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1. Introduction

In 1965, L. Zadeh [33] introduced the concept of a fuzzy sets. Many researchers
have developed the theory of fuzzy sets and its applications and introduced the
notion of fuzzy metric spaces (FM-spaces). For example, we can refer to Kramosil
and Michalek [20], George and Veeramani [10], Kaleva and Seikkala [19], Ereeg [8],
Deng [7], Fang [9] and etc. Recently, many authors, for example ([1], [6], [12], [16],
[17], [21], [22], [23], [28]) proved fixed and common fixed point theorems in fuzzy
metric spaces. In 1994, Mishra et al. [24] introduced the notion of compatible
mappings in FM-spaces. Cho et al. ([3], [4]) introduced the concept of compatible
mappings of types (α) and (β) in FM-spaces (compatible mappings of types (α) and
(β) introduced by Jungek et al. [18] and Pathak et al. [27] in metric spaces). Also
the notion of weakly compatible mappings in fuzzy metric spaces studied by Singh
and Jain [32].
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2. Preliminaries

Definition 2.1 ([33]). Suppose X is a nonempty set. A fuzzy set A in X is a
function with domain X and values in [0, 1].

Definition 2.2 ([29]). A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is called a
continuous t-norm (triangular norm) if the following conditions hold:

(1) ∗ is associative and commutative;
(2) a ∗ 1 = a for all a ∈ [0, 1];
(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1];
(4) ∗ is continuous.

Some typical examples of continuous t-norms are :
TM (a, b) = min(a, b) , TP (a, b) = ab and TL(a, b) = max(a+ b− 1, 0).

Definition 2.3. A FM-space in the sense of Kramosil and Michalek [20] is a 3-tuple
(X,M, ∗) where X is an arbitrary (nonempty) set, ∗ is a continuous t-norm and M
is a fuzzy set on X2 × [0,∞) such that the following properties hold :

(FM-1) M(x, y, 0) = 0 ∀x, y ∈ X;
(FM-2) M(x, y, t) = 1 ∀t > 0 iff x = y;
(FM-3) M(x, y, t) = M(y, x, t) ∀x, y ∈ X and t > 0;
(FM-4) M(x, y, ·) : [0,∞) −→ [0, 1] is left continuous for all x, y ∈ X;
(FM-5) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s) ∀x, y, z ∈ X , ∀t, s > 0.

We refer to these spaces as KM-fuzzy metric spaces.

Definition 2.4. A FM-space in the sense of George and Veeramani [10] is a 3-tuple
(X,M, ∗) where X is an arbitrary (nonempty) set, ∗ is a continuous t-norm and M
is a fuzzy set on X2 × (0,∞) such that the following conditions are satisfied for all
x, y, z ∈ X and t, s > 0:

(GV-1) M(x, y, t) > 0;
(GV-2) M(x, y, t) = 1 if and only if x = y;
(GV-3) M(x, y, t) = M(y, x, t);
(GV-4) M(x, y, ·) : (0,∞) −→ [0, 1] is continuous;
(GV-5) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s).

We refer to these spaces as GV-fuzzy metric spaces.
We can see some common fixed point theorems in GV-fuzzy metric spaces by

Gopal and Imdad in [11].
Suppose (X,M, ∗) is a fuzzy metric space. For all t > 0, the open ball B(x, r, t)

with center x in X and radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

Suppose (X,M, ∗) is a fuzzy metric space and τM is the set of all A ⊂ X with
this property : x ∈ A if and only if there exists t > 0 and 0 < r < 1 such that
B(x, r, t) ⊂ A. Then τM is a topology on X (induced by the fuzzy metric M). This
topology is Hausdorff and first countable. (See [5]).
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Example 2.5 ([10]). Let (X, d) be a metric space. Define a ∗ b = ab (or a ∗ b =
min(a, b)). For x, y ∈ X and t > 0, put

M(x, y, t) =
t

t+ d(x, y)
.

Then (X,M, ∗) is a GV-fuzzy metric space which is called the standard fuzzy metric
induced by the metric d.

Example 2.6. [2] Let X = IR and a ∗ b = TP (a, b) for all a, b ∈ [0, 1]. For all t > 0
and x, y ∈ X, define

M(x, y, t) = (e
|x−y|

t )−1.

Then (X,M, ∗) is a GV-fuzzy metric Space.

Example 2.7 ([2]). Let X = IN and a ∗ b = TP (a, b) for all a, b ∈ [0, 1]. For all
t > 0, define

M(x, y, t) =

{ x
y if x ≤ y
y
x if y ≤ x.

