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1. INTRODUCTION

The rough set theory originally proposed [29] in 1982 by Pawlak is a power-
ful mathematical method to handle imprecision, vagueness, and uncertainty in data
analysis. Owing to the explorations on itself or the usefulness on computer sciences,
the rough set theory is an expanding research area. The theory has recently received
wide attention in real-life applications and theoretical research. In this theory any
subset of a universe which has uncertainty concepts is stated by a pair of ordinary
sets called the lower and upper approximations. Thus knowledge hidden in informa-
tion systems may be unraveled and expressed in the form of decision rules. So the
starting point of this theory is an observation that objects having the same descrip-
tion are indiscernible with respect to available information. In Pawlak rough sets,
the properties of elements are examined via equivalence classes, and the equivalence
classes are the building blocks for the construction of the lower and upper approxi-
mations. The lower approximation of a given set is the union of all the equivalence
classes which are subsets of the set, and the upper approximation of a given set is
the union of all the equivalence classes which have a non-empty intersection with
the set.
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Rough sets have been studied the aspects of constructive and algebraic. In con-
structive approach, the lower and upper approximation operators are defined by
using the binary relations and in algebraic (or axiomatic) approach, dual approxi-
mation operators providing some predetermined axioms are defined. The extensions
of rough set theory have gained importance in the sense of the both of these two
approaches [1, 2, 9, 17, 30, 34, 38, 10].

Some possible connections between rough sets and algebraic systems have been
investigated considering the congruence relations on algebraic systems in place of
the equivalence relations on universal sets. Biswas and Nanda [4] applied the notion
of rough sets to algebra and introduced the notion of rough subgroups. Kuroki [20],
introduced the notion of a rough ideal in a semigroup. In [7], Davvaz concerned the
relationship between rough sets and ring theory considering a ring as a universal
set. In [0], he also introduced the concept of a set-valued homomorphism for groups,
which is a generalization of ordinary homomorphism. Yamak et al. [37] investi-
gated the lower and upper approximations defined by the set-valued homomorphism
in a ring with respect to an ideal of the ring. In [30], they also investigated the
approximations in a module by using set-valued homomorphisms.

Fuzzy set theory which was introduced by Zadeh [39] in 1965 is an other math-
ematical tool to cope with the trouble of grading the turbidity in some universes.
Dubois and Prade [10] introduced the problem that communicate with the fuzzy
sets and the rough sets. Li et al. [24] studied (Z, T)-fuzzy rough approximation
operators on a ring as a universal set with respect to a 7 L-fuzzy ideal of a ring.
Recently, Li and Yin [23] investigated the properties of v-lower and T-upper fuzzy
rough approximation operators with respect to a 7-congruence L-fuzzy relation on
a semigroup as a universal set. Wu, Leung and Mi [31] expanded (Z, T)-fuzzy rough
set into two different universal sets. Since T-congruence L-fuzzy relations are not
suitable for generalized (Z,7)-fuzzy rough set, Ekiz et al. [l1] applied general-
ized (Z,T)-fuzzy rough set to the theory of ring via 7 L-fuzzy relational morphism
introduced by Ignjatovié et al. [15]. Fuzzy rough approximations, as a fuzzy general-
ization of the rough sets, received great attention in terms of the theoretical studies
[5, 8, 12, 13,18, 21, 25, 26, 27, 28, 30, 31, 32, 33, 35]. In this theoretical studies, much
attention has been paid to set approximation by fuzzy relation, while little work has
been done on extensions to the two universes. Thus, it is interesting to extend the
universes to much wider classes of mathematical objects, for example to semigroups.
This paper explores the theoretical study of generalized fuzzy rough approximation
operators within the framework of semigroup theory. The widest possible context,
we investigate relationship among L-fuzzy sets, rough sets and semigroup theory.

This paper is an attendance of ideas presented by some authors such as Davvaz
[6], Kuroki [20], Yamak et al. [30, 37] and, Li and Yin [23]. Ignjatovié et al.[15]
introduced the notions of relational morphism and 7 L-fuzzy relational morphism.
We consider two semigroups as the universal sets and we shall introduce the no-
tion of (Z,T)-L-fuzzy generalized rough set with respect to the T L-fuzzy relational
morphisms.
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2. PRELIMINARIES

In this paper we will use complete lattices as the truth values. (L, A,V,0,1) is
denote a lattice with the least element 0 and the greatest element 1. Let X be a
non-empty set called universe of discourse. L-fuzzy subsets (or L-fuzzy sets) was
introduced by Goguen [14] as a generalization of the notion of Zadeh’s fuzzy subsets.
An L-fuzzy subset of X is any function from X into L. The class of L-fuzzy subsets
(all subsets) of X will be denoted by F(X,L) (P(X)). In particular, if L = [0, 1],
then it is appropriate to replace fuzzy subset with L-fuzzy subset [39]. In this case
the set of all fuzzy subsets of X is denoted by F(X). For any p € F(X, L), the
a-cut (or level) set of p will be denoted by pg, that is, uo = {z € X | u(z) > a},
where o € L. Any L-fuzzy subset p of X has V-property if there exists an element
xo € A such that pu(xo) = \/,c4 p(x) for all non-empty subset A of X. In what
follows, a,, will denote the fuzzy singleton with value o at y and 0 elsewhere. The
characteristic function of a set A C X is a function with value 1 if y € A and 0 if
otherwise, and it is denoted by 14. Let p and v be any two L-fuzzy subsets of X.
The symbols ¢V v and p A v will means the following fuzzy subsets of X, for all x
in X

(nVvv)(z) = px) V()

(nAv)(@) = p(x) Av(z).
Some lattice structures which are used in certain part of this paper are depicted in
the following Hasse diagrams.

