Ideal convergence of nets in fuzzy topological spaces

B M Uzzal Afsan

Received 16 March 2014; Revised 20 April 2014; Accepted 27 April 2014

Abstract. In this paper, we have initiated the concept of convergence of nets of fuzzy points in a fuzzy topological space \((X, \sigma)\) via an ideal \(I\) (namely, \(I\)-convergence) and investigated its several properties. Two new limits, namely fuzzy upper and lower \(I\)-limits of nets of fuzzy sets are being introduced; several properties and their mutual relationships have been investigated. Finally, applications of the concept of the upper \(I\)-limit of nets are given to characterize various fuzzy covering properties.

2010 AMS Classification: 54A40, 54A20, 54D30

Keywords: Fuzzy \(I\)-convergence, Fuzzy continuous function, Fuzzy upper \(I\)-limit, Fuzzy lower \(I\)-limit, Weakly fuzzy compact, Strongly fuzzy compact and fuzzy compact.

Corresponding Author: B M Uzzal Afsan (uzlafsan@gmail.com)

1. Introduction

In real line, the statistical convergence of sequences, introduced by Fast [13], has been developed by a good number of researchers, namely Červeňanský [4], Connor [6], Connor and Kline [7], Frídy [14, 15], Frídy et. al. [16], Kostyrko et. al. [25], Miller [30] and Šalát and Tijdeman [38]. The concept of \(I\)-convergence of sequences of real numbers was introduced by Kostyrko et. al. [26] and \(I\)-limit superior and inferior were initiated by Demirci [10]. Those concepts were further studied by Das and Lahiri [9] in general topological spaces. Some recent research works related to \(I\)-convergence are found in the papers of Das et. al. [8], Komisarski [24], Kumar [27], Mursaleen and Alotaibi [31], Mursaleen et. al. [34], Mursaleen and Mohiuddine [32, 33], Šahiner et. al. [37] and Šalát et. al. [39].

After the invention of fuzzy sets by Zadeh [44], a major task for the mathematicians was to fuzzify different existing concepts of pure mathematics. In this fashion, Nuray and Savaş [36] defined the concepts of statistical convergence and statistical
In this paper, the cardinalities of an ordinary set K is called non-trivial if $N \not\in I$ and S is defined as a non-empty family of numbers.

Throughout this paper, spaces (X, σ) and (Y, δ) (or simply X and Y) represent non-empty fuzzy topological spaces due to Chang [5] and the symbols I and I^X have been used for the unit closed interval $[0,1]$ and the set of all functions with domain X and codomain I respectively. The support of a fuzzy set A is the set $\{x \in X : A(x) > 0\}$ and is denoted by $supp(A)$. A fuzzy set with only non-zero value $\lambda \in [0,1]$ at only one element $x \in X$ is called a fuzzy point and is denoted by x_λ and the set of all fuzzy points of a fuzzy topological space is denoted by $FP(X)$. For any two fuzzy sets A, B of X, $A \leq B$ if and only if $A(x) \leq B(x)$ for all $x \in X$. A fuzzy point x_λ is said to be in a fuzzy set A (denoted by $x_\lambda \in A$) if $x_\lambda \leq A$, that is, if $\lambda \leq A(x)$. The constant fuzzy sets of X with values 0 and 1 are denoted by 0 and 1 respectively. A fuzzy set A is said to be quasi-coincident with B (written as AqB) [41] if $A(x) + B(x) > 1$ for some $x \in X$. A fuzzy set A is said to be not quasi-coincident with B (written as $A q B$) [26] if $A(x) + B(x) \leq 1$, for all $x \in X$. A fuzzy open set A of X is called fuzzy quasi-neighborhood of a fuzzy point x_λ if $x_\lambda q A$. It is well-known that a function $\psi : X \rightarrow Y$ is fuzzy continuous [5] if for every fuzzy point x_λ and every fuzzy quasi-neighborhood V of a fuzzy point $\psi(x_\lambda)$, there exists a fuzzy quasi-neighborhood U of a fuzzy point x_λ such that $\psi(U) \subseteq V$.

