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1. Introduction

We live in the world of uncertainties where the most of the problems which we
deal are vague rather than precise. Even the language used in our daily life situations
is usually full of imprecise phrases. During past decades, different mathematical the-
ories such as probability theory, fuzzy set theory [25], and rough set theory [16] were
introduced to deal with various types of uncertainties. A wide range of problems
can be solved by these methods although they cannot be applied effectively to model
imprecise information related to some parameters.
Due to lack of parameterization tools in all previous theories, Molodtsove[14] intro-
duced the concept of soft set in 1999. This concept can be seen as an approximation
description of some objects based on some parameters by a given set-valued map.
Furthermore, Molodtsove[14] pointed out that theory of soft set is more general than
the former theories dealing with uncertainty. He also mentioned several directions
for soft set’s application such as smoothness of functions, game theory, operations
research and so on. Since then, works on soft set theory have progressed rapidly.
In 2000, Maji et al.[10] published the first research paper on soft set theory and
expanded the theory of soft set fundamentally. They extended some basic concepts
from classical set theory to the soft set theory, and then in [11] discussed practical
application of soft sets in decision-making problems. In [2], Aktaş and Çaǧman ap-
plied the concept of soft set to introduce the new notion soft group. In [6], Irfan
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Ali et al. developed the soft set theory and introduced some new operations for
it. Shabir and Naz[22], defined the concept of soft topology and studied some basic
topological properties of soft spaces. For more details about soft set theory and soft
topology see [7, 4, 21, 5].
But dealing with imprecise and vague information in real life problems encouraged
researchers to consider soft set theory in a fuzzy environment. In [12], Maji et
al. combined the concepts of fuzzy set and soft set and introduced a new hybrid
concept called fuzzy soft set. Later in [18], they applied fuzzy soft set to solve a
decision making problem. Kharal and Ahmad[1] also studied some properties of
fuzzy soft set and extended some operations in classical set theory to fuzzy soft set
theory. Then in [8], they introduced the concept of fuzzy soft map and studied the
concept of image and pre-image of a fuzzy soft set. Majumdar and Samanta[13]
generalised the concept of fuzzy soft set by attaching the degree of possibility of
the relationship between each object and parameter. Topological studies of fuzzy
soft sets was begun by Tanya and Kandemir[24]. They applied classical definition of
topology to construct a topology over a fuzzy soft set and called this new topological
space fuzzy soft topology. Furthermore, they studied some fundamental topological
structures such as interior, closure, and base for the fuzzy soft topology. Later Sim-
sekler and Yuksel[23] studied fuzzy soft topological space in the sense of Tanay and
Kandemir[24]. But they defined the concept of fuzzy soft topology over a fuzzy soft
set with a fixed parameter set and considered some topological concepts such as base,
subbase, neighborhood, and Q-neighborhood for fuzzy soft topological spaces. Roy
and Samanta[19] remarked a new definition of fuzzy soft topology. They proposed
the notion of fuzzy soft topology over an ordinary set by applying fuzzy soft subsets
of it where parameter set is supposed fixed everywhere. Then in [20], they continued
study on fuzzy soft topology and defined the concept of fuzzy soft point and different
neighborhood structures of a fuzzy soft point. The concept of soft quasi-coincidence
for fuzzy soft sets was considered by Atmaca and Zorlutuna[3]. They also studied
the fundamental topological notions such as interior and closure for a fuzzy soft sets
by applying this new concept. Recently, Zahedi et al.[26] introduced the concept of
product fuzzy soft topology and studied some of its properties. They also considered
the Hausdorff property of finite product of fuzzy soft Hausdorff spaces. Osmanoglu
and Tokat [15] introduced fuzzy soft compactness and some basic definitions and
theorems by using basic properties of fuzzy soft topology. Li and Cui [9] discussed
topologies on intuitionistic fuzzy soft sets.
Although different topological structures of a fuzzy soft space have been studied,
the concept of boundary of a fuzzy soft set has received less attention. In ordinary
topology the boundary of a set is considered as an exact set. But in real-world
experiences, where we mostly deal with qualitative explanation of phenomena, we
cannot determine the boundary of a set exactly. In fact, the boundary of a set is
mostly a vague area instead of accurate line. So we need to consider the concept of
boundary in a fuzzy soft space where we cannot judge exactly which points belong
to the boundary zone. To obtain this aim, the present paper is organized as the
following. Firstly in section 2, we recall some definitions and properties of fuzzy soft
set theory which are used along this work. Then in section 3 the concepts of fuzzy
soft interior, fuzzy soft closure, and fuzzy soft continuity are studied in the fuzzy
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soft topological spaces. Finally in section 4, the concept of fuzzy soft boundary is
introduced and some of its properties are studied.

2. Preliminaries

Let X and E are used to show the set of objects and parameters, respectively.
Let A ⊆ E, and IX , where I = [0, 1], denotes the set of all fuzzy subsets of X.

Definition 2.1 ([14]). A pair (F,A) is called a soft set over X if F is a mapping
given by F : A → 2X such that for all a ∈ A, F (a) ⊆ X.

Definition 2.2 ([12]). A pair (f,A) is called a fuzzy soft set overX if f is a mapping
given by f : A → IX . So ∀a ∈ A, f(a) is a fuzzy subset of X with membership
function f(a) := fa : X → [0, 1].

We denote the fuzzy soft set (f,A) by fA and abbreviate the terminology ”fuzzy
soft set” by F.S-set. Moreover, we call the F.S-set fA as a crisp F.S-set if ∀a ∈ A,
the value set of f(a) is a subset of {0, 1}. The soft set (F,A) can be seen as the F.S-
set (χF , A) where χF refers to the characteristic function of set F (a). In addition,
during this paper we use the notation F .S(X,E) to show the set of all F.S-sets over
X with regard to the parameter set E.

Definition 2.3 ([12, 24]). (Rules of fuzzy soft set) For two F.S-sets fA and gB over
the common universe X where A,B ⊆ E we have,

i. fA is a F.S-subset of gB (or gB is a F.S-superset of fA) shown by fA≤̃gB (or
gB≥̃fA) if:
(a) A ⊆ B,
(b) for all a in A, fa(x) ≤ ga(x), ∀x ∈ X.

ii. fA = gB if fA≤̃gB and gB≤̃fA.
iii. The complement of F.S-set fA is denoted by f c

A and given by the mapping
f c : A → IX such that f c

a = 1− fa, ∀a ∈ A.
iv. fA = ΦA (null F.S-set with respect to A) if ∀a ∈ A, fa(x) = 0 for all x ∈ X.

v. fA = X̃A (absolute F.S-set with respect to A) if ∀a ∈ A, fa(x) = 1 for all

x ∈ X. If A = E, the null and absolute fuzzy soft set is denoted by Φ and X̃,
respectively.

vi. The union of fA and gB , denoted by fA∨̃gB , is a F.S-set overX with membership
function (f ∨ g)(c) where

(f ∨ g)c(x) =

 fc(x) if c ∈ A−B
gc(x) if c ∈ B −A
max{fc(x), gc(x)} if c ∈ A ∩B

for all x ∈ X and c ∈ A ∪B.
vii. The intersection of fA and gB , denoted by fA∧̃gB , is a F.S-set over X with

membership function (f ∧ g)(c) where (f ∧ g)c(x) = min{fc(x), gc(x)} for all
x ∈ X and e ∈ A ∩B.

viii. ”fA AND gB” is a F.S-set over X and is defined by hA×B where A × B is the
cartesian product of parameter sets A and B, and h is the map h : A×B → IX

such that for all x ∈ X, a ∈ A, and b ∈ B, we have h(a,b)(x) = min{fa(x), gb(x)}.
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ix. ”fA OR gB” is a F.S-set over X defined by kA×B where k is the map k :
A × B → IX such that for all x ∈ X, a ∈ A, and b ∈ B, we have k(a,b)(x) =
max{fa(x), gb(x)}.

Regarding to vii, the intersection of two F.S-sets fA and gB is defined if the
parameter sets of them meet each other. To avoid of such a difficulty, in [17] the
concept of extended intersection of two F.S-sets has been considered.

Proposition 2.4 ([1]). If fA, gB, and hC are some F.S-sets over X where A,B,
and C are subsets of the parameter set E, then

(1) [fA∨̃gB ]∧̃hC = [fA∧̃hC ]∨̃[gB∧̃hC ],
(2) [fA∧̃gB ]∨̃hC = [fA∨̃hC ]∧̃[gB∨̃hC ].

Proposition 2.5 ([26]). If fE and gE are two F.S-sets over X, then

(1) [fE∨̃gE ]c = f c
E∧̃gcE,

(2) [fE∧̃gE ]c = f c
E∨̃gcE.

Definition 2.6 ([8]). Let X1 and X2 be universal sets and E1 and E2 be corre-
sponding parameter sets. Suppose that fA is a F.S-set over X1 and gB is a F.S-set
over X2 where A ⊆ E1 and B ⊆ E2. If ΨU : X1 → X2 and ΨP : E1 → E2 are
ordinary functions where U refers to universal set and P refers to parameter set,
then

i. The map Ψ : F .S(X1, E1) → F .S(X2, E2) is called a F.S-map from X1 to X2

and for any y ∈ X2 and e′ ∈ P (E1) ⊆ E2, the image of fA under Ψ is the F.S-set
Ψ(fA) over X2 defined as below:

[Ψ(f)](e′)(y) = sup
x∈ΨU

−1(y)

[
sup

e∈ΨP
−1(e′)∩A

f(e)

]
(x)

if ΨP
−1(e′) ∩A ̸= ∅ and ΨU

−1(y) ̸= ∅, otherwise [Ψ(f)](e′)(y) = 0.
ii. Let Ψ : F .S(X1, E1) → F .S(X2, E2) be a F.S-map from X1 to X2. Then the

inverse image of F.S-set gB under Ψ, denoting by Ψ−1(gB), is a F.S-set over X1.
For all x ∈ X1 and e ∈ E1 it is defined as below:

[Ψ−1(g)](e)(x) =

{
gΨP (e)(ΨU (x)) if ΨP (e) ∈ B
0 otherwise.

We also show the F.S-map Ψ by the ordered pair (ΨP ,ΨU ) of ordinary maps ΨU

and ΨP .

Proposition 2.7 ([8]). Let Ψ : F .S(X1, E1) → F .S(X2, E2) be a F.S-map as in-
troduced in Definition 2.6. Let {fiA}i∈I and {giB}i∈I are two families of F.S-sets
in X1 and X2, respectively. Then

(1) Ψ(ΦE1) = ΦE2 and Ψ−1(ΦE2) = ΦE1 .

(2) Ψ(X̃1)≤̃X̃2 and Ψ−1(X̃2) = X̃1.

(3) Ψ[
∨̃

ifiA] =
∨̃

iΨ(fiA) and Ψ−1[
∨̃

igiB ] =
∨̃

iΨ
−1(giB).

(4) Ψ[
∧̃

ifiA]≤̃
∧̃

iΨ(fiA) and Ψ−1[
∧̃

igiB ] =
∧̃

iΨ
−1(giB).

(5) For each i ∈ I, [Ψ(fiA)]
c≤̃Ψ(fi

c
A) and [Ψ−1(giB)]

c = Ψ−1(gi
c
B).
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(6) For any i, j ∈ I, if fiA≤̃fjA, then Ψ(fiA)≤̃Ψ(fjA) and if giB≤̃gjB, then

Ψ−1(giB)≤̃Ψ−1(gjB).

Definition 2.8 ([26]). Let fE1 ∈ F .S(X1, E1) and gE2 ∈ F .S(X2, E2) be two F.S-
sets over X1 and X2, respectively. The ”cartesian product” of fE1 and gE2 , denoted
by fE1⊗̃gE2 , is a F.S-set over X1 ×X2 defined as below:

f⊗̃g : E1 × E2 −→ IX1 × IX2

(e, e′) 7→ f(e)× g(e′)

such that f(e)× g(e′) is the fuzzy product of fuzzy sets f(e) and g(e′) where

f(e)× g(e′) : X1 ×X2 −→ [0, 1]

(x, y) 7→ min{fe(x), ge′(y)}

Proposition 2.9 ([26]). Let fE1 , f1E1
, and f2E1

∈ F .S(X1, E1); and gE2 , g1E2
, and

g2E2
∈ F .S(X2, E2). Then

(1) X̃1⊗̃X̃2 = ˜X1 ×X2.
(2) fE1⊗̃ΦE2 = ΦE1⊗̃gE2 = ΦE1×E2 = ΦE1⊗̃ΦE2 .

(3) ∀e ∈ E1,∀e′ ∈ E2, (f⊗̃X̃2)(e,e′)(x, y) = fe(x) , (X̃1⊗̃g)(e,e′) = ge′(y), where
x ∈ X1 and y ∈ X2.

(4) [f1E1
∧̃f2E1

]⊗̃[g1E2
∧̃g2E2

] = [f1E1
⊗̃g1E2

]∧̃[f2E1
⊗̃g2E2

].

Specially we have fE1⊗̃gE2 = [fE1⊗̃X̃2]∧̃[X̃1⊗̃gE2 ].

3. Fuzzy soft topology

The concept of fuzzy soft topology firstly introduced by Tanay and Kandemir[24].
They defined the concept of fuzzy soft topology as a topology over the given fuzzy
soft set fA. So a fuzzy soft topology in the sense of Tanay and Kandemir[24] is
the collection τ of F.S-subsets of fA closed under arbitrary supremum and finite
infimum. It also contains ΦA and X̃A. But Roy and Samanta[19] redefined the
concept of fuzzy soft topology. The most significant reason for such a change is to
make sure that the DeMorgan Laws hold in the new definition of fuzzy soft topology.
Here we recall the definition of fuzzy soft topology as introduced in [19].

Definition 3.1 ([19]). A fuzzy soft topology over X denoted by τ , is a collection of
fuzzy soft subsets of X such that:

i. X̃ and Φ ∈ τ .
ii. The union of any number of F.S-sets in τ belongs to τ .
iii. The intersection of any two F.S-sets in τ belongs to τ .

The triplet (X,E, τ) is called a fuzzy soft topological space, F.S-topological space
in brief, and each element of τ is called a fuzzy soft open set, F.S-open set in brief,
in X. The complement of a F.S-open set is called a F.S-closed set. We show the
collection of all F.S-closed sets in X by τ c.

Theorem 3.2. Let (X,E, τ) be a F.S-topological space. Then

(1) Φ and X̃ are F.S-closed sets.
(2) The intersection of any number of F.S-closed sets is a F.S-closed set.
(3) The union of any two F.S-closed sets is a F.S-closed set.
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Figure 1. F.S-open set UE in τ∗F.S

Proof. Follows from Proposition 2.5. □
Definition 3.3. Let τ1 and τ2 be two F.S-topologies over X. We say that τ1 is
coarser than τ2 , or τ2 is finer than τ1, if τ1 ⊂ τ2.

Example 3.4 ([26]). Let X and E be the universal and parameter set, respectively.

Take τ = {Φ, X̃} (say trivial F.S-topology over X), then τ is clearly the coarsest
one. Take τ = F .S(X,E) (say discrete F.S-topology over X), then τ is the finest
one.

Example 3.5 ([26]). Let R be the set of all real numbers with the usual topology
τ and E = [0, 1) ⊂ R. If U = (a, b) ⊂ R is an open interval in R, then we define the
crisp F.S-set UE over R related to the open interval U ⊂ R by the mapping

U : E = [0, 1) → IR

α 7→ U(α) := Uα : R → {0, 1}
such that for all x ∈ R,

Uα(x) =

{
1 x ∈ (a, b)
0 x /∈ (a, b).

The family {UE} of such crisp F.S-sets forms a F.S-topology over R denoted by τ∗F.S .
In fact, the F.S-open set UE in τ∗F.S is a parameterization extension of open interval
U = (a, b) ⊂ R (see Fig. 1).

Example 3.6. Consider the real line R as a topological space with usual topology τ
and let E = [0, 1). The collection τF.S = {f : E → IR : ∀α ∈ E, (f(α))

−1
(0, 1] ∈ τ}

is a F.S-topology over R. Moreover τ∗F.S ⊂ τFS where τ∗F.S is the F.S-topology over
R introduced earlier in Example 3.5.
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Example 3.7. Let (X, γ) be a fuzzy topological space and µ ∈ γ be a fuzzy open
set in X. The characteristic function of α-cut set of µ is denoted by χµα and is
defined by the mapping χµα : X → {0, 1} such that for all x ∈ X

χµα(x) =

{
1 µ(x) > α
0 µ(x) ≤ α.

Now let E = [0, 1). We define the crisp F.S-set (χµ, E) as below:

χµ : E = [0, 1) → IX

α 7→ χµ(α) := χµα
: X → {0, 1}.

Then the collection γ∗ = {χµ : [0, 1) → IX : µ ∈ γ} is a F.S-topology over X.

Theorem 3.8. Let (X,E, τ) be a F.S-topological space. For any e ∈ E, the collec-

tion τe = {(f(e))−1
(0, 1] : f ∈ τ, e ∈ E} forms a topology over X with respect to

e.

Proof. Follows from Definition 3.1. □

Theorem 3.9. If {τα : α ∈ I} be a family of F.S-topologies over X, then
∩

α∈I τα
is also a F.S-topology over X.

Proof. It is straightforward. □

It is clear that
∩

α∈I τα is the coarsest F.S-topology over X.

Remark 3.10. The
∪

α∈I τα is not a F.S-topology over X in general case. This is
shown in the following example.

Example 3.11. Let X = {x1, x2} and E = {e1, e2}. Let τ = {Φ, X̃, f1E , f2E , f3E}
and δ = {Φ, X̃, g1E , g2E , g3E , g4E} be two F.S-topologies over X where

f1E = {(e1, {
1

x1
+

1

x2
}), (e2, {

0

x1
+

1

x2
})}

f2E = {(e1, {
1

x1
+

0

x2
}), (e2, {

1

x1
+

1

x2
})}

f3E = {(e1, {
1

x1
+

0

x2
}), (e2, {

0

x1
+

1

x2
})}

and

g1E = {(e1, {
1

x1
+

0.5

x2
}), (e2, {

0.5

x1
+

0.3

x2
})}

g2E = {(e1, {
0

x1
+

0.8

x2
}), (e2, {

1

x1
+

1

x2
})}

g3E = {(e1, {
0

x1
+

0.5

x2
}), (e2, {

0.5

x1
+

0.3

x2
})}

g4E = {(e1, {
1

x1
+

0.8

x2
}), (e2, {

1

x1
+

1

x2
})}.

Then τ ∪ δ = {Φ, X̃, f1E , f2E , f3E , g1E , g2E , g3E , g4E} is not a F.S-topology over X
since f1E∨̃g1E /∈ τ ∪ δ.
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Definition 3.12 ([26]). Let (X,E, τ) be a F.S-topological space. The collection B
of F.S-open subsets of X is called a F.S-base for τ if every F.S-open sets in τ can
be written as a union of members of B.

Definition 3.13 ([26]). Let (X1, E1, τ1) and (X2, E2, τ2) be two F.S-topological
spaces. The F.S-topology τ⊗, generated by B = {fE1⊗̃gE2 : fE1 ∈ τ1, gE2 ∈ τ2}, is
called F.S-product topology over X1 × X2 and denoted by (X,E, τ⊗) where X =
X1 ×X2 and E = E1 × E2.

Lemma 3.14. Let fE1 ∈ F .S(X1, E1) and gE2 ∈ F .S(X2, E2). Then we have

[fE1⊗̃gE2 ]
c = [f c

E1
⊗̃X̃2]∨̃[X̃1⊗̃gcE2

]

Proof. Take (x, y) ∈ X1×X2 and (e, e′) ∈ E1×E2. By Proposition 2.9 (3), we have

(f⊗̃g)c(e,e′)(x, y) = 1− (f⊗̃g)(e,e′)(x, y) = 1−min{fe(x), ge′(y)}
= max{1− fe(x), 1− ge′(y)} = max{f c

e (x), g
c
e′(y)}

= max{(f c⊗̃X̃2)(e,e′)(x, y), (X̃1⊗̃gc)(e,e′)(x, y)}

= [(f c⊗̃X̃2)∨̃(X̃1⊗̃gc)](e,e′)(x, y)

This means that [fE1⊗̃gE2 ]
c = [f c

E1
⊗̃X̃2]∨̃[X̃1⊗̃gcE2

]. □
Theorem 3.15. Let (X,E, τ) be a F.S-topological space. If fE and gE are two
F.S-closed sets in τ , then fE⊗̃gE is a F.S-closed set in τ⊗.

Proof. Follows from Lemma 3.14. □
3.1. F.S-Closure and F.S-Interior.

Definition 3.16. Let (X,E, τ) be a F.S-topological space.

i. Fuzzy soft closure, F.S-closure in brief, of fE is denoted by ClfE and is defined
as the intersection of all F.S-closed super sets of fE . So

ClfE =
∧̃

gE≥̃fE
gE

where gE ’s are F.S-closed sets in (X,E, τ).
ii. Fuzzy soft interior, F.S interior in brief, of fE is denoted by IntfE and is defined

as the union of all F.S-open subsets of fE . So

IntfE =
∨̃

hE≤̃fE
hE

where hE ’s are F.S-open sets in (X,E, τ).

Theorem 3.17 ([23]). Let (X,E, τ) be a F.S-topological space and fE and gE be
two F.S-sets over X. Then

(1) ClΦ = Φ and ClX̃ = X̃.
(2) fE≤̃ClfE and ClfE is the smallest F.S-closed set containing the F.S-set fE.

(3) fE is a F.S-closed set if and only if fE = ClfE.
(4) Cl(ClfE) = ClfE.
(5) if fE≤̃gE, then ClfE≤̃ClgE.
(6) Cl(fE∨̃gE)=ClfE∨̃ClgE.
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(7) Cl(fE∧̃gE)≤̃ClfE∧̃ClgE.

Proof. See [23]. □
Theorem 3.18 ([23]). Let (X,E, τ) be a F.S-topological space and fE and gE are
two F.S-sets over X. Then

(1) IntΦ = Φ and IntX̃ = X̃.
(2) IntfE≤̃fE and IntfE is the biggest F.S-open set contained in the F.S-set

fE.
(3) fE is a F.S-open set if and only if fE = IntfE.
(4) Int(IntfE) = IntfE.
(5) if fE≤̃gE, then IntfE≤̃IntgE.
(6) Int(fE∨̃gE)≥̃IntfE∨̃IntgE.
(7) Int(fE∧̃gE) = IntfE∧̃IntgE.

Proof. See [23]. □
Corollary 3.19. For any F.S-set fE in the F.S-topological space (X,E, τ),

IntfE≤̃fE≤̃ClfE.

Proof. Follows from Theorems 3.17 and 3.18. □
Theorem 3.20. Let (X,E, τ) be a F.S-topological space and {fiE}i∈I be a family
of F.S-sets over X. Then

(1)
∨̃

iClfiE≤̃Cl[
∨̃

ifiE ].

(2)
∨̃

iIntfiE≤̃Int[
∨̃

ifiE ].

Proof. Follows from Theorems 3.17 and 3.18. □
Proposition 3.21. Let (X,E, τ) be a F.S-topological space and fE be a F.S-set over
X. Then

(1) Clf c
E = (IntfE)

c.
(2) Intf c

E = (ClfE)
c.

Proof. (1)

(IntfE)
c = [

∨̃
gE ]

c : gE ∈ τ, gE≤̃fE

=
∧̃

gcE : gE ∈ τ, gcE≥̃f c
E

= Clf c
E

(2) It is similar to 1.
□

Theorem 3.22. If (X,E, τ) is a F.S-topological space and fE and gE are two F.S-
sets over X. Then

(1) Cl(fE⊗̃gE)≤̃ClfE⊗̃ClgE.
(2) Int(fE⊗̃gE)≥̃IntfE⊗̃IntgE.

Proof. (1) Since fE≤̃ClfE and gE≤̃ClgE , then it is easily to see that

fE⊗̃gE≤̃ClfE⊗̃ClgE .
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Cl(fE⊗̃gE)≤̃ClfE⊗̃ClgE follows from Theorems 3.15 and 3.17.
(2) By Proposition 3.21, Lemma 3.14, and Theorem 3.17 we have

[Int(fE⊗̃gE)]
c = Cl[(fE⊗̃gE)

c] = Cl[(f c
E⊗̃X̃)∨̃(X̃⊗̃gcE)]

= Cl(f c
E⊗̃X̃)∨̃Cl(X̃⊗̃gcE)

≤̃ [Clf c
E⊗̃ClX̃]∨̃[ClX̃⊗̃ClgcE ] = [Clf c

E⊗̃X̃]∨̃[X̃⊗̃ClgcE ]

= [(IntfE)
c⊗̃X̃]∨̃[X̃⊗̃(IntgE)

c]

= (IntfE⊗̃IntgE)
c

So [Int(fE⊗̃gE)]
c≤̃(IntfE⊗̃IntgE)

c. This implies that

Int(fE⊗̃gE)≥̃IntfE⊗̃IntgE .

□

3.2. F.S-Continuity.

Definition 3.23 ([26]). Let Ψ : (X1, E1, τ1) → (X2, E2, τ2) be a F.S-map as intro-
duced in Definition 2.6. Ψ is called

i. A F.S-continuous map if and only if ∀gE2
∈ τ2, Ψ

−1(gE2
) ∈ τ1.

ii. A F.S-open map if and only if ∀fE1 ∈ τ1, Ψ(fE1) ∈ τ2.

Theorem 3.24. The F.S-map Ψ : (X1, E1, τ1) → (X2, E2, τ2) is F.S-continuous if
and only if ∀gE2 ∈ τ c2 , Ψ

−1(gE2) ∈ τ c1 .

Proof. Follows from Proposition 2.7 (5). □

Theorem 3.25. If Ψ : (X1, E1, τ1) → (X2, E2, τ2) is a F.S-continuous map, then
∀gE2 ∈ F .S(X2, E2), Cl[Ψ−1(gE2)]≤̃Ψ−1(ClgE2).

Proof. Follows from Proposition 2.7 and Theorems 3.24 and 3.17. □

Definition 3.26. Let Ψ1 : F .S(X1, E1) → F .S(X2, E2) and Ψ2 : F .S(X2, E2) →
F .S(X3, E3) be two F.S-maps. The mapping

Ψ = Ψ2oΨ1 : F .S(X1, E1) → F .S(X3, E3)

is called the F.S-composition map such that for any fE1 ∈ F .S(X1, E1) it is defined
as

[(Ψ2oΨ1)(f)](α)(z) = sup
x∈(Ψ2UoΨ1U )−1(z)

[
sup

β∈(Ψ2P oΨ1P )−1(α)

f(β)

]
(x)

where z ∈ X3, α ∈ E3; and Ψ1P : E1 → E2, Ψ2P : E2 → E3, Ψ1U : X1 → X2, and
Ψ2U : X2 → X3 are ordinary maps. Moreover For x ∈ X1 and β ∈ E1 we have

[(Ψ2oΨ1)
−1(g)](β)(x) = g[(Ψ2P oΨ1P )(β)][(Ψ2UoΨ1U )(x)]

where gE3 ∈ F .S(X3, E3).

Lemma 3.27. If Ψ1 : F .S(X1, E1) → F .S(X2, E2) and Ψ2 : F .S(X2, E2) →
F .S(X3, E3) are two F.S-maps, then (Ψ2oΨ1)

−1 = Ψ−1
1 oΨ−1

2 .
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Proof. Take fE3 ∈ F .S(X3, E3). Then for x ∈ X1 and e ∈ E1, we have

[(Ψ2oΨ1)
−1(f)](e)(x) = f [(Ψ2P oΨ1P )(e)][(Ψ2UoΨ1U )(x)]

= fΨ2P (Ψ1P (e))[Ψ2U (Ψ1U (x))]

= [Ψ−1
2 (f)](Ψ1P (e))(Ψ1U (x))]

= Ψ−1
1 [Ψ−1

2 (f)](e)(x)

= [(Ψ−1
1 oΨ−1

2 )(f)](e)(x)

Thus (Ψ2oΨ1)
−1 = Ψ−1

1 oΨ−1
2 . □

Theorem 3.28. If Ψ1 : (X1, E1, τ1) → (X2, E2, τ2) and Ψ2 : (X2, E2, τ2) →
(X3, E3, τ3) are two F.S-continuous maps, then Ψ2oΨ1 : (X1, E1, τ1) → (X3, E3, τ3)
is a F.S-continuous map.

Proof. Follows from Lemma 3.27. □

Lemma 3.29. Let for i=1,2, Ψi : F .S(X,E) → F .S(Yi, Vi), ΨiP : E → Vi, and
ΨiU : X → Yi be some F.S-maps and ordinary maps, respectively as introduced in
Definition 2.6. If Ψ1⊗̃Ψ2 : F .S(X,E) → F .S(Y1, V1)⊗̃F .S(Y2, V2) is a F.S-map
defined by

(Ψ1⊗̃Ψ2)(fE) = Ψ1(fE)⊗̃Ψ2(fE)

where fE ∈ F .S(X,E), then for g1V1
∈ F .S(Y1, V1) and g2V2

∈ F .S(Y2, V2),

(Ψ1⊗̃Ψ2)
−1(g1V1

⊗̃g2V2
) = Ψ−1

1 (g1V1
)∧̃Ψ−1

2 (g2V2
)

Proof. Consider the two following ordinary maps

Ψ1P ×Ψ2P : E → V1 × V2

e 7→ (Ψ1P (e),Ψ2P (e))

and

Ψ1U ×Ψ2U : X → Y1 × Y2

x 7→ (Ψ1U (x),Ψ2U (x)).

Take g1V1
∈ F .S(Y1, V1) and g2V2

∈ F .S(Y2, V2). For given e ∈ E and x ∈ X, we
have

[(Ψ1⊗̃Ψ2)
−1(g1⊗̃g2)](e)(x) = (g1⊗̃g2)((Ψ1P ×Ψ2P )(e))((Ψ1U ×Ψ2U )(x))

= (g1⊗̃g2)(Ψ1P (e),Ψ2P (e))(Ψ1U (x),Ψ2U (x))

= min{g1(Ψ1P (e))(Ψ1U (x)), g2(Ψ2P (e))(Ψ2U (x))}
= min{Ψ−1

1 (g1)(e)(x),Ψ
−1
2 (g2)(e)(x)}

= [Ψ−1
1 (g1)∧̃Ψ−1

2 (g2)](e)(x)

Thus (Ψ1⊗̃Ψ2)
−1(g1V1

⊗̃g2V2
) = Ψ−1

1 (g1V1
)∧̃Ψ−1

2 (g2V2
). □

Theorem 3.30. Let Ψi : (X,E, τ) → (Yi, Vi, τi) be two F.S-maps (for i = 1, 2).
The F.S-map Ψ1⊗̃Ψ2 : (X,E, τ) → (Y1 × Y2, V1 × V2, τ

⊗) is continuous if and only
if Ψ1 and Ψ2 are F.S-continuous.
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Proof. ⇒: Let Ψ1 and Ψ2 be two F.S-continuous maps. Let g1V1
⊗̃g2V2

be a
F.S-open set in F.S-topological space (Y1 × Y2, V1 × V2, τ

⊗) where τ⊗ is the
F.S-product topology over Y1 × Y2 introduced in [26]. By applying Lemma
3.29 we have (Ψ1⊗̃Ψ2)

−1(g1V1
⊗̃g2V2

) = Ψ−1
1 (g1V1

)∧̃Ψ−1
2 (g2V2

) ∈ τ . This
means that Ψ is a F.S-continuous.

⇐: Take g1V1
∈ τ1. Then by Lemma 3.29, for e ∈ V and x ∈ Y we have

(Ψ1⊗̃Ψ2)
−1(g1⊗̃Ỹ2)(e)(x) = [Ψ−1

1 (g1)∧̃Ψ−1
2 (Ỹ2)](e)(x)

= [Ψ−1
1 (g1)∧̃X̃](e)(x)

= Ψ−1
1 (g1)(e)(x)

This means that Ψ−1
1 (g1V1

) = (Ψ1⊗̃Ψ2)
−1(g1V1

⊗̃Ỹ2) ∈ τ . Similarly if g2V2
∈

τ2, then Ψ−1
2 (g2V2

) = (Ψ1⊗̃Ψ2)
−1(Ỹ1⊗̃g̃2V2

) ∈ τ . This completes the proof.
□

Lemma 3.31. Let for i=1,2, Ψi : F .S(Xi, Ei) → F .S(Yi, Vi) be two F.S-maps
and ΨiP : Ei → Vi and ΨiU : Xi → Yi be some ordinary maps as introduced in
Definition 2.6. If Ψ1⊗̃Ψ2 : F .S(X1, E1)⊗̃F .S(X2, E2) → F .S(Y1, V1)⊗̃F .S(Y2, V2)
is a F.S-map defined by

(Ψ1⊗̃Ψ2)(f1E1
⊗̃f2E2

) = Ψ1(f1E1
)⊗̃Ψ2(f2E2

)

where f1E1
∈ F .S(X1, E1) and f2E2

∈ F .S(X2, E2), then

(Ψ1⊗̃Ψ2)
−1(g1V1

⊗̃g2V2
) = Ψ−1

1 (g1V1
)⊗̃Ψ−1

2 (g2V2
)

Proof. It is similar to Lemma 3.29. □

Theorem 3.32. Let Ψi : F .S(Xi, Ei, τi) → F .S(Yi, Vi, γi) where i = 1, 2 be two
F.S-maps. The F.S-map Ψ1⊗̃Ψ2 : (X1 ×X2, E1 × E2, τ

⊗) → (Y1 × Y2, V1 × V2, γ
⊗)

is continuous if and only if Ψ1 and Ψ2 are F.S-continuous.

Proof. Follows from Lemma 3.31. □

4. Fuzzy soft Boubdary

Definition 4.1. Let (X,E, τ) be a F.S-topological space and fE be a F.S-set over
X. We define the boundary of fE , denoted by BdfE , as below

BdfE = ClfE∧̃Clf c
E

Proposition 4.2. If (X,E, τ) is a F.S-topological space, then

(1) BdfE is a F.S-closed set.
(2) BdfE≤̃ClfE.

(3) BdΦ = Φ and BdX̃ = Φ.

Proof. Follows from Definition 4.1. □

Proposition 4.3. If (X,E, τ) is a F.S-topological space, then

(1) BdfE = Bdfc
E.

(2) [BdfE ]
c = Intf c

E∨̃IntfE.
(3) BdfE∨̃fE≤̃ClfE.
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(4) BdfE≤̃fE if fE be a F.S-closed set, and so BdClfE≤̃ClfE for all F.S-set
fE.

(5) BdfE≤̃f c
E if fE be a F.S-open set, and so BdIntfE≤̃Clf c

E for all F.S-set
fE.

(6) BdBdfE≤̃BdfE.
(7) BdIntfE≤̃BdfE.
(8) BdClfE≤̃BdfE.

Proof. (1) It follows from Definition 4.1.
(2) It follows from Definition 4.1, Proposition 2.5, and Proposition 3.21.
(3) It follows from Definition 4.1.
(4) If fE be a F.S-closed set, then Theorem 3.17 (3), implies that ClfE = fE .

So we have BdfE = ClfE∧̃Clf c
E = fE∧̃Clf c

E which implies that BdfE≤̃fE .
Moreover if fE ∈ F .S(X,E), then we have

BdClfE = ClClfE∧̃Cl(ClfE)
c = ClfE∧̃Cl(ClfE)

c

So BdClfE≤̃ClfE .
(5) It is similar to 4.
(6) It is clear since BdfE is a F.S-closed set.
(7)

BdIntfE = Cl(IntfE)∧̃Cl(IntfE)
c = ClIntfE∧̃ClClf c

E = ClIntfE∧̃Clf c
E

≤̃ ClfE∧̃Clf c
E = BdfE

Thus BdIntfE≤̃BdfE .
(8)

BdClfE = Cl(ClfE)∧̃Cl(ClfE)
c = ClClfE∧̃ClIntf c

E = ClfE∧̃ClIntf c
E

≤̃ ClfE∧̃Clf c
E = BdfE

So BdClfE≤̃BdfE .
□

Example 4.4. Let X = R, E = [0, 1), and τ∗F.S be the F.S-topology over R as
introduced in Example 3.5. We define the crisp F.S-set VE over R related to the
half-open interval [a, b) ⊂ R by the mapping V : E = [0, 1) → IR as below

Vα(x) =

{
1 x ∈ [a, b)
0 x /∈ [a, b)

where α ∈ E and x ∈ R. By applying Definition 3.16, the closure and the interior of
the crisp F.S-set VE , denoted by ClVE and IntVE respectively, are defined by the
mappings ClV : E = [0, 1) → IR and IntV : E = [0, 1) → IR such that for any
x ∈ R and ∀α ∈ E we have

(ClV )α(x) =

{
1 x ∈ [a, b]
0 x /∈ [a, b],

and

(IntV )α(x) =

{
1 x ∈ (a, b)
0 x /∈ (a, b).
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Moreover by Definition 4.1, the boundary of crisp F.S-set VE is defined by the
mapping BdV : E = [0, 1) → IR as below

(BdV )α(x) =

{
1 x ∈ {a, b}
0 x /∈ {a, b}

where x ∈ R and α ∈ E.

Remark 4.5. In general topology, it is well-known that BdA = ∅ if and only if
A is an open and a closed set, both in X. But in F.S-topology, it may not hold in
general. This is shown by the following example.

Example 4.6. Take the set of real numbers R with usual topology τ . Consider
the F.S-topological space (R, [0, 1), τF.S) as introduced earlier in Example 3.6. Let
a, b, c ∈ R such that a < b < c and let fE be a F.S-set over R such that for any
α ∈ E, the mapping fα : R → [0, 1] is defined as below

fα(x) =


0 x ≤ a
x−a
c−a a < x ≤ c
x−b
c−b c < x < b

0 x ≥ b

where x ∈ R. It is clear that the complement of fE , denoted by f c
E , given by the

mapping f c : E = [0, 1) → IR such that ∀x ∈ R and ∀α ∈ E is defined as below

f c
α(x) =


1 x ≤ a
c−x
c−a a < x ≤ c
c−x
c−b c < x < b

1 x ≥ b.

Regarding to Example 3.6, fE is a F.S-open and a F.S-closed set both, in F.S-
topological space (R, [0, 1), τF.S) since ∀α ∈ E, fα

−1(0, 1] = (a, b) ∈ τ and f c
α
−1(0, 1]

= (−∞, c) ∪ (c,+∞) ∈ τ . So fE = ClfE and f c
E = Clf c

E . This implies that
BdfE = fE∧̃f c

E . Thus ∀x ∈ R and ∀α ∈ E,

(Bdf)α(x) = min{fα(x), f c
α(x)} =


0 x ≤ a , x ≥ b
fα(x) a < x ≤ a+c

2 , c+b
2 ≤ x < b

f c
α(x)

a+c
2 < x < c+b

2

means that BdfE ̸= Φ.

Theorem 4.7. If (X,E, τ) is a F.S-topological space, then

(1) Bd[fE∨̃gE ]≤̃BdfE∨̃BdgE.
(2) Bd[fE∧̃gE ]≤̃BdfE∨̃BdgE.

Proof. (1)

Bd[fE∨̃gE ] = Cl[fE∨̃gE ]∧̃Cl[fE∨̃gE ]c

= Cl[fE∨̃gE ]∧̃Cl[f c
E∧̃gcE ]

≤̃ [ClfE∨̃ClgE ]∧̃[Clf c
E∧̃ClgcE ]

= [ClfE∧̃(Clf c
E∧̃ClgcE)]∨̃[ClgE∧̃(Clf c

E∧̃ClgcE)]

= [BdfE∧̃ClgcE ]∨̃[BdgE∧̃Clf c
E ]

≤̃ BdfE∨̃BdgE
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(2)

Bd[fE∧̃gE ] = Cl[fE∧̃gE ]∧̃Cl[fE∧̃gE ]c

= Cl[fE∧̃gE ]∧̃Cl[f c
E∨̃gcE ]

≤̃ [ClfE∧̃ClgE ]∧̃[Clf c
E∨̃ClgcE ]

= [(ClfE∧̃ClgE)∧̃Clf c
E ]∨̃[(ClfE∧̃ClgE)∧̃ClgcE ]

= [BdfE∧̃ClgE ]∨̃[BdgE∧̃ClfE ]

≤̃ BdfE∨̃BdgE

□

Theorem 4.8. Let (X,E, τ) be a F.S-topological space and fE be a F.S-set over X.
If (Bdf)e(x) = 0, then fe(x) = 0 or fe(x) = 1.

Proof. Let x ∈ X such that for some e ∈ E we have (Bdf)e(x) = 0, means
min{(Clf)e(x), (Clf c)e(x)} = 0. Then (Clf)e(x) = 0 or (Clf c)e(x) = 0 which
implies that fe(x) = 0 or f c

e (x) = 0. Thus fe(x) = 0 or fe(x) = 1. □

Corollary 4.9. In the F.S-topological space (X,E, τ), the F.S-set fE is a crisp
F.S-set if BdfE = Φ.

Proof. Let BdfE = Φ. Theorem 4.8 implies that fe(x) = 0 or fe(x) = 1, ∀x ∈ X
and for all e ∈ E. This means that the set value of mapping f(e) is a subset of {0, 1}
i.e., fE is a crisp F.S-set. □

Theorem 4.10. If Ψ : (X1, E1, τ1) → (X2, E2, τ2) is a F.S-continuous map, then
∀gE2

∈ F .S(X2, E2),

Bd[Ψ−1(gE2
)]≤̃Ψ−1[BdgE2

]

Proof. If gE2
is a F.S-set over X2, then by Proposition 2.7 and Theorem 3.25 we

have

Bd[Ψ−1(gE2)] = Cl[Ψ−1(gE2)]∧̃Cl[Ψ−1(gE2)]
c

= Cl[Ψ−1(gE2)]∧̃Cl[Ψ−1(gcE2
)]

≤̃ Ψ−1[ClgE2 ]∧̃Ψ−1[ClgcE2
]

= Ψ−1[ClgE2 ∧̃ClgcE2
]

= Ψ−1[BdgE2 ]

Thus Bd[Ψ−1(gE2)]≤̃Ψ−1[BdgE2 ]. □

Theorem 4.11. If (X,E, τ) is a F.S-topological space, then

(1) Bd[fE⊗̃gE ]≤̃ClfE⊗̃ClgE.
(2) Bd[fE⊗̃gE ]≤̃[BdfE⊗̃ClgE ]∨̃[ClfE⊗̃BdgE ].

Proof. (1) By applying Proposition 4.2 we have Bd[fE⊗̃gE ]≤̃Cl[fE⊗̃gE ]. So
Bd[fE⊗̃gE ]≤̃ClfE⊗̃ClgE follows from Theorem 3.22 (1).
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(2) By Lemma 3.14, Theorem 3.17, Theorem 3.22 (1), Proposition 2.4 (2), and
Proposition 2.9 (4) we have

Bd[fE⊗̃gE ] = Cl[fE⊗̃gE ]∧̃Cl[fE⊗̃gE ]
c

= Cl[fE⊗̃gE ]∧̃Cl[(f c
E⊗̃X̃)∨̃(X̃⊗̃gcE)]

≤̃ [ClfE⊗̃ClgE ]∧̃[Cl(f c
E⊗̃X̃)∨̃Cl(X̃⊗̃gcE)]

≤̃ [ClfE⊗̃ClgE ]∧̃[(Clf c
E⊗̃X̃)∨̃(X̃⊗̃ClgcE)]

= [(ClfE⊗̃ClgE)∧̃(Clf c
E⊗̃X̃)]∨̃[(ClfE∧̃ClgE)∧̃(X̃⊗̃ClgcE)]

= [(ClfE∧̃Clf c
E)⊗̃(ClgE∧̃X̃)]∨̃[(ClfE∧̃X̃)⊗̃(ClgE∧̃ClgcE)]

= [BdfE⊗̃ClgE ]∨̃[ClfE⊗̃BdgE ]

Hence Bd[fE⊗̃gE ]≤̃[BdfE⊗̃ClgE ]∨̃[ClfE⊗̃BdgE ]. □

5. Conclusions

The aim of this work is to introduce and to study the concept of fuzzy soft
boundary. We define fuzzy soft boundary as an parameterization extension of the
concept of boundary in the classical sense and then consider some properties of it.
The fuzzy soft topology is also considered and closure, interior, and continuity are
studied in a fuzzy soft topological space.
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[26] A. Zahedi Khameneh, A. Kılıçman and A. R. Salleh, Fuzzy soft product topology, Ann. Fuzzy

Math. Inform. 7(6) (2014) 935–947.

Azadeh Zahedi Khameneh (azadeh503@gmail.com)
Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Ser-
dang, Selangor D.E., Malaysia
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