L=y —>

VAN
N,

FIGURE 1. A lattice structure

1
/ \
1 v
/N f
L o g
N N
Ficure 2. Lattices M5 and Nj, respectively

o973
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2.1. Fuzzy logical operators. Let L be a complete lattice. A triangular norm, or
t-norm in short, is an increasing, associative and commutative mapping 7 : L x L —
L that satisfies the boundary condition: for all « € L, T (a, 1) = «.

If, for two t-norms 7; and 73, the ordering 7i(a,8) < Tz2(a,3) holds for all
a, B € L, then one can be said that 77 is weaker than T3 or, equivalently, that 7
stronger than 77, and it is written in this case 73 < T3. A t-norm 7 on L is called
V-distributive if T (a, 81 V B2) = T(«, 1) V T («, B2) for all «, 81,82 € L. T is also
called infinitely V-distributive if 7 (o, \V;cp Bi) = Vien T (o, Bs) for all o, 8; € L,
where A is an index set. Any a € L is called an idempotent element of L with
respect to the t-norm T if T(a,a) = a. All of the idempotent elements of L is
denoted by the set Dy = {a € L | T(a,a) = a} and for any ¢t-norm 7, the operation
T is a binary operation on Dy. Two of the most popular t-norms on the lattice
L =10,1] are:

e the standard minimum operator Ty, («, 8) = min{a, 8} (the largest t-norm),
e the algebraic product T,(a, 5) = o -

The standard minimum operator Ts defined by T (o, 8) = a A S for all o, 8 € L, is
also a t-norm on an arbitrary complete lattice L.

A triangular conorm, or t-conorm in short, is an increasing, associative and com-
mutative mapping & : L x L — L that satisfies the boundary condition: for all
ael, S(o,0) =

A negator N is a decreasing mapping N : L — L satisfying AN'(0) = 1 and
N(1) = 0. A negator NV is called involutive iff N(N(a)) = a for all & € L. The
negator Ns(a) = 1—a for all a € [0, 1] is usually referred to as the standard negator.
Take the lattice Ms specified in figure 2. There are two examples of negators in the
following table

T ‘Oaﬁfyl
M) | 18y a0
No(z) | 1 8 a v O

where N3 is an involutive negator and A/ is not an involutive negator.
For a given negator N, a t-norm 7 and a t-conorm S are called dual with respect
to N iff the De Morgan’s laws are satisfied, i.e.,

By an implicator we mean a function Z : L x L — L satisfying Z(1,0) = 0 and
Z(1,1) = 7(0,1) = Z(0,0) = 1. If, for two implicators Z; and Z,, the ordering
T (o, B) < Zz(a, B) holds for all a, 8 € L, then one can be said that Z; is weaker
than Zs or, equivalently, that Z, stronger than Z;, and it is written in this case
T <1,.

Given a t-norm 7T, a t-conorm S, and an implicator Z, and two L-fuzzy subsets
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1 and v of X, we can define the corresponding L-fuzzy subsets as

(uTv)(x) =T (u(x),v(x)),
(nSv)(x) = S(p(x), v(2)),
(nZv)(z) = T(p(x), v(2)).

for all # € X. We recall here the definitions of two main cases of operators [3]. Let
T be a t-norm, S be a t-conorm and N a negator. An implicator Z is called

e an S-implicator based on S and N iff
I(z,y) = SN (z),y) for all z,y € L

e a R-implicator (residual implicator) based on T iff
Z(z,y) = Vr@a<y @ forallz,y € L

2.2. L-fuzzy relations. Let X, Y and Z be non-empty sets. An element ¢ €
P(X xY) is referred to as a (crisp) binary relation from X to Y. The inverse of the
relation ¢ is the relation defined by the set {(z,y)|(y,z) € ¢} and it is denoted by
©~1. The relation ¢ is referred to as serial if there exists y € Y such that (z,y) € ¢
forall x € X;if X =Y, then ¢ is referred to as a binary relation on X. ¢ is referred
to as reflexive if (z,x) € ¢ for all x € X; ¢ is referred to as symmetric if (z,y) € ¢
implies (y,x) € ¢ for all z,y € X; ¢ is referred to as transitive if (z,y) € ¢
and (y,z) € ¢ imply (x,2) € ¢ for all z,y,z € X. Recall that an equivalence
relation ¢ is a reflexive, symmetric, and transitive binary relation on X. If ¢ is an
equivalence relation on X then for every z € X, [z], = {y € X|(z,y) € ¢} denotes
the equivalence class of the element = determined by ¢. The compositions of the
binary relations ¢ € P(X xY') and § € P(Y x Z) is the set {(z,2) € X x Z|(z,y) €
¢ and (y,z) €0 for some y €Y} and is denoted by o .

