Annals of Fuzzy Mathematics and Informatics Volume 8, No. 5, (November 2014), pp. 739–752

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Common fixed point theorems in FM-spaces for compatible mappings of type (α) and weakly compatible mappings using implicit relations

Mahdi Azhini, Ehsan Mostofian

Received 1 March 2014; Revised 2 April 2014; Accepted 1 May 2014

ABSTRACT. In this article, we define a new implicit relation in fuzzy metric spaces. Then, we obtain two common fixed point theorems for compatible mappings of type (α) and weakly compatible in FM-spaces under this implicit relation.

2010 AMS Classification: 47H10, 54H25

Keywords: FM-space, Compatible mappings of type (α) , Implicit relation, Common fixed points.

Corresponding Author: Mahdi Azhini (m.azhini@srbiau.ac.ir)

1. Introduction

In 1965, L. Zadeh [33] introduced the concept of a fuzzy sets. Many researchers have developed the theory of fuzzy sets and its applications and introduced the notion of fuzzy metric spaces (FM-spaces). For example, we can refer to Kramosil and Michalek [20], George and Veeramani [10], Kaleva and Seikkala [19], Ereeg [8], Deng [7], Fang [9] and etc. Recently, many authors, for example ([1], [6], [12], [16], [17], [21], [22], [23], [28]) proved fixed and common fixed point theorems in fuzzy metric spaces. In 1994, Mishra et al. [24] introduced the notion of compatible mappings in FM-spaces. Cho et al. ([3], [4]) introduced the concept of compatible mappings of types (α) and (β) in FM-spaces (compatible mappings of types (α) and (β) introduced by Jungek et al. [18] and Pathak et al. [27] in metric spaces). Also the notion of weakly compatible mappings in fuzzy metric spaces studied by Singh and Jain [32].

2. Preliminaries

Definition 2.1 ([33]). Suppose X is a nonempty set. A fuzzy set A in X is a function with domain X and values in [0,1].

Definition 2.2 ([29]). A binary operation $*: [0,1] \times [0,1] \longrightarrow [0,1]$ is called a *continuous t-norm (triangular norm)* if the following conditions hold:

- (1) * is associative and commutative;
- (2) a * 1 = a for all $a \in [0, 1]$;
- (3) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0, 1]$;
- (4) * is continuous.

Some typical examples of continuous t-norms are :

 $T_M(a,b) = min(a,b)$, $T_P(a,b) = ab$ and $T_L(a,b) = max(a+b-1,0)$.

Definition 2.3. A FM-space in the sense of Kramosil and Michalek [20] is a 3-tuple (X, M, *) where X is an arbitrary (nonempty) set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$ such that the following properties hold:

```
(FM-1) M(x, y, 0) = 0 \ \forall x, y \in X;
```

(FM-2) $M(x, y, t) = 1 \ \forall t > 0 \ \text{iff } x = y;$

(FM-3) $M(x, y, t) = M(y, x, t) \ \forall x, y \in X \text{ and } t > 0;$

(FM-4) $M(x,y,\cdot):[0,\infty)\longrightarrow [0,1]$ is left continuous for all $x,y\in X$;

(FM-5) $M(x, z, t + s) \ge M(x, y, t) * M(y, z, s) \forall x, y, z \in X, \forall t, s > 0.$

We refer to these spaces as KM-fuzzy metric spaces.

Definition 2.4. A FM-space in the sense of George and Veeramani [10] is a 3-tuple (X, M, *) where X is an arbitrary (nonempty) set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ such that the following conditions are satisfied for all $x, y, z \in X$ and t, s > 0:

(GV-1) M(x, y, t) > 0;

(GV-2) M(x, y, t) = 1 if and only if x = y;

(GV-3) M(x, y, t) = M(y, x, t);

(GV-4) $M(x, y, \cdot) : (0, \infty) \longrightarrow [0, 1]$ is continuous;

(GV-5) $M(x, z, t + s) \ge M(x, y, t) * M(y, z, s)$.

We refer to these spaces as GV-fuzzy metric spaces.

We can see some common fixed point theorems in GV-fuzzy metric spaces by Gopal and Imdad in [11].

Suppose (X, M, *) is a fuzzy metric space. For all t > 0, the open ball B(x, r, t) with center x in X and radius 0 < r < 1 is defined by

$$B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}.$$

Suppose (X, M, *) is a fuzzy metric space and τ_M is the set of all $A \subset X$ with this property : $x \in A$ if and only if there exists t > 0 and 0 < r < 1 such that $B(x, r, t) \subset A$. Then τ_M is a topology on X (induced by the fuzzy metric M). This topology is Hausdorff and first countable. (See [5]).

Example 2.5 ([10]). Let (X,d) be a metric space. Define a*b=ab (or a*b=min(a,b)). For $x,y\in X$ and t>0, put

$$M(x, y, t) = \frac{t}{t + d(x, y)}.$$

Then (X, M, *) is a GV-fuzzy metric space which is called the standard fuzzy metric induced by the metric d.