Throughout this paper, \mathcal{N} stands for a directed set. An ideal on a non-empty set S is defined as a non-empty family I of subsets of S satisfying (i) $\emptyset \in I$, (ii) $A \in I$ and $B \subseteq A \Rightarrow B \in I$ and (iii) $A \in I$ and $B \in I \Rightarrow A \cup B \in I$. An ideal I on \mathcal{N} is called non-trivial if $\mathcal{N} \notin I$. A non-trivial ideal I on \mathcal{N} is called admissible [9] if \mathcal{N} and \mathcal{N}.
Suppose if possible, let \(A_n = \{ n \in \mathcal{N} : n \geq \lambda \} \) for all \(\lambda \in \mathcal{N} \). Throughout this paper, \(\mathcal{I} \) stands for an admissible ideal on \(\mathcal{N} \).

3. Fuzzy \(\mathcal{I} \)-convergence

Definition 3.1. A net \(\{ S_n : n \in \mathcal{N} \} \) of fuzzy points of a fuzzy topological space \(X \) is said to fuzzy \(\mathcal{I} \)-converge to a fuzzy point \(x_\lambda \) if for every fuzzy quasi-neighborhood \(U \) of a fuzzy point \(x_\lambda \), \(\{ n \in \mathcal{N} : S_n \mathcal{q} U \} \in \mathcal{I} \).

Remark 3.2. If a net \(\{ S_n : n \in \mathcal{N} \} \) of fuzzy points of a fuzzy topological space fuzzy converges to a fuzzy point \(x_\lambda \), then the net \(\{ S_n : n \in \mathcal{N} \} \) is fuzzy \(\mathcal{I} \)-converges to \(x_\lambda \). For, if \(U \) be a fuzzy quasi-neighborhood of \(x_\lambda \) with \(S_n \mathcal{q} U \) for all \(n \in M_{m_0} \), then \(\mathcal{N} - M_{m_0} \in \mathcal{I} \) and so \(\{ n \in \mathcal{N} : S_n \mathcal{q} U \} \in \mathcal{I} \).

Theorem 3.3. In Hausdorff spaces, if a net fuzzy \(\mathcal{I} \)-converges to two distinct fuzzy points, then their supports are same.

Proof. If possible, let \(\{ S_n : n \in \mathcal{N} \} \) be a net in a fuzzy Hausdorff topological space \(X \) fuzzy \(\mathcal{I} \)-converging to two distinct fuzzy points \(x_\lambda \) and \(x_\mu \) such that \(\text{supp}(x_\lambda) \neq \text{supp}(x_\mu) \). Then for any two fuzzy quasi-neighborhood \(U \) and \(V \) of the fuzzy points \(x_\lambda \) and \(x_\mu \), \(\{ n \in \mathcal{N} : S_n \mathcal{q} U \} \in \mathcal{I} \) and \(\{ n \in \mathcal{N} : S_n \mathcal{q} V \} \in \mathcal{I} \) respectively and so \(\{ n \in \mathcal{N} : S_n \mathcal{q} (U \cap V) \} \in \mathcal{I} \). Since \(\mathcal{I} \) is non-trivial, there exists a positive integer \(k \in \mathcal{N} \) such that \(S_k \mathcal{q} U \) and \(S_k \mathcal{q} V \). Now suppose \(\text{supp}(S_k) = x \). Then \(U(x) > 0 \) and \(V(x) > 0 \), which is a contradiction. \(\square \)

Theorem 3.4. Let \(\psi : X \to X \) be a fuzzy continuous function and \(\{ S_n : n \in \mathcal{N} \} \) be a fuzzy \(\mathcal{I} \)-convergent net in \(X \). Then \(\{ \psi(S_n) \} \) is fuzzy \(\mathcal{I} \)-convergent.