A fuzzy L-subset R € F(X xY, L) is referred to as an L-fuzzy binary relation from
X to Y, and R(x,y) is the degree of relation between x and y, where (z,y) € X xY.
If L = [0,1], then R is called a fuzzy relation from X to Y. If for each x € X,
there exists y € X such that R(z,y) = 1, then R is referred to as a serial L-fuzzy
relation from X to Y. If X =Y, then R is referred to as an L-fuzzy relation on
X; R is referred to as a reflexive L-fuzzy relation if R(z,x) =1 for all x € X; R is
referred to as a symmetric L-fuzzy relation if R(x,y) = R(y,x) for all z,y € X; R is
referred to as a T-transitive L-fuzzy relation if R(xz,2) >\ o x R(z,y)TR(y, z) for
allz,z € X. Let R€ F(XxY,L)and R~ € F(Y x X, L) be L-fuzzy relations which
are satisfy the condition R~(y,x) = R(z,y) for all 2 € X and y € Y. Then R~! is
called the inverse L-fuzzy relation of R. The T-compositions of any L-fuzzy relations
Re F(X xY,L)and P € F(Y x Z,L) is an L-fuzzy relation Por R: X xY — L
defined by P or R(z,2) =V ey R(z,y)TP(y, 2) for all (z,2) € (X, 2).
2.3. T L-fuzzy subsemigroups. Throughout this paper (X,.) is referred to as a
semigroup. In this section, we first recall some basic definitions which are used in
the sequel. For any non-empty subsets A and B of the semigroup X the set A - B
is defined by {a-b|a € Ajbe B}. f A=@ or B=g, then A- B =g. Writing
AB means A - B. By a subsemigroup of X we mean a non-empty subset A of X
such that A% C A, and by a left (right) ideal of X such that XA C A (AX C A).
By two-sided ideal (ideal), we mean a non-empty subset of X which is both a left
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and right ideal of X. A subsemigoup A of a semigroup X is called a bi-ideal of X if
AXA CA. Let X and Y be two semigroups. Then a function f: X — Y provided
f(x).fly) = f(z.y), for all z,y € X, is a homomorphism. An equivalence relation 6
on X such that (a,b) € 6 implies (a - z,b-x) and (x - a,2z-b) € X is a congruence
relation on X. An L-fuzzy binary relation R on X is called a T-equivalence L-fuzzy
relation if it satisfies the following conditions: for all z,y,z € X,

o R(z,x)=1,
b R(x7 y) = R(y,x),
e R(z,y)TR(y,z) < R(z, 2).

An L-fuzzy binary relation R on X is called T L-fuzzy compatible if it satisfies
R(z,y)T R(a,b) < R(zx.a,y.b) for all z,y,a,b € X. R is called T-congruence L-fuzzy
relation if it is both a T-equivalence L-fuzzy relation and a T L-fuzzy compatible.
The reader will find more information about the definitions which is given below in
references [106, 19, 20, 22].

Definition 2.1. Let (X,-) be a semigroup and p € F(X, L). Then p is called

o T L-fuzzy subsemigroup of X if u(x)Tpu(y) < p(z-y) for all z,y € X.

o T L-fuzzy right (or left, two-sided, respectively) ideal of X if u(x) < p(z-y)
(or p(x) < pl(y - ), p(x) V pu(y) < p(z - y), respectively) for all z,y € X.

o T L-fuzzy generalized bi-ideal of X if p(x)Tu(y) < p(z-a-y) for all z,a,y €
X.

Definition 2.2. Let (X,-) be a semigroup and p be a T L-fuzzy subsemigroup of
X. Then p is called

o T L-fuzzy bi-ideal of X if u(x)Tu(y) < p(z-a-y) for all z,a,y € X.
e T L-fuzzy interior ideal of X if pu(a) < p(z - a-y) for all z,a,y € X.

2.4. Generalized rough sets. Now we will give some information about general-
ized rough sets [6, 7, 29, 30, 31, 32, 33, 36, 37, 38].

Let X and Y be two non-empty universes and ¢ be binary relation from X to Y.
Let a set-valued function Fy, : X — P(Y') be defined by F,,(z) = {y € Y | (z,y) € ¢}
for all z € X. Then the set Fi,(x) is called successor neighborhood of « with respect
to . Also the triple (X,Y, @) is referred to as a generalized approximation space.
Moreover, here, with the help of any set-valued function F from X into P(Y), a
binary relation from X to Y can be defined by setting ¢r = {(z,y) | y € F(x)}.
For any set A CY, the lower and upper approximations, ¢(A) and B(A), are defined
by

o(A)={z € X |Fy(x) C A} and F(A) = {z € X | Fo(z) N A # @}

The pair (p(A),B(A)) is referred to as a generalized rough set of A in X, and ¢ and B
are referred to as lower and upper generalized approximation operators, respectively.
A Pawlak approximation space is an ordered pair (X, ¢), where X is a universe and
@ is an equivalence relation on X. For each subset A of X, its lower and upper
approximations are defined by

Apr (A) ={z|[z], € A}, Apr,(A) ={z|[z], NA# a2},
576
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respectively. The pair Apr,(A4) = (MW(A),A*]W'@ (A)) is called the rough set of A
in X. It can be easily verified ¢(A) = Apr,(A) and $(A) = Apr,(A) when X =Y.
Therefore every Pawlak’s rough set may be considered as a generalized rough set.

3. CONSTRUCTION OF GENERALIZED (Z,T)-L-FUZZY ROUGH SETS

Let X and Y be a non-empty universes of discourse and R be an L-fuzzy relation
from X to Y. Then triple (X,Y, R) is called a generalized L-fuzzy approximation
space. If R is an L-fuzzy relation on X, then (X, R) is called an L-fuzzy approxima-
tion space. Especially, if R is a fuzzy relation, i.e. L = [0, 1], then some properties of
(X, R) are investigated in references [5, 8, 10, 18, 21, 25, 26, 28] and some properties
of (X,Y, R) are investigated in references [31, 32, 33].

Let 7 and Z be a t-norm and implicator on L, respectively. For any L-fuzzy
subset p € F(Y, L), the T-upper and Z-lower L-fuzzy rough approximations of p,

denoted as R (1) and R7(p) respectively, with respect to the L-approximation space
(X,Y, R) are L-fuzzy sets of X whose membership functions are defined respectively
by

= \/ T(R(z,y),u(y), z€X.

yey

Ry()(@) = N\ Z(R(z,y), p(y)), w€X.
yey

The operators R’ and Ry from F(Y, L) to F(X, L) are referred to as T-upper and
Z-lower fuzzy rough approximation operators of (X, Y, R) respectively, and the pair
(Rr(w), RT(M)) is called the (Z, T)-L-fuzzy rough set of u with respect to (X,Y, R).
Especially, if 7 is an S-implicator based on a t-conorm S and an involutive negator

N, and T and S are dual with respect to A/, then (Ez(u),RT(u)) is called the
S-L-fuzzy rough set of p with respect to (X,Y, R). If Z is an R-implicator based on

a t-norm 7, then (Rz(u), ET(N)) is called the R-L-fuzzy rough set of ;1 with respect
o (X,Y, R). In general, S-L-fuzzy rough set of p with respect to (X,Y, R) doesn’t
have to exist since there is not an involutive negator on any lattice L.