Example 2.6. [2] Let $X = \mathbb{R}$ and $a * b = T_P(a, b)$ for all $a, b \in [0, 1]$. For all t > 0 and $x, y \in X$, define

$$M(x, y, t) = (e^{\frac{|x-y|}{t}})^{-1}.$$

Then (X, M, *) is a GV-fuzzy metric Space.

Example 2.7 ([2]). Let $X = \mathbb{N}$ and $a * b = T_P(a, b)$ for all $a, b \in [0, 1]$. For all t > 0, define

$$M(x,y,t) = \left\{ \begin{array}{ll} \frac{x}{y} & \text{if } x \leq y \\ \frac{y}{x} & \text{if } y \leq x. \end{array} \right.$$

Then (X, M, *) is a GV-fuzzy metric Space.

Example 2.8 ([14]). Let $f: X \longrightarrow (0, \infty)$ be a one to one function, $g: \mathbb{R}^+ \longrightarrow [0, \infty)$ be an increasing continuous function and $a*b = T_P(a,b)$ for all $a,b \in [0,1]$. For fixed $\alpha, \beta > 0$, define M as

$$M(x, y, t) = \left(\frac{(\min\{f(x), f(y)\})^{\alpha} + g(t)}{(\max\{f(x), f(y)\})^{\alpha} + g(t)}\right)^{\beta},$$

for all $x, y \in X$ and t > 0. Then, (X, M, *) is a FM-space on X.

Example 2.9 ([14]). Let (X, d) be a bounded metric space with d(x, y) < k (for all $x, y \in X$), $g: \mathbb{R}^+ \longrightarrow (k, +\infty)$ is an increasing continuous function and $a*b = T_L(a, b)$ for all $a, b \in [0, 1]$. Define a function M as

$$M(x, y, t) = 1 - \frac{d(x, y)}{a(t)},$$

for all $x, y \in X$ and t > 0. Then, (X, M, *) is a FM-space on X.

Example 2.10 ([14]). Let $g: \mathbb{R}^+ \longrightarrow [0, \infty)$ be a non-decreasing continuous function, $a * b = T_P(a, b)$ for all $a, b \in [0, 1]$ and define function M as

$$M(x, y, t) = e^{(-d(x,y)/g(t))},$$

for all $x, y \in X$ and t > 0. Then, (X, M, *) is a FM-space on X.

For more examples of FM-spaces refer to [2].

Lemma 2.11 ([13]). Let (X, M, *) be a FM-space. Then M(x, y, t) is non-decreasing with respect to t, for all x, y in X.

Definition 2.12 ([13]). Let (X, M, *) be a (KM- or GV-) fuzzy metric space. A sequence $\{x_n\}$ in X is said to be *convergent* to a point $x \in X$ if and only if

$$\lim_{n \to \infty} M(x_n, x, t) = 1$$

for all t > 0.

The sequence $\{x_n\}$ in X is said to be Cauchy if

$$\lim_{n,m \to \infty} M(x_n, x_m, t) = 1.$$

Or, equivalently, if for each $0 < \varepsilon < 1$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that $M(x_n, x_m, t) > 1 - \varepsilon$ for any $n, m \ge n_0$.

The FM-space (X, M, *) is said to be *complete* if every Cauchy sequence in X is convergent.

Lemma 2.13 ([5]). Suppose (X, M, *) is a FM-space. If a sequence $\{x_n\}$ in X satisfies

$$M(x_n, x_{n+1}, t) \ge M(x_0, x_1, k^n t)$$

for all k > 1, $n \in \mathbb{N}$, then the sequence $\{x_n\}$ is a Cauchy sequence.

Definition 2.14 ([24]). Let f and g be self-maps on a FM-space (X, M, *). Then the mappings f and g are said to be *compatible (asymptotically commuting)* if for each t > 0,

$$\lim_{n \to \infty} M(fgx_n, gfx_n, t) = 1,$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = x$$

for some $x \in X$.

Also we can see definition of noncompatible in [11].

Definition 2.15 ([32]). Let f and g be self-maps on a fuzzy metric space (X, M, *). Then the pair (f, g) is said to be weakly compatible if f and g commute at their coincidence point, that is, fx = gx implies that fgx = gfx.

Also Singh et al. and Pant respectively in [31], [26] defined semi-compatible and reciprocal continuous and Mishra et al [25] showed that semi-compatible and reciprocal continuous are equivalent.

Definition 2.16 ([15]). A fuzzy metric space (X, M, *) is said to be *compact* if (X, τ_M) is a compact topological space.

The above definition is equivalent to:

Definition 2.17 ([13]). A fuzzy metric space (X, M, *) is said to be *compact (sequentially compact)* if every sequence in X has a convergent subsequence.