Proof. Suppose \(\psi : X \to X \) be a fuzzy continuous function at \(x_\lambda \) and \(\{ S_n : n \in \mathcal{N} \} \) be a net in \(X \) fuzzy \(\mathcal{I} \)-converging to \(x_\lambda \). Consider \(V \) be a fuzzy quasi-neighborhood of \(\psi(x_\lambda) \). Then there exists a fuzzy quasi-neighborhood \(U \) of \(x_\lambda \) such that \(\psi(U) \leq V \). Since \(\{ S_n : n \in \mathcal{N} \} \) fuzzy \(\mathcal{I} \)-converges to \(x_\lambda \), we have \(\{ n \in \mathcal{N} : S_n \mathcal{q} U \} \in \mathcal{I} \). So the inclusion \(\{ n \in \mathcal{N} : \psi(S_n) \mathcal{q} V \} \in \mathcal{I} \) ensures that \(\{ n \in \mathcal{N} : \psi(S_n) \mathcal{q} V \} \in \mathcal{I} \). \(\square \)

Theorem 3.5. Let \(A \) be a fuzzy subset of \(X \). If a net \(\{ S_n : n \in \mathcal{N} \} \) in \(A \)-converges to a fuzzy point \(x_\lambda \), then \(x_\lambda \in \text{cl}(A) \).

Proof. Let \(U \) be any fuzzy quasi-neighborhood of \(x_\lambda \). Then \(\{ n \in \mathcal{N} : S_n \mathcal{q} U \} \in \mathcal{I} \). Since \(\mathcal{I} \) is non-trivial, there exists an \(m \in \mathcal{N} \) such that \(S_m \mathcal{q} U \). Let \(S_m = x_\mu \). Then \(U(x) + \mu > 1 \) and \(A(x) \geq \mu \) and so \(U(x) + A(x) > 1 \). Thus \(A \mathcal{q} U \) and so \(x_\lambda \in \text{cl}(A) \). \(\square \)

4. Fuzzy upper \(\mathcal{I} \)-limits and lower \(\mathcal{I} \)-limits

Definition 4.1. Let \(\{ A_n : n \in \mathcal{N} \} \) be a net of fuzzy sets of a fuzzy topological space \(X \). Then the fuzzy upper \(\mathcal{I} \)-limit of \(\{ A_n : n \in \mathcal{N} \} \) is defined and denoted by \(F\text{IU}L(A_n) = \vee \{ x_\lambda \in FP(X) : \text{for every fuzzy quasi-neighborhood } U \text{ of } x_\lambda, \{ n \in \mathcal{N} : A_n \mathcal{q} U \} \notin \mathcal{I} \} \).
Theorem 4.2. Let \(\{A_n : n \in \mathcal{N}\} \) be a net of fuzzy sets of a fuzzy topological space \(X \). Then the following properties hold:

(i) \(\text{FIUL}(A_n) \) is a closed set.

(ii) \(\text{FIUL}(A_n) = \text{FIUL}(cl(A_n)) \).

(iii) \(\text{FIUL}(A_n) \leq cl(\bigvee_{i=1}^{\infty} A_i) \).

(iv) If for each \(n \in \mathcal{N} \), \(A_n = A \in \mathcal{I}^X \), then \(\text{FIUL}(A_n) = cl(A) \).

Proof. (i) Let \(x_\lambda \in cl(\text{FIUL}(A_n)) \) and \(U \) be any fuzzy quasi-neighborhood of \(x_\lambda \) with \(\text{FIUL}(A_n)qU \). Then there exists an \(y \in X \) such that \(\text{FIUL}(A_n)(y)+U(y) > 1 \). Consider \(\text{FIUL}(A_n)(y) = \mu \). Then \(y_\mu qU \) and \(y_\mu \in \text{FIUL}(A_n) \). Hence \(\{n \in \mathcal{N} : A_nqU \} \notin \mathcal{I} \) and so \(x_\lambda \in \text{FIUL}(A_n) \).