Example 3.1. Let L = M5 in Figure 2. Let the sets X = {a,b,c} and Y = {m,n, p}
be given and an L-fuzzy subset p of Y be defined by

T ‘mnp

pz) | 01 «

Then it can be considered an involutive negator N, a t-norm 7 and a t-conorm
S which are dual with respect to AV and an L-fuzzy relation R from X to Y to
determine R-L- and S-L-fuzzy rough sets of p. Consider the t-norm 7 in below if
for all z,y € L:

y, ifx=1;
T(xy)=sz, ify=1;
0, Otherwise
577
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Take the negator A3. Then the t-conorm S which is dual of the t-norm 7 with
respect to N is, for all z,y € L:

Y, fo = 0:'
S(x’y) =37, ny:07
1, Otherwise

Consider the L-fuzzy relation R from X to Y defined by the following table
R ‘ m n p

QO o Q
O™
SO
[ e

Thus the T-upper L-fuzzy rough approximation of p is

x ‘abc

(W) | 180

T

=

Let Zs be taken as an S-implicator based on the t-conorm & and the negator N>.
Then the Z-lower L-fuzzy rough approximation of p is

T ‘ ab ¢
Ry (p)(x) | 0 a1

Thus S-L-fuzzy rough set of u with respect to (X,Y, R) is (Rz, (u),ET(,u)). Let
Tr be taken as an R-implicator based on the ¢t-norm 7. Then the Z-lower L-fuzzy
rough approximation of u is

T ‘abc

Ry, (W)(=) | 011

Thus R-L-fuzzy rough set of p with respect to (X, Y, R) is (R, (u),ET(M)).

Example 3.2. Let L be the lattice structure in Figure 1, and the sets X = {a, b, ¢}
and Y = {m,n, p}, and an L-fuzzy subset pu of Y be given as follows

x ‘mnp

wz) | 6 1 o

Consider the t-norm 7 defined by

~, x=20 and y = 0;
T(z,y) =
() {sc Ay, Otherwise
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Let R be an L-fuzzy relation from X to Y defined by the following table

R‘mnp
a 0 a p
b B8 6 0
c 6 0 ~

Thus the T-upper L-fuzzy rough approximation of y is

T ‘abc

W) | a4

ET
Take the R-implicator based on the t-norm 7. The Z-lower L-fuzzy rough approxi-

mation of p is
T ‘ a b c

Ry(p)(z) | o 1 v

R-L-fuzzy rough set of p is (EZ(M),RT(;L)). S-L-fuzzy rough set of y does not
calculable since there is no involutive negator on the lattice L.

Theorem 3.3 ([31]). Let BCY and p,v,1p,1, € F(Y,L). Then

0 R Vier i) = Vie: B (1)

(ii) Ifu <v, then R (1) <§T(1/) ,
) R (/\ie] i) < /\ie] RT(N@') ,
)
)

(iii
(iv) Forall (z,y) € X x YV, R (1,)(z) = R(z,y) ,
(v) For all (z,y) € X x Y, R’ (1)(x) = V,cp Rlx,y) .

Theorem 3.4 ([31]). Let BCY and p,v,1p\(y,1p € F(Y,L). Then
() RI(/\ie[ Ni) = /\ieIEI(/Ji) s

(ii) If p < v, then Rz(p) < Rz(v) ,

(i) Vies Bz(pi) < Bz(Viep pi) -

(iv) For all (z,y) € X xY, Rz(1p\{y3) (%) = Z(R(z,y),0) ,

(v) Forall (z,y) € X xY, Ry(1p)(z) = \y¢p Z(R(z,y),0) .

Theorem 3.5. Let (X,Y, R) be a L-fuzzy approzimation space and A CY. Then

(i) Ra(A) € R (1a)la for alla € L,

(ii) If R has V-property, then R, (A) = [ET(lA)]a foralla € L.

Proof.
(i) Let * € Ro(A). Then there exists an element ¢t € A such that (x,t) €
R, since Fp (x)NA # @. So a < R(x,t) = R(x,t)T1. We have o <
R(x,t)T14(t) since t € A. And also we have a < \/,.y R(z,1)T1A(2).
Thus a < ET(IA)(CB). Therefore z € [RT(lA)]a. Consequently R, (A4) C

B (14)]a
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(ii) Let R be L-fuzzy relation which has V-property and z € [ET(l 4)]a. Hence
T .

a < R (1a)(z). Thus a <V, oy R(z,y)T1a(y) = V,ea R(z,y). Owing

to the fact that R has V-property there exists an element ¢ of A such that

a < R(z,t). So we have (z,t) € R,. Thus it can be seen that x € R, (A).
Finally, we have R, (A) = [ET(IA)]Q conjunction with (i). a

The following example shows that the equation in Theorem 3.5 (ii) is not true in

general unless R has V-property.

Example 3.6. Let L = M5 and the sets X = {k,l,m,n} and Y = {a, b, ¢} be given.
Then the relation R defined by the following table is an L-fuzzy relation from X to
Y.

R‘abc
k 01 8
Ll vy B
m 1l a1
n 0 v «

Let A = {l} and B = {a,c}. Then V, ,ycaxp R(z,y) = 1. R has not have V-
property since there is not exist any element (x,y) € A x B such that R(z,y) = 1.
And so we obtain the sets R, (B) = {m,n} and [ET(lg)]a = {l,m,n} for B, where
T is any t-norm on Ms.