Definition 2.18 ([3]). Let f and g be self-maps on a FM-space (X, M, *). Then the mappings f and g are said to be *compatible of type* (α) if for each t > 0,

$$\lim_{n \to \infty} M(fgx_n, ggx_n, t) = 1, \lim_{n \to \infty} M(gfx_n, ffx_n, t) = 1,$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = x$$

for some $x \in X$.

Definition 2.19 ([4]). Let f and g be self-maps on a FM-space (X, M, *). Then the mappings f and g are said to be compatible of type (β) if, for each t > 0,

$$\lim_{n \to \infty} M(ffx_n, ggx_n, t) = 1$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = x$$

for some $x \in X$.

Remark 2.20 ([29]). If self-maps f and g of a FM-space (X, M, *) are compatible of type (α) or compatible of type (β) then they are weak compatible.

The converse is not true as seen in example below.

Example 2.21 ([29]). Let X = [0, 2] and (X, M, *) be a FM-space. Define a * b =min(a,b), for $a,b \in [0,1]$ and $M(x,y,t) = \frac{t}{t+d(x,y)}$, for t>0 and M(x,y,0) = 0, for $x, y \in X$. Define self-maps f and g on X as follows:

$$fx = 2 \ if \ 0 \le x \le 1 \ and \ gx = 2 \ if \ x = 1;$$

$$fx = \frac{1}{2}x \ if \ 1 < x \le 2 \ and \ gx = \frac{1}{5}(x+3) \ otherwise.$$

Taking $x_n=2-\frac{1}{2n}$ we have f(1)=g(1)=2 and f(2)=g(2)=1. Also fg(1)=gf(1)=1 and fg(2)=gf(2)=2. Thus (f,g) is weak compatible. Again, $fx_n=1-\frac{1}{4n}$ and $gx_n=1-\frac{1}{10n}$. Thus, $fx_n\longrightarrow 1$ and $gx_n\longrightarrow 1$. Also

$$\lim_{n\longrightarrow\infty}M(ffx_n,ggx_n,t)=\lim_{n\longrightarrow\infty}M(2,\frac{2}{5}-\frac{1}{50n},t)=t/(t+\frac{8}{5})<1,$$

 $\forall t > 0$. Hence f and q are not compatible of type (β) .

Now, we give the following example:

Example 2.22. Let X=[0,1] and (X,M,*) be a FM-space. Define a*b=min(a,b), for $a,b\in[0,1]$ and $M(x,y,t)=\frac{t}{t+d(x,y)}$, for t>0 and M(x,y,0)=0, for $x,y\in X$. Define self-maps f and g on X as follows:

$$\forall x \in X; \ fx = qx = 1$$

Taking $x_n = 1 - \frac{1}{n}$ we have,

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = 1$$

Also

$$\lim_{n \to \infty} M(fgx_n, ggx_n, t) = M(1, 1, t) = 1;$$
$$\lim_{n \to \infty} M(gfx_n, ffx_n, t) = M(1, 1, t) = 1$$

 $\forall t > 0$. Hence f and g are compatible of type (α) . Also

$$\lim_{n \to \infty} M(ffx_n, ggx_n, t) = M(1, 1, t) = 1,$$

 $\forall t > 0$. Hence f and g are compatible of type (β) .

Proposition 2.23 ([3]). Let (X, M, *) be a fuzzy metric space with this property: t * t = t for all $t \in [0, 1]$. And f, g be continuous mappings from X into itself. Then f and g are compatible if and only if they are compatible of type (α) .

Proposition 2.24 ([4]). Let (X, M, *) be a fuzzy metric space with this property: t * t = t for all $t \in [0, 1]$. And f, g be continuous mappings from X into itself. Then f and g are compatible if and only if they are compatible of type (β) .

Proposition 2.25 ([4]). Let (X, M, *) be a fuzzy metric space with this property: t * t = t for all $t \in [0, 1]$. And f, g be continuous mappings from X into itself. Then f and g are compatible of type (α) if and only if they are compatible of type (β) .

Definition 2.26 ([5]). Let f and g be self-maps on a FM-space (X, M, *). Then the pair (f, g) is said to be *compatible of type* (I) if, for each t > 0,

$$\lim_{n \to \infty} M(fgx_n, x, t) \le M(gx, x, t)$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = x$$

for some $x \in X$.

Definition 2.27 ([5]). Let f and g be self-maps on a FM-space (X, M, *). Then the pair (f, g) is said to be *compatible of type* (II) if and only if (g, f) is Compatible of type (I).