(ii) Let \(U \) be any fuzzy quasi-neighborhood of \(x_\lambda \). It is sufficient to show that \(\{n \in \mathcal{N} : cl(A_n)qU \} = \{n \in \mathcal{N} : A_nqU \} \). Let \(n \in \{n \in \mathcal{N} : A_nqU \} \). Then there exists an \(y \in X \) such that \(A_n(y)+U(y) > 1 \), that is, \(cl(A_n)(y)+U(y) > 1 \) and so \(n \in \{n \in \mathcal{N} : cl(A_n)qU \} \). Conversely, let \(n \in \{n \in \mathcal{N} : cl(A_n)qU \} \). Then there exists an \(y \in X \) such that \(cl(A_n)(y)+U(y) > 1 \). Suppose \(cl(A_n)(y) = \mu \). Then \(y_\mu \in cl(A_n) \) and \(U \) is fuzzy quasi-neighborhood of \(y_\mu \). Thus \(UqA_n \) and so \(n \in \{n \in \mathcal{N} : A_nqU \} \).

(iii) Let \(x_\lambda \in \text{FIUL}(A_n) \) and \(U \) be any fuzzy quasi-neighborhood of \(x_\lambda \). Then \(\{n \in \mathcal{N} : A_nqU \} \notin \mathcal{I} \). Since \(\mathcal{I} \) is non-trivial, there exists an \(m \in \mathcal{N} \) such that \(A_mqU \) and so \(\bigvee_{i=1}^{\infty} A_iqU \). Thus \(x_\lambda \in cl(\bigvee_{i=1}^{\infty} A_i) \).

(iv) (iii) implies that \(\text{FIUL}(A_n) \leq cl(A) \). So let \(x_\lambda \notin \text{FIUL}(A_n) \). Then there exists a fuzzy quasi-neighborhood \(U \) of \(x_\lambda \) such that \(\{n \in \mathcal{N} : A_nqU \} \notin \mathcal{I} \). Since \(\mathcal{N} \notin \mathcal{I} \), there exists an \(m \in \mathcal{N} \) satisfying \(A_mqU \), that is, \(AqU \) and so \(x_\lambda \notin cl(A) \).

Theorem 4.3. Let \(\{A_n : n \in \mathcal{N}\} \) and \(\{B_n : n \in \mathcal{N}\} \) be any two nets of fuzzy sets of a fuzzy topological space \(X \). Then:

(i) \(A_n \leq B_n \) for all \(n \in \mathcal{N} \) implies that \(\text{FIUL}(A_n) \leq \text{FIUL}(B_n) \).

(ii) \(\text{FIUL}(A_n \vee B_n) = \text{FIUL}(A_n) \vee \text{FIUL}(B_n) \).

(iii) \(\text{FIUL}(A_n \wedge B_n) \leq \text{FIUL}(A_n) \wedge \text{FIUL}(B_n) \).

Proof. (i) Let \(x_\lambda \in \text{FIUL}(A_n) \). Then for each fuzzy quasi-neighborhood \(U \) of a fuzzy point \(x_\lambda \), \(\{n \in \mathcal{N} : A_nqU \} \notin \mathcal{I} \). Since \(\{n \in \mathcal{N} : A_nqU \} \subset \{n \in \mathcal{N} : B_nqU \}, \{n \in \mathcal{N} : B_nqU \} \notin \mathcal{I} \).