Theorem 3.7. Let (X,Y, R) be an L-fuzzy approximation space and p € F(Y, L).
— —T

Then Rg(pa) € [R (1)]aTs-

Proof. Let 2 € Rg(pa). Thus Fg,(z) N o # @. Thus there exists an element

t of po such that (z,t) € Rg. In this case we have o < p(t) and S < R(z,t). So

oT B < p(t)TR(x,t) < RT(M)(x). Hence z € [ET(LL)]QTQ. We obtain Rg(pa) C

—T

(B (1)]aTs- o
According to next example Theorem 3.7 is not true with ”” C” replaced by " ="

in general.

Example 3.8. Let L = Nj and given the sets X = {k,I,m} and Y = {a,b,c}.
Then the relation R defined by the following table is an L-fuzzy relation from X to
Y.

R ‘ a b c
k v B 1
l a 0 8
m 1 a0
Let p € F(Y, L) be defined by
y ‘ a b c
nly) | B a B
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and T be any t-norm on N5. Then Rs(uq) = {k} and [ET(/J)]QT/; = {k,l,m}.

Theorem 3.9. Let p € F(Y,L) and, T1 and T3 are two t-norms on L. If Ty <73,
then B * (n) < R" ().

Proof. Take any element z from X. Then we have the ordering r" (w)(z) =
=72
Vyey B(@,9)Tip(y) < V,ey Bz, y)T2uly) = B () (). m

Theorem 3.10. Let p € F(Y,L) and, Z; and Iy are two implicator on L. If
Ty < T, then Ry, (1) < Ry, (11).

Proof. Take any element x from X. Then we have the ordering Rz (u)(x) =
Nyey B@,y)Lip(y) < \jey R(z,9)Iop(y) = Ry, (1)(2). 0

4. GENERALIZED (Z,T)-L-FUZZY ROUGH SETS IN SEMIGROUPS

In [20], Kuroki introduced the lower and the upper approximations in a semigroup
with respect to fuzzy congruences. In [23], Li and Yin generalized the lower and the
upper approximations to v-lower and T-upper fuzzy rough approximations with
respect to 7T-congruence L-fuzzy relation on a semigroup. In this study, v-lower
and T-upper fuzzy rough approximations are examined from a larger angle than the
others. We use T L-fuzzy relational morphisms which are special L-fuzzy relations
from a semigroup to any other semigroup instead of 7T-congruence L-fuzzy relation
on a semigroup. If the semigroups are chosen to be the same and the T L-fuzzy
relational morphism is make strong, then T L-fuzzy relational morphism is a 7T-
congruence L-fuzzy relation. We will construct an L-fuzzy approximation space
with T L-fuzzy relational morphisms and investigate some properties of the relations
between this approximation spaces and semigroups.

Throughout this section (X, o), (Y, %) and (Z, x) are referred as three semigroups.
And unless otherwise stated, 7 is taken as an arbitrary t-norm on a complete lattice
L.

Definition 4.1 ([15]). Let ¢ be a (crisp) binary relation from X to Y. Then ¢ is
called a relational morphism from X to'Y if the following condition hold:

(z,y),(a,b) €@ imply (zea,yxb) €y foral (z,y),(a,b) € X xY
In particular every homomorphism of semigroups are relational morphism.

Definition 4.2 ([15]). Let R € F(X xY,L). R is called T L-fuzzy relational
morphism if the following condition hold:
R(x,y)TR(a,b) < R(zea,y*b) forall z,aec X and y,beY.

Example 4.3. Two binary operations ”e” and "+ on the sets X = {a,b} and
Y = {m, n, p}, respectively, are defined by the following tables:

*‘mnp
"ab m m m m
a a b n mn n
b b b P mn o p
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Then (X, o) and (Y, ) are semigroups. Let L = N5 and R € F(X x Y, L) be defined
by

=y

S
= @ 3
oQ

S
2 Q|3

Then R is a T'L-fuzzy relational morphism from X to Y for any t-norm 7.

Example 4.4. Let (X,e) and (Y,*) be two semigroups and f : X — Y be a
homomorphism of semigroups. For any «, 8 € L which are 8 < a, let R € F(X X

Y, L) be defined by
R L F (O
(@) {ﬁ, i 1) £y

Then R is a T L-fuzzy relational morphism from X to Y for any t-norm 7.

Theorem 4.5. If R is a T L-fuzzy relational morphism, then R™' is a T L-fuzzy
relational morphism .

Proof. 1t is trivial from Definition 4.2. m]

Theorem 4.6. Let R € F(X xY,L). Then

(i) If R is a T L-fuzzy relational morphism, then R, is a relational morphism
for all o € Dr.

(ii) If R is a relational morphism for all « € L, then R is a T L-fuzzy relational
morphism.

Proof.

(i) Let @ be any element in Dy and (z,y), (a,b) € Ry. Then oo < R(x,y) and
a < R(a,b). Since a € D, then it is acquired & = o7 < R(x,y)T R(a,b) <
R(xzea,y+b) via the monotonousness of t-norm 7. To this respect (zea,y *
b) € R, is attained.

(ii) Let « = R(z,y)T R(a,b). Since o = R(x,y)T R(a,b) < R(z,y) and a =
R(z,y)T R(a,b) < R(a,b), then (z,v), (a,b) € R,. Thus (zea,y*b) € R,
by hypothesis. Hence o < R(x ® a,y *b). In conclusion R is a T L-fuzzy
relational morphism. |

Corollary 4.7. Let R € F(X x Y, L), T be an arbitrary t-norm and ImR C Dr.
Then R is a T L- fuzzy relational morphism if and only if Ry, is a relational morphism
for all o« € D.