3. Implicit relation

Suppose Φ denote the set of all functions $E:[0,1]^4 \longrightarrow \mathbb{R}$ such that one of the following conditions is true for all $u,v\in[0,1)$:

 $(A_1) E(v, u, u, v) > 0 \text{ or } E(v, u, v, u) > 0 \text{ implies } u < v \text{ and}$

 $E(v, 1, 1, v) \le 0, E(v, v, 1, 1) \le 0 \text{ and } E(v, 1, v, 1) \le 0.$

 $(A_2) E(v, u, u, v) < 0 \text{ or } E(v, u, v, u) < 0 \text{ implies } u < v \text{ and}$

 $E(v, 1, 1, v) \ge 0, E(v, v, 1, 1) \ge 0 \text{ and } E(v, 1, v, 1) \ge 0.$

 (A_3) $E(v, u, u, v) \ge 0$ or $E(v, u, v, u) \ge 0$ implies u < v and E(v, 1, 1, v) < 0, E(v, v, 1, 1) < 0 and E(v, 1, v, 1) < 0.

 (A_4) $E(v, u, u, v) \le 0$ or $E(v, u, v, u) \le 0$ implies u < v and E(v, 1, 1, v) > 0, E(v, v, 1, 1) > 0 and E(v, 1, v, 1) > 0.

Example 3.1.

$$E_1(t_1, t_2, t_3, t_4) = t_1^3 - t_2 t_3 t_4,$$

$$E_2(t_1, t_2, t_3, t_4) = t_2 t_3 t_4 - t_1^3,$$

$$E_3(t_1, t_2, t_3, t_4) = t_1 - min\{t_2, t_3, t_4\}.$$

It is easy to see that $E_k \in \Phi$ for k = 1, 2, 3.

4. Main results

Theorem 4.1. Let A, B, S and T be self-maps of a complete GV-fuzzy metric space (X, M, *) such that:

- (a) $T(X) \subseteq A(X)$, $S(X) \subseteq B(X)$,
- (b) E(M(Sx, Ty, kt), M(Ax, By, (1-k)t), M(Ax, Sx, (1-k)t), M(By, Ty, kt)) > 0;

for any $x, y \in X$, t > 0, $k \in (0,1)$, $E \in \Phi$ and E satisfies (A_1) [if $E(t_1, t_2, t_3, t_4) < 0, \geq 0$ and ≤ 0 respectively E satisfies A_2, A_3, A_4],

- (c) The mappings A, B, S and T are continuous,
- (d) The pairs (A, S) and (B, T) are compatible of type (α) .

Then A, B, S and T have a unique common fixed point as z in X. Also z is the unique common fixed point of A, S, B and T

Proof. We prove theorem for the case (A_1) . The other cases are similar. Let x_0 be an arbitrary element in X. Since $S(X) \subseteq B(X)$ and $T(X) \subseteq A(X)$, there exist $x_1, x_2 \in X$ such that $Sx_0 = Bx_1$, $Tx_1 = Ax_2$. Inductively, we can make the sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$(4.1) y_{2n} = Sx_{2n} = Bx_{2n+1}, y_{2n+1} = Tx_{2n+1} = Ax_{2n+2}$$

For each n=0,1,2,...

If we set $d_m(t) = M(y_m, y_{m+1}, t)$ for t > 0, then we prove that $\{y_n\}$ is a Cauchy sequence.

Putting $x = x_{2n}, y = x_{2n+1}, k \in (0, \frac{1}{2})$ in (b), we have $0 < E(M(Sx_{2n}, Tx_{2n+1}, kt), M(Ax_{2n}, Bx_{2n+1}, (1-k)t), M(Ax_{2n}, Sx_{2n}, (1-k)t)$, $M(Bx_{2n+1}, Tx_{2n+1}, kt))$ = $E(M(y_{2n}, y_{2n+1}, kt), M(y_{2n-1}, y_{2n}, (1-k)t), M(y_{2n-1}, y_{2n}, (1-k)t), M(y_{2n}, y_{2n+1}, kt))$ = $E(d_{2n}(kt), d_{2n-1}((1-k)t), d_{2n-1}((1-k)t), d_{2n}(kt))$

From (A_1) , we have

$$d_{2n-1}((1-k)t) < d_{2n}(kt).$$

If we set q = 1 - k, then we have

$$(4.2) d_{2n-1}(qt) < d_{2n}(kt).$$

Putting $x = x_{2n+1}, y = x_{2n+2}, k \in (0, \frac{1}{2})$ in (b), we have $0 < E(M(Sx_{2n+1}, Tx_{2n+2}, kt), M(Ax_{2n+1}, Bx_{2n+2}, qt), M(Ax_{2n+1}, Sx_{2n+1}, qt)$, $M(Bx_{2n+2}, Tx_{2n+2}, kt))$ = $E(M(y_{2n+1}, y_{2n+2}, kt), M(y_{2n}, y_{2n+1}, qt), M(y_{2n}, y_{2n+1}, qt), M(y_{2n+1}, y_{2n+2}, kt))$ = $E(d_{2n+1}(kt), d_{2n}(qt), d_{2n}(qt), d_{2n+1}(kt))$ From (A_1) , we have

$$(4.3) d_{2n}(qt) < d_{2n+1}(kt).$$

Then, from (4.2) and (4.3) for each $n \in \mathbb{N}$, we have $d_n(kt) > d_{n-1}(qt)$.