(ii) By (i), \(\text{FIUL}(A_n) \vee \text{FIUL}(B_n) \leq \text{FIUL}(A_n \vee B_n) \). Now let \(x_\lambda \notin \text{FIUL}(A_n) \) and \(x_\lambda \notin \text{FIUL}(B_n) \). Then there exist fuzzy quasi-neighborhoods \(U_1 \) and \(U_2 \) of the fuzzy point \(x_\lambda \) such that \(\{n \in \mathcal{N} : A_nqU_1 \} \notin \mathcal{I} \) and \(\{n \in \mathcal{N} : B_nqU_2 \} \notin \mathcal{I} \). Consider \(U = U_1 \cup U_2 \). Then \(\{n \in \mathcal{N} : (A_n \vee B_n)qU \} \subset \{n \in \mathcal{N} : A_nqU_1 \} \cup \{n \in \mathcal{N} : B_nqU_2 \} \). Thus \(\{n \in \mathcal{N} : (A_n \vee B_n)qU \} \notin \mathcal{I} \) and so \(x_\lambda \notin \text{FIUL}(A_n \vee B_n) \).

(iii) It follows from (i).
Theorem 4.4. Let \(\{A_n : n \in \mathcal{N}\} \) and \(\{B_n : n \in \mathcal{N}\} \) be any two nets of fuzzy sets of fuzzy topological spaces \(X \) and \(Y \) respectively. Then \(\text{FIUL}(A_n \times B_n) \leq \text{FIUL}(A_n) \times \text{FIUL}(B_n) \).

Proof. Let \((x, y)_\lambda \in \text{FIUL}(A_n \times B_n)\) and \(U_1\) (in \(X\)) and \(U_2\) (in \(Y\)) be fuzzy quasi-neighborhoods of the fuzzy points \(x_\lambda\) and \(y_\lambda\) respectively. Then \(U_1 \times U_2\) is fuzzy quasi-neighborhoods of \((x, y)_\lambda\) in \(X \times Y\). So \(\{n \in \mathcal{N} : (A_n \times B_n) \sqcap (U_1 \times U_2)_n\} \not\in \mathcal{I} \).

Clearly \(\{n \in \mathcal{N} : (A_n \times B_n)_n \sqcap (U_1 \times U_2) \} \subset \{n \in \mathcal{N} : A_n \sqcap U_1_n\} \) and \(\{n \in \mathcal{N} : (A_n \times B_n)_n \sqcap (U_1 \times U_2) \} \subset \{n \in \mathcal{N} : B_n \sqcap U_2_n\} \). So \(x_\lambda \in \text{FIUL}(A_n)\) and \(y_\lambda \in \text{FIUL}(B_n) \). \(\square \)

Definition 4.5. Let \(\{A_n : n \in \mathcal{N}\} \) be a net of fuzzy sets of a fuzzy topological space \(X \). Then its lower fuzzy \(\mathcal{I}\)-limit is denoted and defined by \(\text{FILL}(A_n) = \bigvee \{x_\lambda \in FP(X) : \text{for every fuzzy quasi-neighborhood } U \text{ of } x_\lambda, \{n \in \mathcal{N} : A_n \sqcap U\}_n \in \mathcal{I} \} \). If \(\text{FILL}(A_n) = \text{FIUL}(A_n) \), then the net \(\{A_n : n \in \mathcal{N}\} \) is said to converge to the limit \(\text{FL}(A_n)(= \text{FIUL}(A_n)) \).

Theorem 4.6. Let \(\{A_n : n \in \mathcal{N}\} \) be a net of fuzzy sets of a fuzzy topological space \(X \). Then the following properties hold:

(i) \(\text{FILL}(A_n) \) is a closed set.
(ii) \(\text{FIUL}(A_n) = \text{FILL}(\text{cl}(A_n)) \).
(iii) \(\text{FILL}(A_n) \leq \text{cl}(\bigvee_{i=1}^n A_i) \).
(iv) If for each \(n \in \mathcal{N} \), \(A_n = A \in I^X \), then \(\text{FILL}(A_n) = \text{cl}(A) \).
(v) \(\bigwedge_{i=1}^n A_i \leq \text{FILL}(A_n) \).
(vi) \(\text{FILL}(A_n) \leq \text{FIUL}(A_n) \).

Proof. The proofs of (i),(ii) and (iii) are parallel to the proofs of Theorem 4.2. So we prove only (iv)-(vi).

(iv) (iii) implies that \(\text{FILL}(A_n) \leq \text{cl}(A) \). So let \(x_\lambda \notin \text{FILL}(A_n) \). Then there exists a fuzzy quasi-neighborhood \(U \) of \(x_\lambda \) satisfying \(\{n \in \mathcal{N} : A_n \sqcap U\}_n \not\in \mathcal{I} \). Since \(\emptyset \in \mathcal{I} \), there exists an \(m \in \mathcal{N} \) such that \(A_m \sqcap U \), that is, \(AqU \) and so \(x_\lambda \notin \text{cl}(A) \).

(v) Suppose \(x_\lambda \notin \text{FIUL}(A_n) \). Then there exists a fuzzy quasi-neighborhood \(U \) of \(x_\lambda \) satisfying \(\{n \in \mathcal{N} : A_n \sqcap U\}_n \not\in \mathcal{I} \). So there exists an \(m \in \mathcal{N} \) such that \(A_m \sqcap U \). So, for every \(y \in X \), \(A_m(y) + U(y) \leq 1 \). Again since \(U \) is a fuzzy quasi-neighborhood of \(x_\lambda \), \(U(x) + \lambda > 1 \). Thus \(A_m(x) < \lambda \), that is, \(x_\lambda \notin A_m \).

(vi) Let \(x_\lambda \notin \text{FIUL}(A_n) \). There exists a fuzzy quasi-neighborhood \(U \) of \(x_\lambda \) such that \(\{n \in \mathcal{N} : A_n \sqcap U\}_n \in \mathcal{I} \). Since \(\mathcal{N} \not\in \mathcal{I} \), \(\{n \in \mathcal{N} : A_n \sqcap U\}_n \not\in \mathcal{I} \). \(\square \)

Theorem 4.7. Let \(\{A_n : n \in \mathcal{N}\} \) and \(\{B_n : n \in \mathcal{N}\} \) be any two nets of fuzzy sets of a fuzzy topological space \(X \). Then:

(i) For all \(n \in \mathcal{N} \), \(A_n \leq B_n \) implies that \(\text{FILL}(A_n) \leq \text{FILL}(B_n) \).
(ii) \(\text{FIUL}(A_n \lor B_n) \geq \text{FIUL}(A_n) \lor \text{FIUL}(B_n) \).
(iii) \(\text{FILL}(A_n \land B_n) \leq \text{FILL}(A_n) \land \text{FILL}(B_n) \).
(iv) \(\text{FIL}(A_n \land B_n) \leq \text{FIL}(A_n) \land \text{FIL}(B_n) \).
(v) \(\text{FIL}(A_n \lor B_n) = \text{FIL}(A_n) \lor \text{FIL}(B_n) \).

Proof. (iv) and (v) follow from Theorem 4.3 (ii) and (iii) follow from (i). So we prove only (i).
Let \(x_\lambda \in FILL(A_n) \). Then for each fuzzy quasi-neighborhood \(U \) of a fuzzy point \(x_\lambda, \{ n \in \mathcal{N} : A_n \check{\cap} U \} \in \mathcal{I} \). Since \(\{ n \in \mathcal{N} : B_n \check{\cap} U \} \subset \{ n \in \mathcal{N} : A_n \check{\cap} U \}, \{ n \in \mathcal{N} : B_n \check{\cap} U \} \in \mathcal{I} \).

\[\text{Theorem 4.8.} \ \text{Let} \{ A_n : n \in \mathcal{N} \} \ \text{and} \{ B_n : n \in \mathcal{N} \} \ \text{be any two nets of fuzzy sets of a fuzzy topological spaces} \ X \ \text{and} \ Y \ \text{respectively. Then} \]

(i) \(FILL(A_n \times B_n) \leq FILL(A_n) \times FILL(B_n) \).