Proof. Tt is straightforward from Theorem 4.6 in view of ImR C D. a

Theorem 4.8. Let T be an infinitely V-distributive t-norm and R € F(X x Y, L)
and P € F(Y x Z,L). If P and R are T L-fuzzy relational morphisms, then P oy R
is a T L-fuzzy relational morphism.

582



Canan Ekiz et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 4, 571-592

Proof. Take any elements (z1,21) and (z2, z2) from X x Z. Thus

(P o R)(a:l, Zl)T(P o R)($27 2’2)
= (\/ Rz, ) TP(t,21))T( \/ R(za,k)TP(k, 2))

tey key
=\ V R )T Rz, k)T P(t, 20)T Pk, 22)
teY key
< \/ \/ R(x1 @ xo,t x k)T P(t*xk, 21 * 22)
teY keY
< \/ R(xl ® T2, y)TR(yv 21 * 22)
yey

= (P oT R)(xl ® Lo, 21 * ZQ).

Since (P o7 R)(z1,21)T (P oy R)(x2,22) < (P oy R)(x1 ® x2,21 * 22), then Por R is
a T L-fuzzy relational morphism. |

Theorem 4.9. Let T be an infinitely V-distributive t-norm, R € F(X x Y, L),

PeF(Y x Z,L) and p € F(Z,L). Then Por B (u) =R’ (P’ (n)).
Proof. Take any element x from X. Thus
Por R (p)z) = \/Z (P o7 R)(w, 2)T u(2)

- \G/Z( \G/YRw,y)TP(y,z))ma
= \/ \EZRu,y)TP(y,z)n(z)
= \6/YR<x,y>T( VP Th(2))
= \/Y R(z,y)TP" (1)(y)
= ;T(PT(M))(@.

So we have Por R () =R (P (1)) 0

Theorem 4.10. Let R € F(X x Y, L) be a T L-fuzzy relational morphism and T
be an infinitely V-distributive t-norm. If p is a T L-fuzzy subsemigroup of Y, then

ET(/J/) is a T L-fuzzy subsemigroup of X.
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Proof. Take any elements a and b from X. Thus

R @TR ) = (V Ry Tu)T(\ By Tu))
y1€Y y2€Y

=V 'V Ray)Tuy)TR®, y2)T ply2)
Y1€Y y2€Y

<V 'V Rlaebys=y:)Tu(y)Tilye)
Yy1€Y y2€Y

<V V Rlaebyr=y)Tu(ys +y2)
Y1€Y y2€Y

<\ R(aeb,y)Tuly)
yey

= R (1)(asb).

So we have R’ (1) (a)TR (1)(b) < R’ (1)(a o b). O

Theorem 4.11. Let R € F(X x Y, L) be a serial T L-fuzzy relational morphism
and T be an infinitely V-distributive t-norm. If u is a T L-fuzzy left (resp. right or
two-sided) ideal of Y, then ET(A) is a T L-fuzzy left [resp.right or two-sided] ideal
of X.

Proof. Take any elements a,b € X. Since R is serial T L-fuzzy relational morphism,
then there exists an element ¢t € Y such that R(a,t) = 1. So we have

(W) = 1TR (u)(b)
= R(a,t)T \/ R(b,y)Tu(y)

yeY

=\ R(a,t)TR(b,y)Tu(y)

yey

\/ R(aeb,txy)Tu(t+y)
yey

< \/ R(a e b, k)T u(k)

key

= R (u)(asb).

IN

Consequently ET(/.L) is a T L-fuzzy left ideal of X. Similarly, if u is a T L-fuzzy right
ideal of Y, then R’ (u) is a T L-fuzzy right ideal of X. O

Theorem 4.12. Let R € F(X XY, L) be a serial T L-fuzzy relational morphism and
T be an infinitely V-distributive t-norm. If u is a T L-fuzzy generalized bi-ideal of

Y, then ET(u) is a T L-fuzzy generalized bi-ideal of X .

Proof. Take any elements z,a,y from X. Since R is serial, then there exists b € Y
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such that R(a,b) =1 for the a € X. Thus
T

R @ R () = (V R@HTwa®)T(\ Rk Tuk)

tey key

V V R )T ()T Ry, k)T (k)

teY keY

\/ R T Ry, )Tyl b+ k)

t,keY

- \/ R(x,t)TR(a,b)T R(y, k)T pu(t * b+ k)

t,keY

\/ R(xeaey txbxk)Tu(t+bxk)
t,k€Y

< \/ R(zeasyr)Tu(r)

reyY

IN

IA

= B (w(aeasy).
So we obtain B (11)(2) TR (1)(y) <R (u)(zeaey). O

The following example shows that Theorem 4.11 and Theorem 4.12 are not true
in general unless R is serial.

Example 4.13. Let ged(z,y) be denoted the greatest common divisor of the integers
x and y. Then the set N of all natural numbers is a semigroup, with binary operation
given by = x y = gcd(z,y). Let take L = [0,1] and take any t-norm 7 on [0,1]. A
fuzzy set p of N defined by p(n) = n%rl for all n € N is a T-fuzzy left ideal and also
T-fuzzy generalized bi-ideal of N. The T-fuzzy relation R of N x N defined by

1o
Riz,y) = 4o 121
0, if2ta.

for all z,y € N is a T-fuzzy relational morphism which is not serial since there is
not exist any y € N for 3 € N such that R(3,y) = 1. T-upper approximation of

with respect to the approximation space (N, R) is RT(,u)(a:) = Vyen B(z,9)T1(y)
for all x € N.

So we have

1, if2]x;

0, if2¢tax.

