence of a soft open set F such

that y ∈̃F and x−1F ⊂̃ {̃1}
c̃
. Thus, this soft open set F satisfies ∀e ∈ E (x /∈ F (e)).

(ii) ⇒ (iii): Take x ̸= y from G. Since 1 ̸= x−1y, the assumption implies that

{̃x−1y}
c̃

is soft open. Select a soft neighborhood F of 1 such that FF−1 ⊂̃ {̃x−1y}
c̃

.
Assume for the contradiction that, for some e ∈ E, the soft sets xF (e) and yF (e)
had a common element, say g. Put g = xh = yk for h, k ∈ F (e). But then we would
have x−1y = hk−1 ∈ F (e)F (e)−1 ⊂ {x−1y}c, a contradiction. Hence xF ∩̃ yF =̃ ∅̃.

In view of the soft continuity of αL(x
−1) (resp. αL(y

−1)), we find a soft open Fx

(resp. Fy) such that x ∈̃Fx ⊂̃xF (resp. y ∈̃Fy ⊂̃ yF ). Clearly, Fx and Fy are soft
disjoint, as Fx ∩̃Fy ⊂̃xF ∩̃ yF =̃ ∅̃. 2

We then investigate the notion of soft-connectedness in the context of soft topo-
logical groups. We present several results familiar from topological group theory
which remain valid in the context of soft topological groups:

Definition 4.9. The soft connected component of G is the soft connected component
of 1 ∈ G.
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Proposition 4.10. Let C be the soft connected component of G. Then, for each
g ∈ G, the connected component of g is gC.

Proof. Since αL(g) : G → G is soft homeomorphic from Proposition 4.5, and soft-
connectedness is a soft topological property by Proposition 3.25, gC is a soft con-
nected set containing g (= g1). Hence gC is a subset of the soft connected component
of g. By repeating the same argument for g−1, it is immediate that gC is actually
the soft connected component of g. 2

Proposition 4.11. The soft connected component N of G is a normal subgroup.

Proof. Let a, b ∈ N . Since both −1 : G → G and αL(a) : G → G are soft home-
omorphic, aN−1 is also soft connected. Since aN−1 contains 1 = aa−1, we have
aN−1 ⊂ N . Clearly, ab−1 is in aN−1, so we have ab−1 ∈ aN−1 ⊂ N . This shows
that N is a subgroup of G.

Note that both a−1Na and aNa−1 are also soft connected, and contain 1. By
the fact that N is the largest soft connected subset containing 1, we see that both
a−1Na and aNa−1 are a subset of N , from which the normality of N follows. 2

The following is a basic result from the theory of topological group:

Proposition 4.12. If both H and K are connected subsets of a topological group
G, then HK ⊂ G is also connected.

Proof. Note that H × K is a connected subset of G × G. From the continuity of
· : G × G → G and the fact that the image of a connected set under a continuous
function is also connected, the connectedness of HK follows. 2

The above easiest proof does not work for soft topological space, as soft connect-
edness is not preserved by taking soft product (see Example 3.32 and Remark 3.33).
The assertion itself is, however, still true for soft topological groups:

Proposition 4.13. If both H and K are soft connected subsets of a soft topological
group G, then HK ⊂ G is also soft connected.

Proof. Let {F1, F2} be a soft open covering of HK such that no g ∈ HK satisfies
both g ∈̃F1 and g ∈̃F2. In view of Proposition 3.25, hK = (αL(h))(K) is soft
connected for every h ∈ H. Note that {F1, F2} is a soft covering of hK for every

h ∈ H. Take an h ∈ H arbitrarily. We assume ∀g ∈ hK (g /̃∈F1) without loss of
generality. Assume for the contradiction that ∃g′ ∈ h′K (g′ ∈̃F1) holds for some

h′ ∈ H. Pick such a g′ from h′K, and put g′ = h′k′ (k′ ∈ K). Then both hk′ /̃∈F1

and h′k′ = g′ ∈̃F1 are true, contradicting the soft connectedness of Hk′. Therefore,
∀g ∈ hK (g /̃∈F1) holds for every h ∈ H. In other words, ∀g ∈ HK (g /̃∈F1). Thus,
HK is soft connected. 2

From the theory of topological group, we know that every open subgroup, i.e., a
subgroup which is open with respect to the given topology, is closed. Here is its soft
version:

Proposition 4.14. Let H ⊂ G be a subgroup of G such that H̃ is soft open. Then
H̃ is soft closed.
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Proof. Let G = H ⊔
⊔

λ∈ΛHgλ be a right coset decomposition. We first show that

H̃gλ is soft open for each λ ∈ Λ. For every h ∈ H, from the soft continuity of
αR(g

−1
λ ) : G→ G, we can pick a soft neighborhood Fh of hgλ such that Fhg

−1
λ ⊂̃ H̃.

Then, for all h ∈ H, we have h ∈̃
∪̃

h∈HFhg
−1
λ ⊂̃ H̃. Hence H̃ =̃

∪̃
h∈HFhg

−1
λ , and so

H̃gλ is soft equal to
∪̃

h∈HFh. As a soft union of soft open sets Fh’s, H̃gλ is also
soft open.

Then ˜⊔
λ∈ΛHgλ is soft open, as it is the soft union of soft open sets. Hence

H̃ = G̃ \ ˜⊔
λ∈ΛHgλ is soft closed. 2

Another result from the topological group theory which has a soft analogue is:
For every subgroup H, H is open ⇐⇒ H has a non-empty interior. Here is the soft
version:

Proposition 4.15. Let H ⊂ G be a subgroup. H̃ is soft open ⇐⇒ There exist an
h ∈ H and a soft neighborhood F of h such that F ⊂̃ H̃.

Proof. We prove only the right-to-left direction: Take h and F as above. Then, for
any h′ ∈ H, there exists a soft neighborhood F ′

h′ of h′ such that hh′−1F ′
h′ ⊂̃F , as

αL(hh
′−1) : G→ G is soft continuous. Since F ′

h′ ⊂̃h′h−1F and H is a subgroup, we

have F ′
h′ ⊂̃h′h−1F ⊂̃ H̃. Therefore, H̃ =̃

∪̃
h∈HF

′
h is soft open. 2

Not all results from the theory of topological group carry over to the soft setting.
For instance, the closure of any subgroup of a topological group is again a subgroup.
But, we have:

Example 4.16. (The closure of a subgroup is not necessarily a subgroup) Recall
the soft space from Example 3.40. If we view Z as the additive group (Z,+), then
this provides an example of a soft topological group. Clearly, {0} is a subgroup of
Z. Observe that 5 is a soft element of any soft closed set F subject to the condition

that 0 ∈̃F . In fact, {i ∈ Z | i ∈̃ C̃l({̃0})} is equal to {0, 5}. Hence, we conclude that,

in soft topological groups, the set {g ∈ G | g ∈̃ C̃l(H)} is not necessarily a subgroup
of G even if H is.

Also, even though Cl(A) · Cl(B) ⊂ Cl(A ·B) holds for any subsets A and B of a
topological group, we have the following:

Example 4.17. (C̃l(Ã) · C̃l(B̃) ⊂̃ C̃l(Ã · B̃) does not hold in general) The same soft
topological group from Example 3.40 is a witness. Indeed, if we set A := {2} and
B := {3}, then

C̃l(Ã) =̃ {(e1, 2), (e1, 5)} ∪ ({e2} × Z),

C̃l(B̃) =̃ {(e1, 3), (e1, 5)} ∪ ({e2} × Z).

However, C̃l(Ã·B̃) is {(e1, 5)}∪({e2}×Z), which clearly does not contain C̃l(Ã)·C̃l(B̃)
as a soft subset.

Every topological group (more generaly, every uniform space) is regular [9]. On
the other hand, we have:
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Example 4.18. (A soft topological group which is not soft regular) Take the follow-
ing soft topological group ⟨R, τ, E⟩, where E := {e1, e2} and τ is the soft topology
generated by the following subbase:{

∅̃, E × R
}
∪ {{(e1, r), (e2, x) | r − ε < x < r + ε} | r ∈ R, ε > 0} .

A trivial verification shows that, seen as an additive group, ⟨R, τ, E⟩ is indeed a soft
Hausdorff topological group. Then, for any positive ε > 0, take a soft open neigh-
borhood {(e1, 0), (e2, x) | −ε < x < ε} of 0. Let F be a soft closed neighborhood of
0 such that F ⊂̃ {(e1, 0), (e2, x) | −ε < x < ε}.

We claim that no soft open neighborhood of 0 is a soft subset of this F . To see
this, we first note that for any r ∈ R, and a soft neighborhood Fr of r, there exists
a εr > 0 with the following property:

{(e1, r), (e2, x) | r − εr < x < r + εr} ⊂̃Fr.

Since F c̃ is soft open, for each r ∈ R \ {0}, there exists an εr > 0 satisfying that

{(e1, r), (e2, x) | r − εr < x < r + εr} ⊂̃F c̃.

It is clear that 0 /∈ (r − εr, r + εr). It is also not hard to see the following soft
equality: ∪̃

r ̸=0

{
(e1, r), (e2, x)

∣∣∣ r − εr < x < r + εr

}
=̃E × (R \ {0}).

This implies F c̃ =̃E × (R \ {0}), and so F is soft equal to E × {0}. Since no soft
open neighborhood of 0 is a soft subset of E × {0}, this shows that ⟨R, τ, E⟩ is not
soft regular.

Recall the following equivalences from the theory of topological group: a topo-
logical group G is a T0 space ⇐⇒ G is a T1 space ⇐⇒ G is a Hausdorff space ⇐⇒
G is a Hausdorff space and is regular. From the above example, we see that the last
equivalence is not valid for soft topological groups. Hence Theorem 4.8 is the best
we can say in full generality.

5. Soft topological group as soft uniform space

This last section treats soft topological groups from more general viewpoint, i.e.,
soft uniform space, a notion defined by Çetkin and Aygün [4]. Those who are not
so familiar with uniform spaces can consult some textbook, e.g, [9].

Definition 5.1 ([4]). Let U be an initial universe and E be a set of parameters.
Then a soft uniformity (or soft uniform structure) over U is a family D of soft sets
on U × U satisfying the following five conditions:

• ∆̃U :=
{
(e, {(x, x) | x ∈ U}) | e ∈ E

}
is a soft subset of D for each D ∈ D,

• D1 ∩̃D2 ∈ D for each D1, D2 ∈ D,
• If D ∈ D and D ⊂̃D′ then D′ ∈ D,
• For each D ∈ D, there exists a D′ ∈ D such that D′−1 ⊂̃D,
• For each D ∈ D, there exists a D′ ∈ D such that D′ ◦D′ ⊂̃D.
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In the above definition, we used the following usual notation: D′−1 is the inverse
of D′, given by D′−1(e) := {(y, x) | (x, y) ∈ D′(e)}. The composition D′ ◦ D′ is
defined by (D′ ◦D′)(e) := {(u, v) ∈ U2 | ∃z ∈ U ((u, z) ∈ D′(e) and (z, v) ∈ D′(e))}.
Each member of D is called a soft entourage.

The word soft uniform space refers to the triplet ⟨U,D, E⟩. In what follows, unless
otherwise stated, ⟨U,D, E⟩ denotes a soft uniform space.

Definition 5.2 ([4]). Let B be a family of soft sets over U ×U . We say that B is a
base of a soft uniformity on U if B satisfies:

• ∆̃U is a soft subset of D for each D ∈ B,
• For each D1, D2 ∈ B, there exists a D3 ∈ B such that D3 ⊂̃D1 ∩̃D2,
• For each D ∈ B, there exists a D′ ∈ B such that D′−1 ⊂̃D,
• For each D ∈ B, there exists a D′ ∈ B such that D′ ◦D′ ⊂̃D.

A base B of a soft uniformity generates a soft uniformity on U in the obvious way
(see [4]). Several basic properties of soft uniformity have been established in [4], so
we do not go into detail here.

It is well-known that topological groups are special cases of uniform spaces [9].
Our next task is to extend this paradigm to the context of soft sets:

Definition 5.3. Let F be a soft set over a group G. Then
(i) The soft set LF : E → G×G is defined by LF (e) := {(x, y) | x−1y ∈ F (e)}.
(ii) The soft set RF : E → G×G is defined by RF (e) := {(x, y) | yx−1 ∈ F (e)}.

Clearly, LF and RF coincide when G is an abelian group.

Proposition 5.4. The family {LF | F is a soft neighborhood of 1} is a base of a
soft uniformity on G.

Proof. The only non-trivial condition would be the fourth one: For any soft neigh-
borhood F of 1, there exists a soft neighborhood F ′ of 1 with the property that
LF ′ ◦LF ′ ⊂̃LF . But this is just an another way of saying F ′ ·F ′ ⊂̃F , which follows
at once from the definition of soft topological group. 2

Likewise, the family {RF | F is a soft neighborhood of 1} is a base of a soft uni-
formity on G. The resulting soft uniformity on the group G is called the soft left
(resp. right) uniformity, and is denoted by DL

G,τ (resp. DR
G,τ ).

Remark 5.5. What have been discussed above are soft versions of the left unifor-
mity and the right uniformity. The reader should recall the fact that these are not
the only ways to view topological groups as uniform spaces — A uniformity gener-
ated by {LN ∩RN | N is a neighborhood of 1}, the so-called two-sided uniformity,
can be used. The family {LN ∪RN | N is a neighborhood of 1} also generates a
uniformity. The soft versions of these two uniformities also allow us one to view soft
topological groups as soft uniform spaces.

The notion of uniform continuity is important in the study of uniform spaces.
Here, we provide its soft version.

Definition 5.6. ϕ : U → U ′ is called a soft uniformly continuous function from
⟨U,D, E⟩ to ⟨U ′,D′, E⟩ if (ϕ× ϕ)−1(D′) is in D for all D′ ∈ D′.
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As before, we may use the notation ϕ : ⟨U,D, E⟩ → ⟨U ′,D′, E⟩ to explicitly
mention the underlying soft uniform structures.

Theorem 5.7. For every group homomorphism ϕ : G → G′, the following are
equivalent:
(i) ϕ : ⟨G, τ,E⟩ → ⟨G′, τ ′, E⟩ is soft continuous;
(ii) ϕ : ⟨G,DL

G,τ , E⟩ → ⟨G′,DL
G′,τ ′ , E⟩ is soft uniformly continuous.

Proof. (i) ⇒ (ii): We have to show that (ϕ × ϕ)−1LF ′ ∈ DL
G,τ holds for every soft

neighborhood F ′ of 1G′ . From the soft continuity of ϕ, we can pick a soft neighbor-
hood F of 1G with the property that ϕ(F ) ⊂̃F ′. Take an arbitrary parameter e ∈ E.
If (g, h) ∈ (LF )(e), then ϕ(g)

−1ϕ(h) = ϕ(g−1h) ∈ ϕ(F (e)) ⊂ F ′(e). So, (ϕ(g), ϕ(h))
is in (LF ′)(e). This means that LF ⊂̃ (ϕ × ϕ)−1LF ′ . Since soft uniformities are
upward closed (with respect to the soft inclusion), we see that (ϕ × ϕ)−1LF ′ is in
DL

G,τ .

(i) ⇐ (ii): Choose a g ∈ G and a soft neighborhood F ′ of ϕ(g) arbitrarily. Since
αL(ϕ(g)) : G

′ → G′ is soft continuous, we know that there exists a soft neighborhood
F ′
1 of 1G′ such that ϕ(g)F ′

1 ⊂̃F ′. Since 1G′ ∈̃F ′
1 ⊂̃ϕ(g−1)F ′, the soft continuity of ϕ

implies that (ϕ× ϕ)−1(Lϕ(g−1)F ′) is a soft entourage on G. By the definition of the

soft left uniformity, LF1
⊂̃ (ϕ×ϕ)−1(Lϕ(g−1)F ′) holds for some soft neighborhood F1

of 1G. This means, x−1y ∈ F1(e) implies ϕ(x−1y) ∈ ϕ(g−1)F ′(e) for every e ∈ E.
Thus ϕ(F1(e)) ⊂ ϕ(g−1)F ′(e) for all e ∈ E, so ϕ(gF1) ⊂̃F ′. The soft continuity
of αL(g

−1) : G → G yields the existence of a soft neighborhood F of g such that
g−1F ⊂̃F1. Therefore, g ∈̃F ⊂̃ gF1. Since ϕ(F ) ⊂̃ϕ(gF1) ⊂̃F ′, this completes the
proof. 2

It would be interesting to investigate the notion of totally boundedness in the
context of soft uniform spaces. In the next definition, D[s] denotes the soft set over
U given by D[s](e) = {x ∈ U | (s, x) ∈ D(e)}.

Definition 5.8. A soft uniform space ⟨U,D, E⟩ is called soft totally bounded if for
each soft entourage D ∈ D, there exists a finite set S ⊂ U with the property that
∀x ∈ U ∃s ∈ S (x ∈̃D[s]).

Suppose a uniformity is derived from some soft topological group as its soft left
uniformity. In that situation, by observing the equivalence g ∈ sN ⇐⇒ g ∈ LN [s],
we can rephrase the above condition using the terminology from soft topological
group theory as follows:

Proposition 5.9. A soft left uniform space ⟨G,DL
G,τ , E⟩ is soft totally bounded

⇐⇒ For every soft neighborhood N of 1, there exists a finite subset S of G such that
∀g ∈ G ∃s ∈ S (g ∈̃ sN). 2

The reader will be able to formulate and prove the right version of the above
proposition.

Theorem 5.10. Let ⟨G, τ,E⟩ be a soft topological group. If the soft left uniform
space ⟨G,DL

G,τ , E⟩ is soft totally bounded, then so is the soft right uniform space

⟨G,DR
G,τ , E⟩.
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Proof. Take an arbitrary soft topological group ⟨G, τ,E⟩ with ⟨G,DL
G,τ , E⟩ soft to-

tally bounded. We first prepare the following lemma:

Lemma 5.11. For any soft neighborhood F of 1, there exists a soft neighborhood
F ′ of 1 such that F ′ ⊂̃F and F ′ =̃ gF ′g−1 for every g ∈ G.

Proof. Select a soft neighborhood F1 of 1 so that F−1
1 F1F1 ⊂̃F . Since the soft left

uniform space ⟨G,DL
G,τ , E⟩ is soft totally bounded by assumption, Proposition 5.9

assures the existence of finitely many elements g1, . . . , gn ∈ G with the property that
∀g ∈ G∃i ≤ n (g ∈̃ giF1). Since the function β(g−1

i ) : x 7→ g−1
i xgi is soft homeo-

morphic for each i, we have a soft neighborhood F (i) of 1 such that g−1
i F (i)gi ⊂̃F1.

Pick up an element g from G arbitrarily; then take an i ≤ n so that g ∈̃ giF1. Define
a soft neighborhood F ′′ of 1 by F ′′ := F (1) ∩̃ · · · ∩̃F (n). Then we have

g−1F ′′g ⊂̃ F−1
1 g−1

i F ′′giF1

⊂̃ F−1
1 F1F1

⊂̃ F

It is straightforward that F ′ :=
∪̃

g∈G g−1F ′′g has the desired property. 2

Let F be a soft neighborhood of 1, and take F ′ as in the above lemma. In
view of Proposition 5.9, one can pick up finitely many elements h1, . . . , hm ∈ G
such that ∀g ∈ G∃i ≤ m (g ∈̃hiF ′). Since F ′ satisfies F ′ =̃hiF

′h−1
i , we have

hiF
′ =̃F ′hi ⊂̃Fhi. Therefore, ∀g ∈ G∃i ≤ m (g ∈̃Fhi) holds., which finishes the

proof. 2

Needless to say, the converse of the above theorem is also true. Therefore, when
dealing with soft totally boundedness, it is not important to specify which soft
uniformity — left or right — is used.

Proposition 5.12. If both H and K are soft totally bounded subsets of G, then so
is H ·K.

Proof. For any soft neighborhood F ′ of 1, ∀h ∈ H ∃s ∈ S1 (h ∈̃F ′s) holds for some
finite set S1 ⊂ H. Since S1K is a soft union of finitely many soft totally bounded
sets sK’s, it is also soft totally bounded. Hence, there exists a finite set S2 ⊂ S1K
satisfying ∀g ∈ S1K ∃s ∈ S2 (g ∈̃F ′s). Fix an h ∈ H and a k ∈ K. Then, we find an
s ∈ S1 such that h ∈̃F ′s. For this s ∈ S1, there exists an s

′ ∈ S2 such that sk ∈̃F ′s′.
In total, we have hk ∈̃F ′F ′s′.

For any soft neighborhood F of 1, there exists a soft neighborhood F ′ of 1 such
that F ′ · F ′ ⊂̃F . The above argument applied to this F ′ shows that H ·K is soft
totally bounded. 2

We introduce another concept here:

Definition 5.13. Let ⟨G, τ,E⟩ be a soft topological group and H ⊂ G be a sub-
group. We say that H is soft neutral in G if for each soft neighborhood F of 1, there
exists a soft neighborhood F ′ of 1 such that F ′ ·H ⊂̃H · F .

Proposition 5.14. Every soft totally bounded subgroup H of a soft topological group
G is soft neutral in G.
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Proof. Fix a soft neighborhood F of 1 arbitrarily. Then take a soft neighborhood F ′′

of 1 with the property that F ′′ ·F ′′ ⊂̃F . Since H is soft totally bounded, there exist
h1, . . . , hn ∈ H such that ∀h ∈ H ∃i ≤ n (h ∈̃hiF ′′). In particular, H ⊂̃ {h1, . . . , hn}·
F ′′. Since, for each i ≤ n, the function β(h−1

i ) : G → G is soft homeomor-

phic, we have a soft neighborhood F ′
i of 1 such that h−1

i F ′
ihi ⊂̃F ′′, in other words

F ′
ihi ⊂̃hiF

′′. If we put F ′ = F ′
1 ∩̃ · · · ∩̃F ′

n, then F ′{h1, . . . , hn} ⊂̃ {h1, . . . , hn}F ′′

holds. Thus

F ′ ·H ⊂̃ F ′ · {h1, . . . , hn} · F ′′

⊂̃ {h1, . . . , hn} · F ′′ · F ′′

⊂̃ {h1, . . . , hn} · F
⊂̃ H · F,

which completes the proof. 2

We conclude this section with a few results around the soft version of uniform
topology.

Definition 5.15 ([4]). For any soft uniform space ⟨U,D, E⟩, define the operator

C̃l
u
on the soft sets by putting C̃l

u
(F ) :=

∩̃
{D[F ] | D ∈ D}, where D[F ] is a soft

set given by D[F ](e) := {x ∈ U | (x, y) ∈ D(e) for some y ∈ F (e)}. Then the

soft uniform topology on U is the soft topology on U specified by taking C̃l
u
as the

closure operator.

Lemma 5.16. Assume that the parameter set E is a finite set. Then, for each
x ∈ U , the soft neighborhood filter of x (in the soft uniform topology) is generated
by the family {D[x] | D ∈ D}.

Proof. For any soft entourage D, pick a symmetric soft entourage D′ so that D′ ⊂̃D
holds. If we put F := (D′[x])c̃, then the symmetricity ofD′ implies that x /∈ D′[F ](e)

for every parameter e ∈ E. Since we have F ⊂̃ C̃l
u
(F ) ⊂̃D′[F ], it follows that

x ∈̃ (C̃l
u
(F ))c̃. The soft set (C̃l

u
(F ))c̃ is clearly soft open (with respect to the soft

uniform topology) and is a soft subset of F c̃( =̃D′[x]).
Conversely, for any soft open neighborhood F of x, F c̃ is soft closed and, for every

parameter e, x is not in F c̃(e) = (C̃l
u
(F c̃))(e). Therefore, for each e ∈ E, we can

pick a symmetric soft entourage De such that x /∈ De[F
c̃](e). Since E is finite by

assumption, we find a symmetric soft entourage D′ satisfying x /∈ D′[F c̃](e) for all
e ∈ E. Then F c̃ does not soft intersect D′[x]; and so D′[x] ⊂̃F , as required. 2

Proposition 5.17. Let ⟨G, τ,E⟩ be a soft topological group with E finite. Then for
every x ∈ G, the soft neighborhood system at x with respect to τ is equal to the soft
neighborhood system at x with respect to the soft uniform topology given by the soft
left uniformity DL

G,τ .

Proof. Take a soft neighborhood F of 1 arbitrarily. Then, we have LF [x] =̃xF , since
LF [x](e) = {g ∈ G | x−1g ∈ F (e)} = xF (e) hold for all e ∈ E. By the soft continuity
of αL(x

−1) : G → G, there exists a soft open neighborhood (with respect to τ) F ′

of x such that x−1F ′ ⊂̃F . Hence, F ′ ⊂̃xF =̃LF [x]. From Lemma 5.16, we know
that the soft neighborhood filter of x (with respect to the soft uniform topology) is
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generated by LF [x]’s. Therefore, we conclude that any soft neighborhood of x in
the soft uniform topology is also a soft neighborhood of x with respect to τ .

For the converse inclusion, take any soft neighborhood F of x with respect to τ .
Pick a soft neighborhood F ′ of 1 such that xF ′ ⊂̃F . Then we have L′

F [x] =̃xF ′ ⊂̃F .
2

As pointed out already in Example 3.7, even if the soft neighborhood systems
in two different soft topologies are identical at every point, two soft topologies can
differ. Indeed, the above proposition is the best we can say about the relationship
between two soft topologies.

Example 5.18. (Two soft topologies can be different) Consider the soft topological
group ⟨Z2, τ, E⟩, with E := {e1, e2} and τ := {∅̃, {(e2, 0̄)}c̃, {(e2, 1̄)}c̃, E × Z2}. In
the soft uniform topology, we have

C̃l
u
({(e1, 0̄)}) =̃ L{(e2,1̄)}c̃ [{(e1, 0̄)}] ∩̃LE×Z2 [{(e1, 0̄)}]

=̃ L{(e2,1̄)}c̃ [{(e1, 0̄)}]
=̃ {e1} × Z2,

which is not soft closed in the original soft topology τ .
Next, take the following soft topological group ⟨Z2, τ ∪{(e1, 0̄)}, E⟩, where τ and

E are as above. The soft set {(e1, 0̄)}c̃ is soft closed in the initial soft topology τ .
On the other hand, a simple computation shows that

C̃l
u
({(e1, 0̄)}c̃) =̃ L{(e2,1̄)}c̃ [{(e1, 0̄)}c̃] ∩̃LE×Z2 [{(e1, 0̄)}c̃]

=̃ L{(e2,1̄)}c̃ [{(e1, 0̄)}c̃]
=̃ E × Z2

/̃= {(e1, 0̄)}c̃,

which shows that {(e1, 0̄)}c̃ is not soft closed with respect to the soft uniform topol-
ogy.

6. Future work

In this final section, we present several future work related to soft topological
group:

(1) It is well-known in the theory of topological group that H ·K ⊂ G is compact
when both H and K are compact subsets of a topological group G. The
proof is folklore: The (binary) product of compact spaces is also compact,
and the image of compact set under any continuous function, in particular
· : G×G→ G, is again compact. This standard proof does not generalize to
soft topological group, as the soft product of soft compact sets may not be
soft compact (See section 3). It is natural to ask if the soft version is true
or not, i.e., if both H and K are soft compact subset of a soft topological
group G, is H ·K ⊂ G also soft compact?

(2) We used two different soft topological groups to give an example of the fact
that the soft product of soft compact topological groups is not soft compact
in general. However, we do not know if it is also the case when we take
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soft product of the same soft compact topological group. More precisely, we
would like to know the answer to the following question: If ⟨G, τ,E⟩ is a soft
compact topological group, is the soft product G×G also soft compact?

(3) Our initial motivation is of the following form: Fix a group G. What happen
if we replace a topological structure on G by a soft topological structure?
Which results remain valid and which does not? In order to compare prop-
erties of G with soft topological structure on it with properties of G with
topological structure on it, we used not soft points but crisp points. It
would be interesting to develop the theory of soft topological group with
soft points.
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[19] İ. Zorlutuna, M. Akdag, W. K. Min and S. Atmaca, Remarks on soft topological spaces, Ann.
Fuzzy Math. Inform. 3(2) (2012) 171–185.

Takanori Hida (hida@kurims.kyoto-u.ac.jp)
Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oi-
wakecho, Sakyo-ku, Kyoto 606-8502, Japan

1025


	 Soft topological group . By 