Consequently

 $M(y_n, y_{n+1}, kt) > M(y_{n-1}, y_n, qt).$

That is

 $M(y_n, y_{n+1}, t) > M(y_{n-1}, y_n, \frac{q}{k}t) > \dots > M(y_0, y_1, (\frac{q}{k})^n t).$

Putting $k_1 = \frac{q}{k}$ in the above inequality, we have

 $M(y_n, y_{n+1}, t) > M(y_0, y_1, k_1^n t) (k_1 > 1).$

Hence, by Lemma 2.13, $\{y_n\}$ is a Cauchy sequence. Completeness of X, follows that $\{y_n\}$ converges to a point z in X. Hence we have

$$\lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} Sx_{2n} = \lim_{n \to \infty} Bx_{2n+1} = \lim_{n \to \infty} y_{2n+1}$$

 $=\lim_{n\longrightarrow\infty}Tx_{2n+1}=\lim_{n\longrightarrow\infty}Ax_{2n+2}=z.$ Suppose that $M(Sz,Tz,\frac{t}{2})\neq 1$. Putting $x=Ax_{2n},\ y=Bx_{2n+1},\ k=\frac{1}{2}$ in (b), we have

$$0 < E(M(SAx_{2n}, TBx_{2n+1}, \frac{t}{2}), M(AAx_{2n}, BBx_{2n+1}, \frac{t}{2}), M(AAx_{2n}, BBx_{2n+1}, \frac{t}{2}), M(AAx_{2n}, \frac{t}{2}), M(BBx_{2n+1}, TBx_{2n+1}, \frac{t}{2})).$$

 $SAx_{2n}, \frac{t}{2}$), $M(BBx_{2n+1}, TBx_{2n+1}, \frac{t}{2})$). Since (A, S) is compatible of type (α) , then we have

$$\lim_{n \to \infty} M(SAx_{2n}, AAx_{2n}, t) = 1.$$

Hence

$$\lim_{n \to \infty} AAx_{2n} = \lim_{n \to \infty} SAx_{2n}.$$

Now, since A and S are continuous, then we have

$$(4.5) Az = \lim_{n \to \infty} AAx_{2n} = \lim_{n \to \infty} SAx_{2n} = Sz.$$

Similarly, we have

$$(4.6) Bz = Tz.$$

Letting $n \to \infty$, in (4.4) and (4.5) we have

$$0 < E(M(Sz, Tz, \frac{t}{2}), M(Az, Bz, \frac{t}{2}), 1, 1) = E(M(Sz, Tz, \frac{t}{2}), M(Sz, Tz, \frac{t}{2}), 1, 1)$$

which is a contradiction with (A_1) . Hence, $M(Sz, Tz, \frac{t}{2}) = 1$ and consequently we have Sz = Tz.

So, Az = Bz = Sz = Tz.

Suppose that $M(Sz, z, \frac{t}{2}) \neq 1$. Putting $x = Ax_{2n}$, $y = x_{2n+1}$, $k = \frac{1}{2}$ in (b), we have $0 < E(M(SAx_{2n}, Tx_{2n+1}, \frac{t}{2}), M(AAx_{2n}, Bx_{2n+1}, \frac{t}{2}), M(AAx_{2n}, SAx_{2n}, \frac{t}{2}), M(Bx_{2n+1}, Tx_{2n+1}, \frac{t}{2}))$.

In the above inequality, letting $n \to \infty$, we have

$$0 < E(M(Sz, z, \frac{t}{2}), M(Az, z, \frac{t}{2}), 1, 1) = E(M(Sz, z, \frac{t}{2}), M(Sz, z, \frac{t}{2}), 1, 1)$$

which is a contradiction with (A_1) . Hence $M(Sz, z, \frac{t}{2}) = 1$ and consequently we have Sz = z.

So, we have Az = Bz = Sz = Tz = z.

Now, suppose that $z^{'}$ is another common fixed point of A, B, S and T. Hence $M(z, z^{'}, \frac{t}{2}) \neq 1$. Putting $x = z, y = z^{'}, k = \frac{1}{2}$ in (b), we have

$$0 < E(\tilde{M(Sz, Tz', \frac{t}{2})}, M(Az, Bz', \frac{t}{2}), M(Az, Sz, \frac{t}{2}), M(Bz', Tz', \frac{t}{2}))$$

$$= E(M(z,z',\frac{t}{2}),M(z,z',\frac{t}{2}),M(z,z,\frac{t}{2}),M(z',z',\frac{t}{2})).$$

$$= E(M(z,z',\frac{t}{2}),M(z,z',\frac{t}{2}),1,1).$$

which is a contradiction with (A_1) . Hence $M(z,z',\frac{t}{2})=1$ and consequently z=z', i.e. z is a common fixed point of A,B,S and T. Now, suppose that r is another common fixed point of A and S. Hence $M(r,z,\frac{t}{2})\neq 1$. Putting $x=r,\ y=z,\ k=\frac{1}{2}$ in (b), we have

$$0 < E(M(Sr,Tz,\tfrac{t}{2}),M(Ar,Bz,\tfrac{1}{2}),M(Ar,Sr,\tfrac{t}{2}),M(Bz,Tz,\tfrac{t}{2}))$$

$$= E(M(r,z,\frac{t}{2}),M(r,z,\frac{t}{2}),M(r,r,\frac{t}{2}),M(z,z,\frac{t}{2})).$$

$$= E(M(r, z, \frac{t}{2}), M(r, z, \frac{t}{2}), 1, 1).$$

which is a contradiction with (A_1) . Hence, we have $M(r, z, \frac{t}{2}) = 1$ and consequently, we have r = z.

Therefore, z is the unique common fixed point of A and S. Similarly we can show that z is the unique common fixed point of B and T.

Theorem 4.2. Let A, B, S and T be self-maps of a compact GV-fuzzy metric spaces (X, M, *) such that:

- (a) $T(X) \subseteq A(X)$, $S(X) \subseteq B(X)$,
- (b) E(M(Sx, Ty, t), M(Ax, By, t), M(Ax, Sx, t), M(By, Ty, t)) > 0;

For all $x, y \in X$ such that one of the relations $Ax \neq By$, $Ax \neq Sx$

and $By \neq Ty$ holds and for all t > 0, $E \in \Phi$ and E satisfies (A_1)

- [if $E(t_1, t_2, t_3, t_4) < 0, \geq 0$ and ≤ 0 respectively E satisfies A_2, A_3, A_4],
- (c) The pairs (A, S) and (B, T) are weakly compatible,
- (d) Either A and S are continuous or B and T are continuous.

Then A, B, S and T have a unique common fixed point as z in X. Also z is the unique common fixed point of A and S and of B and T.

Proof. We only prove the case (A_1) . The other cases are similar. At first, we suppose that A and S are continuous. For all t > 0, let

$$(4.7) m = \sup\{M(Ax, Sx, t) : x \in X\}.$$

Since A and S on a compact fuzzy metric space are continuous, there exists u in X such that m = M(Au, Su, t).

Since $S(X) \subseteq B(X)$, there exists $v \in X$ such that

$$(4.8) Su = Bv.$$

Since $T(X) \subseteq A(X)$, there exists $w \in X$ such that

$$(4.9) Tv = Aw.$$

Let A, S, B and T have not any coincidence point in X. Then

 $m = M(Au, Su, t) \neq 1$, $M(Bv, Tv, t) \neq 1$ and $M(Aw, Sw, t) \neq 1$.

Hence, putting x = u and y = v in (b), we have

$$\begin{aligned} 0 &< E(M(Su, Tv, t), M(Au, Bv, t), M(Au, Su, t), M(Bv, Tv, t)) \\ &= E(M(Bv, Tv, t), M(Au, Su, t), M(Au, Su, t), M(Bv, Tv, t)) \\ &= E(M(Bv, Tv, t), m, m, M(Bv, Tv, t)). \end{aligned}$$
 So, from (A_1) , we have

$$(4.10) m < M(Bv, Tv, t).$$

Putting x = w, y = v in (b), we have 0 < E(M(Sw, Tv, t), M(Aw, Bv, t), M(Aw, Sw, t), M(Bv, Tv, t)) = E(M(Sw, Aw, t), M(Tv, Bv, t), M(Aw, Sw, t), M(Bv, Tv, t)) So, from (A_1) , we have

$$(4.11) M(Bv, Tv, t) < M(Aw, Sw, t).$$

Now, from (4.7), (4.10) and (4.11) we have

$$m \ge M(Aw, Sw, t) > M(Bv, Tv, t) > m$$

which is a contradiction. Hence, either A and S or B and T have a coincidence point in X. That is, there exists $a \in X$ such that Aa = Sa or Ba = Ta.

Case (1): Suppose that Aa = Sa. Since $S(X) \subseteq B(X)$, there exists $b \in X$ such that Sa = Bb. Let $M(Bb, Tb, t) \neq 1$. Then, putting x = a, y = b in (b) we have 0 < E(M(Sa, Tb, t), M(Aa, Bb, t), M(Aa, Sa, t), M(Bb, Tb, t))

$$=E(M(Bb,Tb,t),M(Aa,Sa,t),M(Aa,Sa,t),M(Bb,Tb,t))\\$$

= E(M(Bb, Tb, t), 1, 1, M(Bb, Tb, t)),

which is a contradiction with (A_1) . Hence, we have M(Bb, Tb, t) = 1. So, Bb = Tb. Thus

$$(4.12) Aa = Sa = Bb = Tb = z.$$

Now, since the pair (A, S) is weakly compatible we have

$$(4.13) Az = ASa = SAa = Sz.$$

Suppose that $M(Sz,z,t) \neq 1$. Putting x=z, y=b in (b), we have 0 < E(M(Sz,Tb,t),M(Az,Bb,t),M(Az,Sz,t),M(Bb,Tb,t))= E(M(Sz,z,t),M(Sz,z,t),1,1),

which is a contradiction with (A_1) . Hence M(Sz, z, t) = 1 and consequently we have Sz = z. Thus

$$(4.14) Az = Sz = z.$$

Since the pair (B,T) is weakly compatible we have

$$(4.15) Bz = BTb = TBb = Tz.$$

Suppose that $M(z,Tz,t) \neq 1$. Putting x=a, y=z in (b), we have 0 < E(M(Sa,Tz,t),M(Aa,Bz,t),M(Aa,Sa,t),M(Bz,Tz,t))= E(M(z,Tz,t),M(z,Tz,t),1,1), which is a contradiction with (A_1) . Hence M(z, Tz, t) = 1 and consequently we have Tz = z. Thus

$$(4.16) Bz = Tz = z.$$

Hence, from (4.14) and (4.16) we have

Az = Sz = Bz = Tz = z.

That is z is a common fixed point of A, B, S and T.

Case (2): Suppose that Ba = Ta. Since $T(X) \subseteq A(X)$, there exists $b \in X$ such that Ta = Ab. Suppose that $M(Ab, Sb, t) \neq 1$. Then, putting x = b, y = a in (b) we have

$$0 < E(M(Sb, Ta, t), M(Ab, Ba, t), M(Ab, Sb, t), M(Ba, Ta, t))$$

= $E(M(Sb, Ab, t), 1, M(Ab, Sb, t), 1),$

which is a contradiction with (A_1) . Hence, we have M(Ab, Sb, t) = 1. Consequently Ab = Sb. Thus

$$(4.17) Sb = Ab = Ta = Ba = z.$$

Now, since the pair (A, S) is weakly compatible we have

$$(4.18) Az = ASb = SAb = Sz.$$

Suppose that $M(Sz, z, t) \neq 1$. Putting x = z, y = a in (b), we have 0 < E(M(Sz, Ta, t), M(Az, Ba, t), M(Az, Sz, t), M(Ba, Ta, t))= E(M(Sz, z, t), M(Sz, z, t), 1, 1),

which is a contradiction with (A_1) . Hence M(Sz, z, t) = 1 and consequently we have Sz = z. Thus

$$(4.19) Az = Sz = z.$$

Since the pair (B,T) is weakly compatible we have

$$(4.20) Bz = BTa = TBa = Tz.$$

Suppose that $M(z,Tz,t) \neq 1$. Putting x=b, y=z in (b), we have 0 < E(M(Sb,Tz,t),M(Ab,Bz,t),M(Ab,Sb,t),M(Bz,Tz,t))= E(M(z,Tz,t),M(z,Tz,t),1,1),

which is a contradiction with (A_1) . Hence M(z, Tz, t) = 1 and consequently we have Tz = z. Thus

$$(4.21) Bz = Tz = z.$$

Hence, from (4.19) and (4.21) we have

Az = Sz = Bz = Tz = z.

That is z is a common fixed point of A, B, S and T.

Uniqueness: Now suppose that $z^{'}$ is another common fixed point of A, B, S and T. Hence $M(z, z^{'}, t) \neq 1$. Putting $x = z, y = z^{'}$ in (b), we have $0 < E(M(Sz, Tz^{'}, t), M(Az, Bz^{'}, t), M(Az, Sz, t), M(Bz^{'}, Tz^{'}, t)$

$$=E(M(z,z^{'},t),M(z,z^{'},t),M(z,z,t),M(z^{'},z^{'},t)).\\ =E(M(z,z^{'},t),M(z,z^{'},t),1,1),$$

which is a contradiction with (A_1) . Hence M(z, z', t) = 1 and consequently z = z'. That is z is the unique common fixed point of A, B, S and T.

Now, suppose that r is another common fixed point of A and S. Thus $M(r, z, t) \neq 1$. Putting x = r, y = z in (b), we have

$$0 < E(M(Sr, Tz, t), M(Ar, Bz, t), M(Ar, Sr, t), M(Bz, Tz, t))$$

$$= E(M(r, z, t), M(r, z, t), M(r, r, t), M(z, z, t)).$$

$$= E(M(r, z, t), M(r, z, t), 1, 1),$$

which is a contradiction with (A_1) . Hence we have M(r, z, t) = 1 and consequently r = z.

Hence z is the unique common fixed point of A and S. Similarly we can show that z is the unique common fixed point of B and T, and the theorem is true when B and T are continuous.

5. Examples

Example 5.1. Let $X = \mathbb{R}$. For all $a, b \in [0, 1]$, define $a * b = T_P(a, b)$. For any t > 0, define

$$M(x, y, t) = \frac{t}{t + |x - y|}$$

for $x, y \in X$. Define Sx = Tx = 1, $Ax = x^2$ and $Bx = x^3$ for all $x \in X$. In Theorem 3.1, put

$$E(t_1, t_2, t_3, t_4) = t_1^3 - t_2 t_3 t_4.$$

We can show that 1 is the unique common fixed point of A, B, S and T.