Hence R’ (1) is not a T-fuzzy left ideal of N since R (1)(2) = 1 £0= R (0)1) =

ET(/;)(gcd(l7 2)) = RT(M)(I x 2) and also it is not a T-fuzzy generalized bi-ideal of
Nsince R (10)(2)TR (1)) =1T1=1£0=R (0)(1) = R (u)(ged(2,1,2)) =

RT(u)(Q * 1% 2).

Corollary 4.14. Let R € F(X x Y, L) be a serial T L-fuzzy relational morphism
and T be an infinitely V-distributive t-norm. If u is a T L-fuzzy bi-ideal of Y, then
585
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ET(M) is a T L-fuzzy bi-ideal of X.
Proof. 1t is straightforward from Theorem 4.10 and Theorem 4.12. O

Theorem 4.15. Let R € F(X XY, L) be a serial T L-fuzzy relational morphism and
T an infinitely V-distributive t-norm. If u is a T L-fuzzy interior ideal of Y, then

RT(M) is a T L-fuzzy interior ideal of X.
Proof. Take any element a, z,b from X. Since R is serial, then there exist y1,y2 € Y
such that R(a,y1) =1 and R(b,y2) =1 for all a,b € X, thus we have

B (w)(z) = \/ R@tTu)

tey

=/ R(a,y))TR(z, ) TR(b, y2) T pu(t)

teyY

\/ R(a,y1)TR(x, )T R(b, y2) T (1 * t % y2)
tey

\/ R(aezeby«tsy)Tu(ys*t*ys)
tey

< \/ R(aexebr)Tu(r)

reyY

IN

IN

= R (W)(aexeb)
So we obtain ET(M) is a T L-fuzzy interior ideal of X by using Theorem 4.10. O

The following example shows that Theorem 4.15 is not true in general unless R
to be serial.

Example 4.16. Let R be the 7 L-fuzzy relational morphism which is given in Ex-
ample 4.3. R is not serial since for a € X there does not exist any element in ¥ such
that R(x,y) = 1. Let u € F(Y, L) be defined by
y | monp
uly) | B8 B0

Then p is a T L-fuzzy interior ideal of Y, where 7 is the minimum ¢-norm. So we

have
=T )8, dfr=a;
R (u)(x)—{a A

Since B (u)(a) = B £ 0 = R’ (u)(b) = B (u)(b*a +b), then R’ (1) is not a
T L-fuzzy interior ideal of X.

Definition 4.17. Let R € F(X x Y,L). Then R is called T L-fuzzy complete
relational morphism if R(x,y)7T R(a,b) = R(zea,y=b) for all z,a € X and y,b € Y.

Example 4.18. N\ {0} is a semigroup under ordinary multiplication of integers.
Let take the algebraic product 7, as the t-norm. Then a fuzzy relation R : N\ {0} x
586
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N\ {0} — [0,1] defined by R(a,b) = -L; for all a,b € N\ {0}, is a T,-fuzzy complete
relational morphism.

Example 4.19. Let R be the T L-fuzzy relational morphism which is given in Ex-
ample 4.3. Since R(b,p)T R(a,n) =0 # v = R(b,n) = R(bea,p xn), then it is not
T L-fuzzy complete relational morphism.

Theorem 4.20. Let R € F(X xY, L) be a T L-fuzzy complete relational morphism,
T be an infinitely \V-distributive t-norm and I be a R-implicator based on the t-norm
T. If u be a T L-fuzzy subsemigroup of Y, then R;(u) is a T L-fuzzy subsemigroup
of X.

Proof. Take any elements a,b € X.

Ry(m)(@) TR (1)(b) = (/\ Ra,)Zp()T( [\ R(b,k)Tu(k))

tey keY

= ANC V orAC V 5
€Y R(a)Ta<u(t) k€Y R(bk)TB<u(k)

< AC V o7 '\ B
t,k€Y R(a,t)Talu(t) R(b,k)TB<u(k)

= ANC 'V oTP
t,k€Y R(a,t)Ta<u(t)

R(b,k)TB<p(k)

< A V aTB)
txk€Y R(aeb,txk)TaTB<u(txk)

< AC Vv
PEY R(aeb,p)Ty<u(p)

= )\ Raeb,p)Zu(p)
peEY

= Ri(#)asb).

Therefore we obtain that Ry (u) is a T L-fuzzy subsemigroup of X. a

The following example shows that Theorem 4.20 is not true in general for a 7 L-
fuzzy relational morphism R. So we need R to be a 7T L-fuzzy complete relational
morphism to satisfying the theorem.

Example 4.21. Let Z be the set of all integers and M5(Z) be the set of all 2 x 2
matrices over Z. Then (Zg,+) and (M2(Z),.) are semigroups. Let a fuzzy subset p
of M3(Z) be defined by

Lo ifdetA #0,
M(A)Z{f ydads

3, if detA =0,
for all A € Ms(Z). Let the fuzzy relaton R : Zy x M3(Z) — [0, 1] be defined by
A), ifz=0
R(z, A) = HiA), fo 9’
0, ifr=1,
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for all A € M(Z). Let the t-norm T = Tp;. Then p is a fuzzy subsemigroup of
M5(Z) and R is a fuzzy relational morphism.

Let t-conorm S = Sy which is dual to the t-norm 7, and the negator A' = Ng be
considered. Then the related S-imlicator is Z(z,y) = S(NM(z),y) = (1 —z) Vy. So

R7(11)(0) = 5 and Rz (p)(T) = 1, whence Ry (1)(1)T Rz (1)(1) = 1 and Bz (u)(T +

1) = Rz(1)(0) = 5. Since 1 £ 3, then Rz() is not a T = Ty-fuzzy subsemigroup
of ZQ.