(ii) \(FILL(A_n \times B_n) \leq FILL(A_n) \times FILL(B_n) \).

\[\text{Proof.} \ \text{The proof is parallel to the proof of Theorem 4.4.} \]

5. Applications

In this section, we have given some applications of the concepts studied in the earlier section.

Lowen [29] defined weakly fuzzy compactness in a fuzzy topological spaces as follows:

A fuzzy topological space \(X \) is called weakly fuzzy compact if for every fuzzy open cover \(\{ U_\alpha : \alpha \in \Delta \} \) of \(X \) and for each \(\epsilon > 0 \), there exists finite number of indices \(\alpha_1, \alpha_2, ..., \alpha_p \in \Delta \) such that \(\bigvee_{i=1}^p U_i \geq 1 - \epsilon \).

\[\text{Theorem 5.1.} \ \text{A fuzzy topological space} \ X \ \text{is weakly fuzzy compact if and only if for every net} \ \{ F_n : n \in \mathcal{N} \} \ \text{of fuzzy closed sets, for every ideal} \ \mathcal{I} \ \text{on} \ \mathcal{N} \ \text{with} \ FIU\mathcal{L}(F_n) = \emptyset \ \text{and for every} \ \epsilon > 0, \ \{ n \in \mathcal{N} : F_n \not\in \mathcal{I} \} \subset \mathcal{I} \]

\[\text{Proof.} \ \text{Let} \ X \ \text{be weakly fuzzy compact and} \ \{ F_n : n \in \mathcal{N} \} \ \text{be a net of fuzzy closed sets,} \ \mathcal{I} \ \text{be an ideal on} \ \mathcal{N} \ \text{with} \ FIU\mathcal{L}(F_n) = \emptyset \ \text{and} \ \epsilon > 0. \ \text{Then for each fuzzy point} \ x_\lambda \ \text{of} \ X, \ \text{there exists a fuzzy quasi-neighborhood} \ U_{x_\lambda} \ \text{of} \ x_\lambda \ \text{such that} \ \{ n \in \mathcal{N} : F_n \check{\cap} U_{x_\lambda} \} \in \mathcal{I} \text{. Since} \ X \ \text{is weakly fuzzy compact and} \ \{ U_{x_\lambda} : x_\lambda \in FP(X) \} \ \text{is a fuzzy open cover of} \ X, \ \text{there exists finite number of fuzzy points} \ e_1, e_2, ..., e_p \in FP(X) \ \text{such that} \ \bigvee_{i=1}^p U_{e_i} \geq 1 - \epsilon \ . \ \text{Here} \ \{ n \in \mathcal{N} : F_n \check{\cap} \bigvee_{i=1}^p U_{e_i} \} = \bigcup_{i=1}^p \{ n \in \mathcal{N} : F_n \check{\cap} U_{e_i} \} \in \mathcal{I} \ . \ \text{Since} \ \{ n \in \mathcal{N} : F_n \not\in \mathcal{I} \} \subset \mathcal{I} \ \text{and} \ \mathcal{I} \ \text{is an ideal on} \ \mathcal{N} \ \text{and for every ideal} \ \mathcal{I} \ \text{on} \ \mathcal{N} \ \text{with} \ FIU\mathcal{L}(F_n) = \emptyset \ . \]

\[\text{Gantner et. al. [17] introduced the concept of strongly fuzzy compact in fuzzy topological space as follows:}

A fuzzy topological space \(X \) is called strongly fuzzy compact if for each \(\alpha \in [0, 1) \) and each family \(\mathcal{U}_\alpha \) with the property that for each \(x \in X \), there exists an \(U \in \mathcal{U}_\alpha \) satisfying \(U(x) > \alpha \), has finite subfamily satisfying the same property.

\[\text{Theorem 5.2.} \ \text{A fuzzy topological space} \ X \ \text{is strongly fuzzy compact if and only if for each} \ \alpha \in [0, 1), \ \text{for each net} \ \{ F_n : n \in \mathcal{N} \} \ \text{of fuzzy closed sets and for every ideal} \ \mathcal{I} \ \text{on} \ \mathcal{N} \ \text{with} \ FIU\mathcal{L}(F_n) \leq 1 - \alpha, \ \{ n \in \mathcal{N} : F_n \not\in \mathcal{I} \} \in \mathcal{I} \]

\[\text{Proof.} \ \text{Let} \ X \ \text{be strongly fuzzy compact and} \ \{ F_n : n \in \mathcal{N} \} \ \text{be a net of fuzzy closed sets,} \ \mathcal{I} \ \text{be an ideal on} \ \mathcal{N} \ \text{with} \ FIU\mathcal{L}(F_n) \leq 1 - \alpha \ \text{and an} \ \alpha \in [0, 1) . \ \text{Then for each fuzzy point} \ x_\lambda \ \text{of} \ X \ \text{satisfying} \ FIU\mathcal{L}(F_n) < x_\lambda \leq 1 - \alpha, \ \text{there exists a fuzzy quasi-neighborhood} \ U_{x_\lambda} \ \text{of} \ x_\lambda \ \text{such that} \ \{ n \in \mathcal{N} : F_n \check{\cap} U_{x_\lambda} \} \in \mathcal{I} \ . \ \text{Since} \ X \ \text{is strongly fuzzy compact, there exists a finite subfamily of}\]
fuzzy compact and \(\{ U_{x,\lambda} : x_\lambda \in FP(X), FIUL(F_n) < x_\lambda \leq 1 - \alpha \} \) satisfies the property that for each \(x \in X \), \(U_{x,\lambda}(x) > 1 - \lambda \geq \alpha \), there exist finite number of fuzzy points \(e_1, e_2, \ldots, e_p \in FP(X) \) such that for each \(x \in X \), \(U_{e_i}(x) > \alpha \) for some \(i \in \{1, 2, \ldots, p\} \). Here \(\{ n \in \mathcal{N} : F_n \cap \bigvee_{i=1}^p U_{e_i} \} = \bigcup_{i=1}^p \{ n \in \mathcal{N} : F_n \cap U_{e_i} \} \in I \). Since \(\{ n \in \mathcal{N} : F_n \cap \bigvee_{i=1}^p U_{e_i} \} \subseteq \{ n \in \mathcal{N} : F_n \cap \bigvee_{i=1}^p U_{e_i} \} \), \(\{ n \in \mathcal{N} : F_n \cap \bigvee_{i=1}^p U_{e_i} \} \in I \).

Lowen [29] defined fuzzy compactness in a fuzzy topological spaces as follows:

A fuzzy topological spaces \(X \) is called fuzzy compact if for each family \(\mathcal{U} \) of fuzzy open sets of \(X \) and for each \(\alpha \in [0, 1] \) such that \(\forall \{ U : U \in \mathcal{U} \} \geq \alpha \) and for each \(\epsilon \in (0, \alpha] \), there exists a finite subfamily \(\mathcal{U}_0 \subseteq \mathcal{U} \) satisfying \(\forall \{ U : U \in \mathcal{U}_0 \} \geq \alpha - \epsilon \).

Theorem 5.3. A fuzzy topological space \(X \) is fuzzy compact if and only if for each \(\alpha \in [0, 1] \), for each net \(\{ F_n : n \in \mathcal{N} \} \) of fuzzy closed sets and for every ideal \(I \) on \(\mathcal{N} \) with \(FIUL(F_n) \leq 1 - \alpha \) and for each \(\epsilon \in (0, \alpha] \), \(\{ n \in \mathcal{N} : F_n \not\subseteq 1 - \alpha + \epsilon \} \in I \).

Proof. The proof is analogous to that of Theorem 5.2.

Acknowledgements. The author is grateful to the learned referees for their constructive suggestions, which improved the paper to a great extent.

References