Then (X,M, ∗) is a GV-fuzzy metric Space.

Example 2.8 ([14]). Let f : X −→ (0,∞) be a one to one function, g : IR+ −→
[0,∞) be an increasing continuous function and a ∗ b = TP (a, b) for all a, b ∈ [0, 1] .
For fixed α, β > 0, define M as

M(x, y, t) =

(
(min{f(x), f(y)})α + g(t)

(max{f(x), f(y)})α + g(t)

)β

,

for all x, y ∈ X and t > 0. Then, (X,M, ∗) is a FM-space on X.

Example 2.9 ([14]). Let (X, d) be a bounded metric space with d(x, y) < k (for
all x, y ∈ X), g : IR+ −→ (k,+∞) is an increasing continuous function and a ∗ b =
TL(a, b) for all a, b ∈ [0, 1]. Define a function M as

M(x, y, t) = 1− d(x, y)

g(t)
,

for all x, y ∈ X and t > 0. Then, (X,M, ∗) is a FM-space on X.

Example 2.10 ([14]). Let g : IR+ −→ [0,∞) be a non-decreasing continuous func-
tion, a ∗ b = TP (a, b) for all a, b ∈ [0, 1] and define function M as

M(x, y, t) = e(−d(x,y)/g(t)),

for all x, y ∈ X and t > 0. Then, (X,M, ∗) is a FM-space on X.

For more examples of FM-spaces refer to [2].

Lemma 2.11 ([13]). Let (X,M, ∗) be a FM-space. Then M(x, y, t) is non-decreasing
with respect to t, for all x, y in X.

Definition 2.12 ([13]). Let (X,M, ∗) be a (KM- or GV-) fuzzy metric space. A
sequence {xn} in X is said to be convergent to a point x ∈ X if and only if

lim
n−→∞

M(xn, x, t) = 1

for all t > 0.
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The sequence {xn} in X is said to be Cauchy if

lim
n,m−→∞

M(xn, xm, t) = 1.

Or, equivalently, if for each 0 < ε < 1 and t > 0, there exists n0 ∈ IN such that
M(xn, xm, t) > 1− ε for any n,m ≥ n0.

The FM-space (X,M, ∗) is said to be complete if every Cauchy sequence in X is
convergent.

Lemma 2.13 ([5]). Suppose (X,M, ∗) is a FM-space. If a sequence {xn} in X
satisfies

M(xn, xn+1, t) ≥ M(x0, x1, k
nt)

for all k > 1, n ∈ IN , then the sequence {xn} is a Cauchy sequence.

Definition 2.14 ([24]). Let f and g be self-maps on a FM-space (X,M, ∗). Then
the mappings f and g are said to be compatible (asymptotically commuting) if for
each t > 0,

lim
n−→∞

M(fgxn, gfxn, t) = 1,

whenever {xn} is a sequence in X such that

lim
n−→∞

fxn = lim
n−→∞

gxn = x

for some x ∈ X.
Also we can see definition of noncompatible in [11].

Definition 2.15 ([32]). Let f and g be self-maps on a fuzzy metric space (X,M, ∗).
Then the pair (f, g) is said to be weakly compatible if f and g commute at their
coincidence point, that is, fx = gx implies that fgx = gfx.

Also Singh et al. and Pant respectively in [31] , [26] defined semi-compatible
and reciprocal continuous and Mishra et al [25] showed that semi-compatible and
reciprocal continuous are equivalent.

Definition 2.16 ([15]). A fuzzy metric space (X,M, ∗) is said to be compact if
(X, τM ) is a compact topological space.
The above definition is equivalent to:

Definition 2.17 ([13]). A fuzzy metric space (X,M, ∗) is said to be compact (se-
quentially compact) if every sequence in X has a convergent subsequence.

Definition 2.18 ([3]). Let f and g be self-maps on a FM-space (X,M, ∗). Then
the mappings f and g are said to be compatible of type (α) if for each t > 0,

lim
n−→∞

M(fgxn, ggxn, t) = 1, lim
n−→∞

M(gfxn, ffxn, t) = 1,

whenever {xn} is a sequence in X such that

lim
n−→∞

fxn = lim
n−→∞

gxn = x

for some x ∈ X.
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Definition 2.19 ([4]). Let f and g be self-maps on a FM-space (X,M, ∗). Then
the mappings f and g are said to be compatible of type (β) if, for each t > 0,

lim
n−→∞

M(ffxn, ggxn, t) = 1

whenever {xn} is a sequence in X such that

lim
n−→∞

fxn = lim
n−→∞

gxn = x

for some x ∈ X.