Theorem 4.22. Let R € F(X X Y, L) be a serial T L-fuzzy complete relational
morphism, T be a infinitely \V-distributive t-norm and Z be a R-implicator based on
the t-norm T. If w is a T L-fuzzy left (resp. right or two-sided) ideal of Y, then
R; () is a T L-fuzzy left (resp. right or two-sided) ideal of X .

Proof. Take any elements a,b € X. Since R is serial, there exists k € Y for allb € X
such that R(b, k) = 1. So we have

Rr(w(a) = )\ Rla,)Znu(t)

tey

= /\( \/ a)

t€Y R(a,t)Ta<u(t)

= /\( \/ «)

teY R(a,t)TR(b,k)Talu(t)

A V @)

teY R(aeb,txk)Tau(txk)

< ANC V a)

PEY R(aeb,p)Tau(p)

IN

= Ry(u)asb).
Therefore R, (p) is a T L-fuzzy left ideal of X. Similarly, if u is a T L-fuzzy right
ideal of Y, then R () is a T L-fuzzy right ideal of X. a

Theorem 4.22 is not true in general for a 7 L-fuzzy relational morphism R even if
R serial. So we need R to be a T L-fuzzy complete relational morphism to satisfying
the theorem.

Example 4.23. Let ged(z,y) be denoted the greatest common divisor of the integers
x and y. Then the set N of all natural numbers is a semigroup, with binary operation
given by = xy = ged(z,y). Let take L = [0, 1] and take any t-norm 7 on [0,1]. A
fuzzy set p of N defined by p(n) = %ﬂ for all n € N is a T-fuzzy left ideal of N.
Let take an T-fuzzy relation R of N x N defined by

1 i .
Ria.y) = {70 4210
1,  if2fa

for all x,y € N. Although R is T-fuzzy relational morphism, it is not a T-fuzzy

complete relational morphism since R(2,2)TR(2,1) = +T4 < § # 3 = R(2,1) =

R(2%2,2x1). Moreover R is serial. Now let take the residual implication Z of the ¢-

norm 7. Then Z-lower approximation of y with respect to the approximation space
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(N’ R) is EI(/J’)(:E) = /\yEN R(x7y)IN(y) = /\ygN(VR(r,y)Tqu(y) Oé) for all z € N.

So we have

Ry (p)(x) = {

Hence Rz(u) is not a T-fuzzy left ideal of N since R (1)(2) =1 £ 0= Rz(p)(1)
Ry (p)(ged(1,2)) = Rr(p)(1 % 2).

Theorem 4.24. Let R € F(X x Y,L) be a serial T L-fuzzy complete relational
morphism, T be a infinitely V-distributive t-norm and Z be a R-implicator based on
the t-norm T. If p is a T L-fuzzy generalized bi-ideal of Y, then R (1) is a T L-fuzzy

generalized bi-ideal of X.

Proof. Take any elements a,x,b € X. Since R is serial, then there exists y € Y such

1, f2]a;
0, if2¢tx.

that R(x,y) =1 for all x € X. Thus we have

Rz (1)(a) TRz () (b) =

IN

IN

IN

Consequently we obtain that Ry (u) is a T L-fuzzy generalized bi-ideal of X.

Example 4.25. Let consider the T L-fuzzy relational morphism R and the fuzzy

(\ R(a,t)Zu(t))T( /\ R(b, k)Zpu(k))

tey key

ACV oTAC V5B

teY R(at)Ta<u(t) k€Y R(bk)TA<u(k)

AV ot VB

t,k€Y  R(a,t)Ta<u(t) R(b,k)TB<p(k)

ANC '\  aTp)

t,k€Y R(a,t)Toa<u(t)
R(b,k)TB<p(k)
A (

\/ aT )

t,k€Y R(a,t)T1Ta<pu(t)
R(b,k)T B<p(k)

AC

t,k€Y R(a,t)T R(z,r)Talu(t)
R(b,E)TB<p(k)

A V

t,k€Y R(aexeb,txrxk)T aTB<pu(txrk)

N ( \V )

PEY R(aexeb,p)Ty<u(p)

/\ R(aeb,p)Zu(p)
peEY

Rr(p)(aexeb).

aTpB)

aTp)

O

subset p of N in Example 4.23. Then p is a T-fuzzy generalized bi-ideal of N. How-

ever R;(u) is not a T L-fuzzy generalized bi-ideal of N since R (u)(2)T Rz (1)(2)

IT1=1£ 0= RBy(u)(1) = Ry (1)(ged(2,1,2)) = Ry (1)(2 % 1 % 2).
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Corollary 4.26. Let R € F(X x Y, L) be a serial T L-fuzzy complete relational
morphism, T be a infinitely V-distributive t-norm and Z be a R-implicator based on
the t-norm T. If p is a T L-fuzzy bi-ideal of Y, then Ry (u) is a T L-fuzzy bi-ideal of
X.

Proof. Tt is straightforward from Theorem 4.20 and Theorem 4.24. m|

Theorem 4.27. Let R € F(X X Y, L) be a serial T L-fuzzy complete relational
morphism, T be a infinitely V-distributive t-norm, T be a R-implicator based on the
t-norm T. If p be a T L-fuzzy interior ideal of Y, then R;(u) is a T L-fuzzy interior
ideal of X.

Proof. Let pu be a T L-fuzzy interior ideal of Y and take any elements a,z,b € X.
Since R is serial, there exists y1,y2 € Y such that R(a,y1) =1 and R(b,ys) = 1 for
all a,b € X, then we have

Re(p)(z) = )\ Rz, t)Zu(t)
tey

= /\( \/ @)

teY R(e,)Ta<u(t)

= Al V a)

teY R(a,y1)T R(z,t)T R(b,y2) T a<u(t)

Al Y, a)

t€Y R(aexeb,yixtxys)T alu(yrxt*ys)

< Al \V} a)

pEY R(aexeb,p)Ta<u(p)
= