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1. Introduction

Since the inception of fuzzy sets by Zadeh in 1965 [19], various authors have
introduced the concept of fuzzy metric spaces in different ways [2, 6, 10, 12, 14].
George and Veeramani [7, 8] modified the concept of fuzzy metric spaces introduced
by Kramosil and Michalek [14] and defined a Hausdorff topology on this fuzzy metric
space. Using the idea of L-fuzzy sets [9], Saadati et al. introduced the notion of
L-fuzzy metric spaces [17] as a generalization of fuzzy metric due to George and
Veeramani [7] and intuitionistic fuzzy metric due to Park and Saadati [15, 16]. Many
authors proved analogues of classical results in metric spaces including the uniform
continuity theorem, Ascoli-Arzela theorem, Baire theorem, uniform limit theorem
etc. for L-fuzzy metric spaces [4, 18].
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2. Preliminaries

Throughout our discussion, we shall assume all lattices L = (L,≤L) to be com-
plete. Let 0L = inf L and 1L = supL, for a lattice L.

Definition 2.1 ([9]). An L-fuzzy set is defined as a mapping A : U → L, where U
is a non empty set called a universe. For each u in U , A(u) represents the degree
(in L) to which u satisfies A.

Definition 2.2 ([1]). An intuitionistic L-fuzzy set Aζ,η on U is an object of the
form Aζ,η = {(u, ζA(u), ηA(u)) : u ∈ U}, where the functions ζA : U → L and
ηA : U → L are called the degree of membership and degree of nonmembership,
respectively, of u in Aζ,η, furthermore the functions ζA and ηA should satisfy the
condition ζA(u) ≤L N (ηA(u)), for all u ∈ U , where N : L → L is an involutive
negation (see definition 2.4 below) in the lattice L.

Classically, a triangular norm T on ([0, 1],≤) is a mapping T : [0, 1]2 → [0, 1] which
is increasing, commutative, associative and satisfies T (x, 1) = x, for all x ∈ [0, 1],
called the boundary condition. These definitions can be directly extended to any
lattice L, irrespective of its completeness.

Definition 2.3. A triangular norm (t-norm) on L is a mapping T : L2 → L satis-
fying the following conditions:

(1) (∀x ∈ L)(T (x, 1L) = x); (boundary condition)
(2) (∀(x, y) ∈ L2)(T (x, y) = T (y, x)); (commutativity)
(3) (∀(x, y, z) ∈ L3)(T (x, T (y, z)) = T (T (x, y), z)); (associativity)
(4) (∀(x, x′, y, y′) ∈ L4)(x ≤L x′ and y ≤L y′ ⇒ T (x, y) ≤L T (x′, y′)); (mono-

tonicity)

A t-norm T on L is said to be continuous if for any x, y ∈ L and any sequences
(xn)n∈N and (yn)n∈N which converges to x and y respectively, we have limn T (xn, yn)
= T (x, y).

For example, T (x, y) = min(x, y) and T (x, y) = xy are two continuous t-norms
on [0, 1].

A t-norm can also be defined recursively as an (n+ 1)-ary operation (n ∈ N) by
T 1 = T and

T n(x1, ..., xn+1) = T (T n−1(x1, ..., xn), xn+1) for n ≥ 2 and xi ∈ L.

Definition 2.4 ([17]). A negation on L is any decreasing mapping N : L → L
satisfying N (0L) = 1L and N (1L) = 0L. If N (N (x)) = x, for x ∈ L, then N is
called an involutive negation.

The negation Ns on ([0, 1],≤) defined as, for all x ∈ [0, 1], Ns(x) = 1 − x, is the
standard negation on ([0, 1],≤).

The following definition of an L-fuzzy metric space and its induced topology are
from [17].

Definition 2.5. The 3-tuple (X,M, T ) is said to be an L-fuzzy metric space if X
is an arbitrary (non-empty) set, T is a continuous t-norm on L and M is an L-fuzzy
set on X2× (0,+∞) satisfying the following conditions for every x, y, z in X and t, s
in (0,+∞):
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(a) M(x, y, t) >L 0L;
(b) M(x, y, t) = 1L for all t > 0 if and only if x = y;
(c) M(x, y, t) = M(y, x, t);
(d) T (M(x, y, t),M(y, z, s)) ≤L M(x, z, t+ s);
(e) M(x, y, .) : (0,+∞) → L is continuous.

In this case M is called an L-fuzzy metric. If M = MM,N is an intuitionistic
L-fuzzy set (see definition 2.2) then the 3-tuple (X,MM,N , T ) is said to be an
intuitionistic L-fuzzy metric space.

Let (X,M, T ) be an L-fuzzy metric space. For t ∈ (0,+∞), we define an open
ball B(x, r, t) with center x ∈ X and radius r ∈ L\{0L, 1L}, as

B(x, r, t) = {y ∈ X : M(x, y, t) >L N (r)}.

We call a subset A ⊆ X to be open if for each x ∈ A, there exist t > 0 and
r ∈ L\{0L, 1L} such that B(x, r, t) ⊆ A. Let τM denote the family of all open
subsets of X. Then τM is a topology (in the classical sense) on X induced by the L
-fuzzy metric M.

Proposition 2.6. Since {B(x, 1
k ,

1
k ) : k ∈ N} is a countable local base at x, for each

x ∈ X, therefore the topology τM is first countable.

Lemma 2.7 ([3]). Consider the set L∗ and operation ≤L∗ defined by L∗ = {(x1, x2) :
(x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1}, (x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 and x2 ≤ y2, for
every (x1, x2), (y1, y2) ∈ L∗. Then (L∗,≤L∗) is a complete lattice.

Proposition 2.8. The pair ([0, 1],≤) is a complete lattice where ≤ stands for usual
comparison of real numbers. Let us denote this pair as (L′,≤L′), where L′ denotes
the set [0, 1] and ≤L′ stands for the above mentioned comparison on L′.

Example 2.9 ([16]). LetX = N. Define T (a, b) = (max(0, a1+b1−1), a2+b2−a2b2)
for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on
X2 × (0,+∞) defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) =

{
(xy ,

y−x
y ) if x ≤ y;

( yx ,
x−y
x ) othewise.

for all x, y ∈ X and t > 0. Then (X,MM,N , T ) is an intuitionistic L-fuzzy metric
space.

Example 2.10. Let (X, d) be a metric space. Define T (a, b) = ab for all a, b ∈ L′

and let M be an L-fuzzy set defined as follows:

M(x, y, t) = htn

htn+md(x,y)

for all t, h,m, n ∈ R+. Then (X,M, T ) is an L-fuzzy metric space. If h = m = n =
1, then (X,M, T ) is the standard L-fuzzy metric space [7]. Generally, this L-fuzzy
metric is denoted by Md.

Lemma 2.11 ([7, 16]). Let (X,M, T ) be an L-fuzzy metric space. Then, M(x, y, t)
is nondecreasing with respect to t, for all x, y ∈ X.
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Definition 2.12 ([18]). A sequence (xn) in an L-fuzzy metric space (X,M, T ) is
called a Cauchy sequence, if for each ε ∈ L\{0L} and t > 0, there exist n0 ∈ N such
that for all m ≥ n ≥ n0 (n ≥ m ≥ n0)

M(xn, xm, t) >L N (ε).

The sequence (xn) is said to be convergent to x ∈ X in the L-fuzzy metric space
(X,M, T ) if M(xn, x, t) = M(x, xn, t) → 1L as n → ∞ for every t > 0.

An L-fuzzy metric space is said to be complete iff every Cauchy sequence is
convergent.

Henceforth, we assume that T is a continuous t-norm on lattice L such that for
every µ ∈ L\{0L, 1L}, there is a λ ∈ L\{0L, 1L} such that

T n−1(N (λ), ...,N (λ)) >L N (µ).

Remark 2.13. Efe [4] proved that (X, τM) is a Hausdorff first countable topolog-
ical space. Moreover, if (X, d) is a metric space then the topology generated by d
coincides with the topology τMd

generated by the induced L-fuzzy metric Md.

We say that a topological space (X, τ) admits a compatible L-fuzzy metric if
there exists an L-fuzzy metric M such that τ = τM. Thus, by the result of Efe,
every metrizable topological space admits a compatible L-fuzzy metric. Conversely,
we shall prove that every L-fuzzy metric space is metrizable.

3. Main results

A classical result in the theory of metrizable topological spaces is the Kelley
metrization lemma [13], which is stated as follows.

Lemma 3.1. A T1 topological space (X, τ) is metrizable if and only if it admits a
uniformity with a countable base.

Lemma 3.2 ([4]). Let (X,M, T ) be an L-fuzzy metric space. Then τM is a Haus-
dorff topology and for each x ∈ X, {B(x, 1

n ,
1
n ) : n ∈ N} is a neighborhood base at x

for the topology τM.

Theorem 3.3. Let (X,M, T ) be an L-fuzzy metric space. Then (X, τM) is a metriz-
able topological space.

Proof. For each n ∈ N, define Un = {(x, y) ∈ X × X : M(x, y, 1
n ) >L N ( 1n )}. We

shall prove that {Un : n ∈ N} is a base for a uniformity U on X whose induced
topology coincides with τM. We first note that, for each n ∈ N

{(x, x) : x ∈ X} ⊆ Un , Un+1 ⊆ Un and Un = U−1
n .

On the other hand, for each n ∈ N, there is, by the continuity of T , an m ∈ N such
that, m > 2n and T (N ( 1

m ),N ( 1
m )) >L N ( 1n ).

Then, Um ◦ Um ⊆ Un : Let (x, y), (y, z) ∈ Um. Since M(x, y, .) is nondecreasing,
796
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M(x, z, 1
n ) >L M(x, z, 2

m ). So,

M(x, z,
1

n
) >L M(x, z,

2

m
)

>L T (M(x, y,
1

m
),M(y, z,

1

m
))

>L T (N (
1

m
),N (

1

m
)) >L N (

1

n
)

Therefore (x, z) ∈ Un. Thus, {Un : n ∈ N} is a countable base for a uniformity U
on X. Since for each x ∈ X and each n ∈ N, Un(x) = {y : M(x, y, 1

n ) >L N ( 1n )} =

B(x, 1
n ,

1
n ), we deduce, from lemma 3.2, that the topology induced by U coincides

with τM. Hence, by lemma 3.1 (X, τM) is a metrizable topological space. □
Corollary 3.4. A topological space is metrizable if and only if it admits a compatible
L-fuzzy metric.

Proof. Suppose (X, τ) is a metrizable topological space. Let d be the metric on X
compatible with τ . Since the topologies induced by the L-fuzzy metric Md and d
are the same [7], therefore Md is compatible with τ . The converse follows directly
from theorem 3.3. □
Corollary 3.5. Every separable L-fuzzy metric space is second countable.

Proof. Let (X,M, T ) be a separable L-fuzzy metric space. Then by theorem 3.3,
(X, τM) is a separable metrizable space. So, it is second countable [5]. □

Let us recall that metrizable topological space (X, τ) is completely metrizable if it
admits a complete metric [5]. On the other hand, an L-fuzzy metric space (X,M, T )
is complete if every Cauchy sequence is convergent [18]. If (X,M, T ) is a complete
L-fuzzy metric space, then M is called a complete L-fuzzy metric on X.

Theorem 3.6. Let (X,M, T ) be a complete L-fuzzy metric space. Then (X, τM)
is completely metrizable.

Proof. From theorem 3.3, it follows that {Un : n ∈ N} is a base for the uniformity
U in X compatible with τM where, Un = {(x, y) : M(x, y, 1

n ) >L N ( 1n )} for every
n ∈ N. Then there exists a metric d whose induced uniformity coincides with U . We
want to show that d is complete.
Indeed, given a Cauchy sequence (xn)n∈N in (X, d), we shall prove that (xn)n∈N is a
Cauchy sequence in (X,M, T ). To this end, fix r, t, with r ∈ L\{0L, 1L} and t > 0.
We choose a k ∈ N such that 1

k < t and 1
k <L r. Then there exists n0 ∈ N such that

(xn, xm) ∈ Uk, for every n,m ≥ n0. Consequently for every n,m ≥ n0,
M(xn, xm, t) ≥L M(xn, xm, 1

k ) >L N ( 1k ) >L N (r).
Thus, we have shown that (xn)n∈N is a Cauchy sequence in the complete L-fuzzy
metric space (X,M, T ). So, it is convergent with respect to τM. Hence, d is a
complete metric on X. We conclude that (X, τM) is completely metrizable. □
Definition 3.7 ([4]). An L-fuzzy metric space (X,M, T ) is called precompact if
for each r ∈ L\{0L, 1L} and t > 0, there exists a finite set A of X, such that
X = ∪a∈AB(a, r, t). In this case we say that M is precompact L-fuzzy metric on X.

An L-fuzzy metric is called compact if (X, τM) is a compact topological space.
797
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Lemma 3.8. An L-fuzzy metric space is precompact if and only if every sequence
has a Cauchy subsequence.

Proof. Let (X,M, T ) be a precompact L-fuzzy metric space. Let (xn)n∈N be a
sequence in X. For each m ∈ N there is a finite set Am of X such that X =

∪a∈AmB(a,
1

m
,
1

m
). Hence for m = 1, there exists an a1 ∈ A1 and a subsequence

(x1(n))n∈N of (xn)n∈N such that x1(n) ∈ B(a1, 1, 1). Similarly, there exists an a2 ∈ A2

and a subsequence (x2(n))n∈N of (x1(n))n∈N such that x2(n) ∈ B(a2,
1
2 ,

1
2 ) for every

n ∈ N. Following this process, for m ∈ N, m > 1, there is an am ∈ Am and a
subsequence (xm(n))n∈N of (x(m−1)(n))n∈N such that xm(n) ∈ B(am, 1

m , 1
m ) for every

n ∈ N. Now consider the subsequence (xn(n))n∈N of (xn)n∈N. Given r ∈ L\{0L, 1L}
and t > 0, there exists an n0 ∈ N such that T (N ( 1

n0
),N ( 1

n0
)) >L N (r) and 2

n0
< t.

Then for every k,m ≥ n0, we have,

M(xk(k), xm(m), t) ≥L M(xk(k), xm(m),
2

n0
)

≥L T (M(xk(k), an0 ,
1

n0
),M(xm(m), an0 ,

1

n0
))

>L T (N (
1

n0
),N (

1

n0
)) >L N (r)

Hence (xn(n))n∈N is a Cauchy subsequence of (xn)n∈N in (X,M, T ).
Conversely, suppose that (X,M, T ) is non-precompact L-fuzzy metric space.

Then, there exists r ∈ L\{0L, 1L} and t > 0 such that for each finite subset A
of X, X ̸= ∪a∈AB(a, r, t). Fix x1 ∈ X. There is x2 ∈ X\B(x1, r, t). Moreover there
is x3 ∈ X\∪2

k=1 B(xk, r, t). In this way, we construct a sequence (xn)n∈N of distinct
points in X such that xn+1 /∈ ∪n

k=1B(xk, r, t) for every n ∈ N. Therefore (xn)n∈N
has no Cauchy subsequence. This completes the proof. □
Theorem 3.9. An L-fuzzy metric space (X,M, T ) is separable if and only if (X, τM)
admits a precompact L-fuzzy metric.

Proof. Suppose (X,M, T ) is a separable L-fuzzy metric space. Then by theorem
3.3 and corollary 3.5, (X, τM) is a separable metrizable space. Therefore, τM admits
a compatible precompact metric d [5]. We want to show that, then, the standard
L-fuzzy metric Md induced by d is precompact. Let (xn)n∈N be a sequence in X.
By the precompactness of d, (xn)n∈N has a Cauchy subsequence (xk(n))n∈N in (X, d).

Fix r ∈ L\{0L, 1L} and t > 0 and choose ε such that t
t+ε >L N (r). Then, there

exists n0 ∈ N such that d(xk(n), xk(m)) < ε, for every n,m ≥ n0. Therefore,

Md(xk(n), xk(m), t) >L
t

t+ε >L N (r), for every n,m ≥ n0.

So, (xk(n))n∈N is a Cauchy sequence in the L-fuzzy metric space (X,Md, T ). By
lemma 3.8, (X,Md, T ) is precompact.
Conversely, suppose that (X, τM) admits a compatible precompact L-fuzzy metric
D. Then for each n ∈ N, there exists a finite subset An of X such that X =
∪a∈AnB(a, 1

n ,
1
n ). Put A = ∪∞

n=1An. Then A is countable. We shall show that, A is

dense in X. Let, x ∈ X and B(x, 1
m , 1

m ) be a basic neighborhood of x. Then, there

exists a ∈ Am such that x ∈ B(a, 1
m , 1

m ). Thus, A is dense in X. We conclude that
(X, τM) is separable. □
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Remark 3.10. The question whether the admitted L-fuzzy metric has any relation
with the original L-fuzzy metric remains an open question.

Lemma 3.11. Let (X,M, T ) be a L-fuzzy metric space. If a Cauchy sequence
clusters to a point x ∈ X, then the sequence converges to x.

Proof. Let (xn)n∈N be a Cauchy sequence in (X,M, T ) having a cluster point x ∈ X.
Then there is a subsequence (xk(n))n∈N of (xn)n∈N that converges to x with respect
to τM. Thus, given r, with r ∈ L\{0L, 1L} and t > 0, there exists an n0 ∈ N
such that for each n ≥ n0, M(x, xk(n),

t
2 ) >L N (s), where s ∈ L\{0L} satisfies

T (N (s),N (s)) >L N (r). On the other hand, there is n1 ≥ k(n0) such that for each
n,m ≥ n1, M(xn, xm, t

2 ) >L N (s). Therefore, for each n ≥ n1, we have

M(xn, x, t) ≥L T (M(xn, xk(n),
t

2
),M(xk(n), x,

t

2
))

≥L T (N (s),N (s)) >L N (r).

Hence, we conclude that Cauchy sequence (xn)n∈N converges to x. □

Theorem 3.12. An L-fuzzy metric space (X,M, T ) is compact if and only if it is
precompact and complete.

Proof. Suppose (X,M, T ) is a compact L-fuzzy metric space. Then for each r ∈
L\{0L, 1L} and t > 0, the open cover {B(x, r, t) : x ∈ X} of X has a finite subcover.
Thus X is precompact. On the other hand, every Cauchy sequence (xn)n∈N in
(X,M, T ) has a cluster point y ∈ X. By lemma 3.11 (xn)n∈N converges to y. So,
(X,M, T ) is complete.

Conversely, let (xn)n∈N be a sequence in the precompact and L-complete fuzzy
metric space (X,M, T ). Then, by lemma 3.8 and completeness of (X,M, T ), we get
that (xn)n∈N has a cluster point. Since by theorem 3.3, (X, τM) is metrizable and
every sequentially compact metrizable space is compact, so (X,M, T ) is compact.

□

Definition 3.13. Let A be a subset of an L-fuzzy metric space. Then A is precom-
pact if for each r ∈ L\{0L, 1L} and t > 0, there exists a finite subset S of X such
that A ⊆ ∪a∈SB(a, r, t).

Definition 3.14 ([11]). Let (X,M, T ) be an L-fuzzy metric space and A ⊆ X. The
L-fuzzy diameter of a set A is defined as:

δA = sup
t>0

inf
x,y∈A

sup
ε<t

M(x, y, ε).

If δA = 1L,then we say that the set A is LF -strongly bounded.

Lemma 3.15 ([11]). The set A ⊆ X is LF -strongly bounded if an only if for arbi-
trary negation N (r) with r ∈ L\{0L, 1L} there exists t > 0 such that M(x, y, t) >L

N (r), for all x, y ∈ A.

Theorem 3.16. Every precompact subset A of an L-fuzzy metric space (X,M, T )
is LF -strongly bounded.

Proof. Let A be a precompact subset of X. Fix t > 0 and r ∈ L\{0L, 1L}. Since
A is precompact, there exists a finite subset S of X such that A ⊆ ∪a∈SB(a, r, t).
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Let x, y ∈ A. Then x ∈ B(xi, r, t) and y ∈ B(xj , r, t) for some i, j. Thus, we have
M(x, xi, t) >L N (r) and M(y, xj , t) >L N (r). Now, let

α = {minM(xi, xj , t) : 1 ≤ i, j ≤ n}.

Then α ∈ L\{0L, 1L} and there exists s ∈ L\{0L, 1L} such that T 2(N (r),N (r), α) >L

N (s). Therefore,

M(x, y, 3t) ≥L T 2(M(x, xi, t),M(xi, xj , t),M(xj , y, t))

≥L T 2(N (r),N (r), α) >L N (s)

for all x, y ∈ A. Hence A is LF -strongly bounded. □

Remark 3.17. Every sequentially compact L-fuzzy metric space is precompact.

Definition 3.18. An element ε ∈ L\{0L} is called a covering factor for an open
cover G = {Gi}i∈∧ of an L-fuzzy metric space (X,M, T ) if for every set A in X
with fuzzy diameter δA >L N (ε) is contained in any Gi in G.

Lemma 3.19. Let B(x, r, t) be an open ball of an L-fuzzy metric space (X,M, T )
with r ∈ L\{0L, 1L} and t > 0. Let A be a subset of X such that δA >L N (s), where
s ∈ L\{0L, 1L} satisfying T (N (s),N (s)) >L N (r). If A intersects B(x, s, t

2 ), then
A ⊆ B(x, r, t).

Lemma 3.20. Let (X,M, T ) be an L-fuzzy metric space. If t > 0 and r, s ∈
L\{0L, 1L} such that T (N (s),N (s)) >L N (r), then B(x, s, t

2 ) ⊂ B(x, r, t).

The proofs of the above two results are straight forward, so we omit them. The
following result is a generalized form of Lebesgue’s covering lemma.

Theorem 3.21. In a sequentially compact L-fuzzy metric space with involutive nega-
tion, every open cover has a covering factor.

Proof. Let (X,M, T ) be a sequentially compact L-fuzzy metric space with an involu-
tive negation N and G = {Gα : α ∈

∧
} be an open cover ofX. We assume that there

exists sets in X which are not contained in any Gα; otherwise any ε ∈ L\{0L, 1L}
will work as covering factor and the result is established. Let us call these sets as
“big sets”. Let δ′ be the infimum of negation of fuzzy diameter of these big sets.
There are three possibilities:
If δ′ = 1L; it follows that every set A ⊂ X with N (δA) <L 1L i.e. δA >L 0L is a
subset of Gα for some α ∈

∧
. Hence any element δ is the covering factor.

If δ′ = 0L; we arrive at a contradiction:
Assume δ′ = 0L then, by definition of δ′, for a given n ∈ N there exists a big set
Bn such that N (δBn) <L

1
n which gives δBn >L N ( 1n ). Since, a big set must con-

tain at least two elements, therefore, we get 1L >L δBn >L N ( 1n ). Construct a
sequence (xn)n∈N choosing xn ∈ Bn for n ∈ N. Since X is sequentially compact,
the sequence (xn)n ∈ N has a convergent subsequence converging to some x ∈ X.
As X = ∪α∈

∧Gα, so there is a β ∈
∧

such that x ∈ Gβ . As Gβ is open in
X, therefore, there exists r ∈ L\{0L, 1L} and t > 0 such that B(x, r, t) ⊆ Gβ .
Choose s ∈ L\{0L, 1L} such that T (N (s),N (s)) >L N (r). Then, lemma 3.20 gives
B(x, s, t

2 ) ⊂ B(x, r, t). Consider the open ball B(x, s, t
2 ) centered at x. Since a
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subsequence of (xn)n∈N converges to x, so xn ∈ B(x, s, t
2 ) for infinitely many n. Let

N be one of those values of n such that 1
N <L s which implies that N ( 1

N ) >L N (s)

and xN ∈ B(x, s, t
2 ). But xN ∈ BN and by definition of BN , δBN

>L N ( 1
N ). This

gives δBN
>L N (s). By lemma 3.19 BN ⊆ B(x, r, t) ⊆ Gβ , a contradiction to the

assumption. Thus δ′ ̸= 0L.
The only possibility left out is 0L <L δ′ <L 1L. The element δ = N (δ′) will be the
required covering factor. This completes the proof. □
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