Remark 2.20 ([29]). If self-maps f and g of a FM-space (X,M, ∗) are compatible
of type (α) or compatible of type (β) then they are weak compatible.

The converse is not true as seen in example below.

Example 2.21 ([29]). Let X = [0, 2] and (X,M, ∗) be a FM-space. Define a ∗ b =
min(a, b), for a, b ∈ [0, 1] and M(x, y, t) = t

t+d(x,y) , for t > 0 and M(x, y, 0) = 0, for

x, y ∈ X. Define self-maps f and g on X as follows:

fx = 2 if 0 ≤ x ≤ 1 and gx = 2 if x = 1;

fx =
1

2
x if 1 < x ≤ 2 and gx =

1

5
(x+ 3) otherwise.

Taking xn = 2 − 1
2n we have f(1) = g(1) = 2 and f(2) = g(2) = 1. Also fg(1) =

gf(1) = 1 and fg(2) = gf(2) = 2. Thus (f, g) is weak compatible. Again, fxn =
1− 1

4n and gxn = 1− 1
10n . Thus, fxn −→ 1 and gxn −→ 1. Also

lim
n−→∞

M(ffxn, ggxn, t) = lim
n−→∞

M(2,
2

5
− 1

50n
, t) = t/(t+

8

5
) < 1,

∀t > 0. Hence f and g are not compatible of type (β).

Now, we give the following example :

Example 2.22. Let X = [0, 1] and (X,M, ∗) be a FM-space. Define a ∗ b =
min(a, b), for a, b ∈ [0, 1] and M(x, y, t) = t

t+d(x,y) , for t > 0 and M(x, y, 0) = 0, for

x, y ∈ X. Define self-maps f and g on X as follows:

∀x ∈ X; fx = gx = 1

Taking xn = 1− 1
n we have,

lim
n−→∞

fxn = lim
n−→∞

gxn = 1

Also

lim
n−→∞

M(fgxn, ggxn, t) = M(1, 1, t) = 1;

lim
n−→∞

M(gfxn, ffxn, t) = M(1, 1, t) = 1

∀t > 0. Hence f and g are compatible of type (α). Also

lim
n−→∞

M(ffxn, ggxn, t) = M(1, 1, t) = 1,

∀t > 0. Hence f and g are compatible of type (β).

743



Mahdi Azhini et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 5, 739–752

Proposition 2.23 ([3]). Let (X,M, ∗) be a fuzzy metric space with this property :
t ∗ t = t for all t ∈ [0, 1]. And f, g be continuous mappings from X into itself. Then
f and g are compatible if and only if they are compatible of type (α).

Proposition 2.24 ([4]). Let (X,M, ∗) be a fuzzy metric space with this property :
t ∗ t = t for all t ∈ [0, 1]. And f, g be continuous mappings from X into itself. Then
f and g are compatible if and only if they are compatible of type (β).

Proposition 2.25 ([4]). Let (X,M, ∗) be a fuzzy metric space with this property :
t ∗ t = t for all t ∈ [0, 1]. And f, g be continuous mappings from X into itself. Then
f and g are compatible of type (α) if and only if they are compatible of type (β).

Definition 2.26 ([5]). Let f and g be self-maps on a FM-space (X,M, ∗). Then
the pair (f, g) is said to be compatible of type (I) if, for each t > 0,

lim
n−→∞

M(fgxn, x, t) ≤ M(gx, x, t)

whenever {xn} is a sequence in X such that

lim
n−→∞

fxn = lim
n−→∞

gxn = x

for some x ∈ X.

Definition 2.27 ([5]). Let f and g be self-maps on a FM-space (X,M, ∗). Then
the pair (f, g) is said to be compatible of type (II) if and only if (g, f) is Compatible
of type (I).

3. Implicit relation

Suppose Φ denote the set of all functions E : [0, 1]4 −→ IR such that one of the
following conditions is true for all u, v ∈ [0, 1) :

(A1) E(v, u, u, v) > 0 or E(v, u, v, u) > 0 implies u < v and
E(v, 1, 1, v) ≤ 0, E(v, v, 1, 1) ≤ 0 and E(v, 1, v, 1) ≤ 0.
(A2) E(v, u, u, v) < 0 or E(v, u, v, u) < 0 implies u < v and
E(v, 1, 1, v) ≥ 0, E(v, v, 1, 1) ≥ 0 and E(v, 1, v, 1) ≥ 0.
(A3) E(v, u, u, v) ≥ 0 or E(v, u, v, u) ≥ 0 implies u < v and
E(v, 1, 1, v) < 0, E(v, v, 1, 1) < 0 and E(v, 1, v, 1) < 0.
(A4) E(v, u, u, v) ≤ 0 or E(v, u, v, u) ≤ 0 implies u < v and
E(v, 1, 1, v) > 0, E(v, v, 1, 1) > 0 and E(v, 1, v, 1) > 0.

Example 3.1.

E1(t1, t2, t3, t4) = t31 − t2t3t4,

E2(t1, t2, t3, t4) = t2t3t4 − t31,

E3(t1, t2, t3, t4) = t1 −min{t2, t3, t4}.

It is easy to see that Ek ∈ Φ for k = 1, 2, 3.
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4. Main results

Theorem 4.1. Let A,B, S and T be self-maps of a complete GV-fuzzy metric space
(X,M, ∗) such that:
(a) T (X) ⊆ A(X), S(X) ⊆ B(X),
(b) E(M(Sx, Ty, kt),M(Ax,By, (1− k)t),M(Ax, Sx, (1− k)t),

M(By, Ty, kt)) > 0;
for any x, y ∈ X, t > 0 , k ∈ (0, 1) , E ∈ Φ and E satisfies (A1) [if E(t1, t2, t3, t4) <
0,≥ 0 and ≤ 0 respectively E satisfies A2, A3, A4],
(c) The mappings A,B, S and T are continuous,
(d) The pairs (A,S) and (B, T ) are compatible of type (α).
Then A,B, S and T have a unique common fixed point as z in X. Also z is the
unique common fixed point of A, S, B and T

Proof. We prove theorem for the case (A1). The other cases are similar. Let x0

be an arbitrary element in X. Since S(X) ⊆ B(X) and T (X) ⊆ A(X), there exist
x1, x2 ∈ X such that Sx0 = Bx1 , Tx1 = Ax2. Inductively, we can make the
sequences {xn} and {yn} in X such that

y2n = Sx2n = Bx2n+1, y2n+1 = Tx2n+1 = Ax2n+2(4.1)

For each n=0,1,2,...
If we set dm(t) = M(ym, ym+1, t) for t > 0, then we prove that {yn} is a Cauchy
sequence.
Putting x = x2n, y = x2n+1 , k ∈ (0, 1

2 ) in (b), we have
0 < E(M(Sx2n, Tx2n+1, kt),M(Ax2n, Bx2n+1, (1− k)t),M(Ax2n, Sx2n, (1− k)t)

,M(Bx2n+1, Tx2n+1, kt))
= E(M(y2n, y2n+1, kt),M(y2n−1, y2n, (1− k)t),M(y2n−1, y2n, (1− k)t),
M(y2n, y2n+1, kt))
= E(d2n(kt), d2n−1((1− k)t), d2n−1((1− k)t), d2n(kt))

From (A1), we have

d2n−1((1− k)t) < d2n(kt).

If we set q = 1− k, then we have

d2n−1(qt) < d2n(kt).(4.2)

Putting x = x2n+1, y = x2n+2 , k ∈ (0, 1
2 ) in (b), we have

0 < E(M(Sx2n+1, Tx2n+2, kt),M(Ax2n+1, Bx2n+2, qt),M(Ax2n+1, Sx2n+1, qt)
,M(Bx2n+2, Tx2n+2, kt))
= E(M(y2n+1, y2n+2, kt),M(y2n, y2n+1, qt),M(y2n, y2n+1, qt),M(y2n+1, y2n+2, kt))
= E(d2n+1(kt), d2n(qt), d2n(qt), d2n+1(kt))

From (A1), we have

d2n(qt) < d2n+1(kt).(4.3)

Then, from (4.2) and (4.3) for each n ∈ IN , we have
dn(kt) > dn−1(qt).
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Consequently
M(yn, yn+1, kt) > M(yn−1, yn, qt).
That is
M(yn, yn+1, t) > M(yn−1, yn,

q
k t) > ... > M(y0, y1, (

q
k )

nt).
Putting k1 = q

k in the above inequality, we have
M(yn, yn+1, t) > M(y0, y1, k

n
1 t) (k1 > 1).

Hence, by Lemma 2.13, {yn} is a Cauchy sequence. Completeness of X, follows that
{yn} converges to a point z in X. Hence we have
limn−→∞ y2n = limn−→∞ Sx2n = limn−→∞ Bx2n+1 = limn−→∞ y2n+1

= limn−→∞ Tx2n+1 = limn−→∞ Ax2n+2 = z.
Suppose that M(Sz, Tz, t

2 ) ̸= 1. Putting x = Ax2n, y = Bx2n+1, k = 1
2 in (b), we

have

0 < E(M(SAx2n, TBx2n+1,
t

2
),M(AAx2n, BBx2n+1,

t

2
),M(AAx2n,

SAx2n,
t

2
),M(BBx2n+1, TBx2n+1,

t

2
)).(4.4)

SAx2n,
t
2 ),M(BBx2n+1, TBx2n+1,

t
2 )).

Since (A,S) is compatible of type (α), then we have

lim
n−→∞

M(SAx2n, AAx2n, t) = 1.

Hence

lim
n−→∞

AAx2n = lim
n−→∞

SAx2n.

Now, since A and S are continuous, then we have

Az = lim
n−→∞

AAx2n = lim
n−→∞

SAx2n = Sz.(4.5)

Similarly, we have

Bz = Tz.(4.6)

Letting n → ∞, in (4.4) and (4.5) we have
0 < E(M(Sz, Tz, t

2 ),M(Az,Bz, t
2 ), 1, 1) = E(M(Sz, Tz, t

2 ),M(Sz, Tz, t
2 ), 1, 1)

which is a contradiction with (A1). Hence, M(Sz, Tz, t
2 ) = 1 and consequently we

have Sz = Tz.
So, Az = Bz = Sz = Tz.
Suppose that M(Sz, z, t

2 ) ̸= 1. Putting x = Ax2n, y = x2n+1, k = 1
2 in (b), we have

0 < E(M(SAx2n, Tx2n+1,
t
2 ),M(AAx2n, Bx2n+1,

t
2 ),M(AAx2n, SAx2n,

t
2 ),

M(Bx2n+1, Tx2n+1,
t
2 )).

In the above inequality, letting n → ∞, we have
0 < E(M(Sz, z, t

2 ),M(Az, z, t
2 ), 1, 1) = E(M(Sz, z, t

2 ),M(Sz, z, t
2 ), 1, 1)

which is a contradiction with (A1). Hence M(Sz, z, t
2 ) = 1 and consequently we have

Sz = z.
So, we have Az = Bz = Sz = Tz = z.
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Now, suppose that z
′
is another common fixed point of A,B, S and T. Hence

M(z, z
′
, t
2 ) ̸= 1. Putting x = z, y = z

′
, k = 1

2 in (b), we have

0 < E(M(Sz, Tz
′
, t
2 ),M(Az,Bz

′
, t
2 ),M(Az, Sz, t

2 ),M(Bz
′
, T z

′
, t
2 ))

= E(M(z, z
′
, t
2 ),M(z, z

′
, t
2 ),M(z, z, t

2 ),M(z
′
, z

′
, t
2 )).

= E(M(z, z
′
, t
2 ),M(z, z

′
, t
2 ), 1, 1).

which is a contradiction with (A1). Hence M(z, z
′
, t
2 ) = 1 and consequently z = z

′
,

i.e. z is a common fixed point of A,B, S and T . Now, suppose that r is another
common fixed point of A and S. Hence M(r, z, t

2 ) ̸= 1. Putting x = r, y = z, k = 1
2

in (b), we have
0 < E(M(Sr, Tz, t

2 ),M(Ar,Bz, 1
2 ),M(Ar, Sr, t

2 ),M(Bz, Tz, t
2 ))

= E(M(r, z, t
2 ),M(r, z, t

2 ),M(r, r, t
2 ),M(z, z, t

2 )).

= E(M(r, z, t
2 ),M(r, z, t

2 ), 1, 1).

which is a contradiction with (A1). Hence, we have M(r, z, t
2 ) = 1 and consequently,

we have r = z.
Therefore, z is the unique common fixed point of A and S. Similarly we can show
that z is the unique common fixed point of B and T . □

Theorem 4.2. Let A,B, S and T be self-maps of a compact GV-fuzzy metric spaces
(X,M, ∗) such that:

(a) T (X) ⊆ A(X), S(X) ⊆ B(X),
(b) E(M(Sx, Ty, t),M(Ax,By, t),M(Ax, Sx, t),M(By, Ty, t)) > 0;
For all x, y ∈ X such that one of the relations Ax ̸= By, Ax ̸= Sx
and By ̸= Ty holds and for all t > 0, E ∈ Φ and E satisfies (A1)
[if E(t1, t2, t3, t4) < 0,≥ 0 and ≤ 0 respectively E satisfies A2, A3, A4],
(c) The pairs (A,S) and (B, T ) are weakly compatible,
(d) Either A and S are continuous or B and T are continuous.

Then A,B, S and T have a unique common fixed point as z in X. Also z is the
unique common fixed point of A and S and of B and T .

Proof. We only prove the case (A1).The other cases are similar. At first, we suppose
that A and S are continuous. For all t > 0, let

m = sup{M(Ax, Sx, t) : x ∈ X}.(4.7)

Since A and S on a compact fuzzy metric space are continuous, there exists u in X
such that m = M(Au, Su, t).
Since S(X) ⊆ B(X), there exists v ∈ X such that

Su = Bv.(4.8)

Since T (X) ⊆ A(X), there exists w ∈ X such that

Tv = Aw.(4.9)

Let A, S, B and T have not any coincidence point in X. Then
m = M(Au, Su, t) ̸= 1, M(Bv, Tv, t) ̸= 1 and M(Aw,Sw, t) ̸= 1.

Hence, putting x = u and y = v in (b), we have
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0 < E(M(Su, Tv, t),M(Au,Bv, t),M(Au, Su, t),M(Bv, Tv, t))
= E(M(Bv, Tv, t),M(Au, Su, t),M(Au, Su, t),M(Bv, Tv, t))
= E(M(Bv, Tv, t),m,m,M(Bv, Tv, t)).

So, from (A1), we have

m < M(Bv, Tv, t).(4.10)

Putting x = w, y = v in (b), we have
0 < E(M(Sw, Tv, t),M(Aw,Bv, t),M(Aw,Sw, t),M(Bv, Tv, t))

= E(M(Sw,Aw, t),M(Tv,Bv, t),M(Aw,Sw, t),M(Bv, Tv, t))
So, from (A1), we have

M(Bv, Tv, t) < M(Aw,Sw, t).(4.11)

Now, from (4.7), (4.10) and (4.11) we have

m ≥ M(Aw,Sw, t) > M(Bv, Tv, t) > m,

which is a contradiction. Hence, either A and S or B and T have a coincidence point
in X. That is, there exists a ∈ X such that Aa = Sa or Ba = Ta.
Case (1): Suppose that Aa = Sa. Since S(X) ⊆ B(X), there exists b ∈ X such
that Sa = Bb. Let M(Bb, Tb, t) ̸= 1. Then, putting x = a , y = b in (b) we have
0 < E(M(Sa, Tb, t),M(Aa,Bb, t),M(Aa, Sa, t),M(Bb, Tb, t))

= E(M(Bb, Tb, t),M(Aa, Sa, t),M(Aa, Sa, t),M(Bb, Tb, t))
= E(M(Bb, Tb, t), 1, 1,M(Bb, Tb, t)),

which is a contradiction with (A1). Hence, we have M(Bb, Tb, t) = 1. So, Bb = Tb.
Thus

Aa = Sa = Bb = Tb = z.(4.12)

Now, since the pair (A,S) is weakly compatible we have

Az = ASa = SAa = Sz.(4.13)

Suppose that M(Sz, z, t) ̸= 1. Putting x = z , y = b in (b), we have
0 < E(M(Sz, T b, t),M(Az,Bb, t),M(Az, Sz, t),M(Bb, Tb, t))

= E(M(Sz, z, t),M(Sz, z, t), 1, 1),
which is a contradiction with (A1). Hence M(Sz, z, t) = 1 and consequently we have
Sz = z. Thus

Az = Sz = z.(4.14)

Since the pair (B, T ) is weakly compatible we have

Bz = BTb = TBb = Tz.(4.15)

Suppose that M(z, Tz, t) ̸= 1. Putting x = a , y = z in (b), we have
0 < E(M(Sa, Tz, t),M(Aa,Bz, t),M(Aa, Sa, t),M(Bz, Tz, t))

= E(M(z, Tz, t),M(z, Tz, t), 1, 1),
748



Mahdi Azhini et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 5, 739–752

which is a contradiction with (A1). Hence M(z, Tz, t) = 1 and consequently we have
Tz = z. Thus

Bz = Tz = z.(4.16)

Hence, from (4.14) and (4.16) we have
Az = Sz = Bz = Tz = z.
That is z is a common fixed point of A,B, S and T .
Case (2): Suppose that Ba = Ta. Since T (X) ⊆ A(X), there exists b ∈ X such
that Ta = Ab. Suppose that M(Ab, Sb, t) ̸= 1. Then, putting x = b , y = a in (b)
we have
0 < E(M(Sb, Ta, t),M(Ab,Ba, t),M(Ab, Sb, t),M(Ba, Ta, t))

= E(M(Sb,Ab, t), 1,M(Ab, Sb, t), 1),
which is a contradiction with (A1). Hence, we have M(Ab, Sb, t) = 1. Consequently
Ab = Sb. Thus

Sb = Ab = Ta = Ba = z.(4.17)

Now, since the pair (A,S) is weakly compatible we have

Az = ASb = SAb = Sz.(4.18)

Suppose that M(Sz, z, t) ̸= 1. Putting x = z , y = a in (b), we have
0 < E(M(Sz, Ta, t),M(Az,Ba, t),M(Az, Sz, t),M(Ba, Ta, t))

= E(M(Sz, z, t),M(Sz, z, t), 1, 1),
which is a contradiction with (A1). Hence M(Sz, z, t) = 1 and consequently we have
Sz = z. Thus

Az = Sz = z.(4.19)

Since the pair (B, T ) is weakly compatible we have

Bz = BTa = TBa = Tz.(4.20)

Suppose that M(z, Tz, t) ̸= 1. Putting x = b , y = z in (b), we have
0 < E(M(Sb, Tz, t),M(Ab,Bz, t),M(Ab, Sb, t),M(Bz, Tz, t))

= E(M(z, Tz, t),M(z, Tz, t), 1, 1),
which is a contradiction with (A1). Hence M(z, Tz, t) = 1 and consequently we have
Tz = z. Thus

Bz = Tz = z.(4.21)

Hence, from (4.19) and (4.21) we have
Az = Sz = Bz = Tz = z.
That is z is a common fixed point of A,B, S and T .
Uniqueness: Now suppose that z

′
is another common fixed point of A,B, S and

T. Hence M(z, z
′
, t) ̸= 1. Putting x = z, y = z

′
in (b), we have

0 < E(M(Sz, Tz
′
, t),M(Az,Bz

′
, t),M(Az, Sz, t),M(Bz

′
, T z

′
, t)
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= E(M(z, z
′
, t),M(z, z

′
, t),M(z, z, t),M(z

′
, z

′
, t)).

= E(M(z, z
′
, t),M(z, z

′
, t), 1, 1),

which is a contradiction with (A1). Hence M(z, z
′
, t) = 1 and consequently z = z

′
.

That is z is the unique common fixed point of A,B, S and T .
Now, suppose that r is another common fixed point of A and S. Thus M(r, z, t) ̸= 1.
Putting x = r, y = z in (b), we have
0 < E(M(Sr, Tz, t),M(Ar,Bz, t),M(Ar, Sr, t),M(Bz, Tz, t)

= E(M(r, z, t),M(r, z, t),M(r, r, t),M(z, z, t)).
= E(M(r, z, t),M(r, z, t), 1, 1),

which is a contradiction with (A1). Hence we have M(r, z, t) = 1 and consequently
r = z.
Hence z is the unique common fixed point of A and S. Similarly we can show that
z is the unique common fixed point of B and T , and the theorem is true when B
and T are continuous. □

5. Examples

Example 5.1. Let X = IR. For all a, b ∈ [0, 1], define a ∗ b = TP (a, b). For any
t > 0, define

M(x, y, t) =
t

t+ |x− y|
for x, y ∈ X. Define Sx = Tx = 1, Ax = x2 and Bx = x3 for all x ∈ X. In Theorem
3.1, put

E(t1, t2, t3, t4) = t31 − t2t3t4.

We can show that 1 is the unique common fixed point of A,B, S and T .

Example 5.2. Let X = [0, 1]. For all a, b ∈ [0, 1], define a ∗ b = TP (a, b) (or
a ∗ b = TM (a, b)). For all x, y in X and t > 0, define

M(x, y, t) =
t

t+ |x− y|
.

Define Sx = Tx = 1, Ax = 3+x
4 and Bx = x+9

10 for all x ∈ X. In Theorem 3.1, put

E(t1, t2, t3, t4) = t1 −min{t2, t3, t4}.
We can show that 1 is the unique common fixed point of A,B, S and T .

Acknowledgements. The author wish to thank the anonymous reviewers for
their valuable suggestions

References

[1] M. A. Ahmed, Fixed point theorems in fuzzy metric spaces, J. Egyptian Math. Soc. 22(1)
(2014) 59–62.

[2] M. Aphane, On some results of analysis in metric spaces and fuzzy metric spaces, South

Africa 2009.
[3] Y. J. Cho, Fixed Points in fuzzy metric spaces, J. Fuzzy Math. 5 (1997) 949–962.
[4] Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, Common fixed points of type (β) on

fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998) 99–111.
[5] Y. J. Cho, S. Sedghi and N. Shobe, Generalized fixed point theorems for compatible mappings

with some types in fuzzy metric spaces, Chaos Solitons Fractals 39 (2009) 2233–2244.

750



Mahdi Azhini et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 5, 739–752

[6] N. R. Das and M. L. Saha, On fixed points in fuzzy metric spaces, Ann. Fuzzy Math. Inform.
7 (2014) 313–318.

[7] Z. K. Deng, Fuzzy psende-metric spaces, J. Math. Anal. Appl. 86 (1982) 74–95.

[8] M. A. Ereeg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979) 338–353.
[9] J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992)

107–113.
[10] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems

64 (1994) 395–399.
[11] D. Gopal and M. Imdad, Some new common fixed point theorems in fuzzy metric spaces,

Ann. Univ. Ferrara Sez. VII Sci. Mat. 57(2) (2011) 303–316.
[12] D. Gopal, M. Imdad and C. Vetro Impact of common property (E.A.) on fixed point theorems

in fuzzy metric spaces, Fixed Point Theory Appl. 2011, Art. ID 297360, 14 pp.
[13] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988) 385–389.
[14] V. Gregori, S. Morillas and A. Sapena, Examples of fuzzy metrics and applications, Fuzzy

Sets and Systems 170 (2011) 95–111.

[15] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems
115 (2000) 485–489.

[16] M. Imdad and J. Ali, Some common fixed point theorems in fuzzy metric spaces, Math.

Commun. 11(2) (2006) 153–163.
[17] M. Jain, S. Kumar and R. Chugh Coupled fixed point theorems for weak compatible mappings

in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 5 (2013) 321–336.
[18] G. Jungek, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed

points, Math. Japonica 38 (1993) 381–390.
[19] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215–229.
[20] O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (Prague)

11(5) (1975) 336–344.

[21] S. Kumar and S. Chauhan, Common fixed point theorems using implicit relation and property
(E.A) in fuzzy metric spaces, Ann. Fuzzy Math. Inform. 5(1) (2013) 107–114.

[22] S. Manro, S. S. Bhatia and S. Kumar, Common fixed point theorems in fuzzy metric spaces,
Ann. Fuzzy Math. Inform. 3 (2012) 151–158.

[23] S. Manro and A. Tomar, Common fixed point theorems using property (E.A.) and its variants
involving quadratic terms, Ann. Fuzzy Math. Inform. 7 (2014) 473–484.

[24] S. N. Mishra, S. N. Sharma and S. L. Singh, Common fixed point of maps on fuzzy metric
spaces, Internat. J. Math. Math. Sci. 17(2) (1994) 253–258.

[25] U. Mishra, A. S. Ranadive and D. Gopal, Some fixed point theorems in fuzzy metric spaces,
Tamkang J. Math. 39 (2008) 309–316.

[26] R. P. Pant, Common fixed point theorem for contractive maps, J. Math. Anal. Appl. 226

(1998) 251–258.
[27] H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed point theorems for compatible

mappings of type (P ) and applications to dynamic programming, Le Matematische L (1995)
15–33.

[28] A. S. Ranadive and A.P. Chouhan, Absorbing maps and fixed point theorems in fuzzy metric
spaces using implicit relation, Ann. Fuzzy Math. Inform. 5 (2013) 139–146.

[29] B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland Amsterdam 1983.
[30] J. Shobha, Roorkee, J. Shishir, B. J. Lal and Indore, Compatible mappings of type (β) and

weak compatibility in fuzzy metric spaces, Math. Bohem. 134(2) (2009) 151–164.
[31] B. Singh and S. Jain, Semi-compatible and fixed point theorems in fuzzy metric space,

Chungcheong Math. Soc. 18 (2005) 1–22.
[32] B. Singh and S. Jain, Weak compatibility and fixed point theorems in fuzzy metric spaces,

Ganita 56(2) (2005) 167–176.
[33] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

Mahdi Azhini (m.azhini@srbiau.ac.ir)
Department of Mathematics, Science and Research Branch, Islamic Azad University,
Tehran, Iran

751



Mahdi Azhini et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 5, 739–752

Ehsan Mostofian (ehsan wasp2006@yahoo.com)
Department of Mathematics, Science and Research Branch, Islamic Azad University,
Tehran, Iran

752


	 Common fixed point theorems in FM-spaces for compatible mappings of type () and weakly compatible mappings using implicit relations . By 