Example 5.2. Let X = [0,1]. For all $a,b \in [0,1]$, define $a * b = T_P(a,b)$ (or $a * b = T_M(a,b)$). For all x,y in X and t > 0, define

$$M(x, y, t) = \frac{t}{t + |x - y|}.$$

Define Sx = Tx = 1, $Ax = \frac{3+x}{4}$ and $Bx = \frac{x+9}{10}$ for all $x \in X$. In Theorem 3.1, put $E(t_1, t_2, t_3, t_4) = t_1 - min\{t_2, t_3, t_4\}$.

We can show that 1 is the unique common fixed point of A, B, S and T.

Acknowledgements. The author wish to thank the anonymous reviewers for their valuable suggestions

References

- [1] M. A. Ahmed, Fixed point theorems in fuzzy metric spaces, J. Egyptian Math. Soc. 22(1) (2014) 59–62.
- [2] M. Aphane, On some results of analysis in metric spaces and fuzzy metric spaces, South Africa 2009.
- Y. J. Cho, Fixed Points in fuzzy metric spaces, J. Fuzzy Math. 5 (1997) 949–962.
- [4] Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, Common fixed points of type (β) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998) 99–111.
- [5] Y. J. Cho, S. Sedghi and N. Shobe, Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces, Chaos Solitons Fractals 39 (2009) 2233–2244.

- [6] N. R. Das and M. L. Saha, On fixed points in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 7 (2014) 313–318.
- Z. K. Deng, Fuzzy psende-metric spaces, J. Math. Anal. Appl. 86 (1982) 74–95.
- [8] M. A. Ereeg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979) 338–353.
- [9] J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992) 107–113.
- [10] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994) 395–399.
- [11] D. Gopal and M. Imdad, Some new common fixed point theorems in fuzzy metric spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat. 57(2) (2011) 303–316.
- [12] D. Gopal, M. Imdad and C. Vetro Impact of common property (E.A.) on fixed point theorems in fuzzy metric spaces, Fixed Point Theory Appl. 2011, Art. ID 297360, 14 pp.
- [13] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988) 385–389.
- [14] V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy Sets and Systems 170 (2011) 95–111.
- [15] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems 115 (2000) 485–489.
- [16] M. Imdad and J. Ali, Some common fixed point theorems in fuzzy metric spaces, Math. Commun. 11(2) (2006) 153–163.
- [17] M. Jain, S. Kumar and R. Chugh Coupled fixed point theorems for weak compatible mappings in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 5 (2013) 321–336.
- [18] G. Jungek, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japonica 38 (1993) 381–390.
- [19] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215–229.
- [20] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (Prague) 11(5) (1975) 336–344.
- [21] S. Kumar and S. Chauhan, Common fixed point theorems using implicit relation and property (E.A) in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 5(1) (2013) 107–114.
- [22] S. Manro, S. S. Bhatia and S. Kumar, Common fixed point theorems in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 3 (2012) 151–158.
- [23] S. Manro and A. Tomar, Common fixed point theorems using property (E.A.) and its variants involving quadratic terms, Ann. Fuzzy Math. Inform. 7 (2014) 473–484.
- [24] S. N. Mishra, S. N. Sharma and S. L. Singh, Common fixed point of maps on fuzzy metric spaces, Internat. J. Math. Math. Sci. 17(2) (1994) 253–258.
- [25] U. Mishra, A. S. Ranadive and D. Gopal, Some fixed point theorems in fuzzy metric spaces, Tamkang J. Math. 39 (2008) 309–316.
- [26] R. P. Pant, Common fixed point theorem for contractive maps, J. Math. Anal. Appl. 226 (1998) 251–258.
- [27] H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Le Matematische L (1995) 15–33.
- [28] A. S. Ranadive and A.P. Chouhan, Absorbing maps and fixed point theorems in fuzzy metric spaces using implicit relation, Ann. Fuzzy Math. Inform. 5 (2013) 139–146.
- [29] B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland Amsterdam 1983.
- [30] J. Shobha, Roorkee, J. Shishir, B. J. Lal and Indore, Compatible mappings of type (β) and weak compatibility in fuzzy metric spaces, Math. Bohem. 134(2) (2009) 151–164.
- [31] B. Singh and S. Jain, Semi-compatible and fixed point theorems in fuzzy metric space, Chungcheong Math. Soc. 18 (2005) 1–22.
- [32] B. Singh and S. Jain, Weak compatibility and fixed point theorems in fuzzy metric spaces, Ganita 56(2) (2005) 167–176.
- [33] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

MAHDI AZHINI (m.azhini@srbiau.ac.ir)

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

$\underline{EHSAN\ MOSTOFIAN}\ ({\tt ehsan_wasp2006@yahoo.com})$

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran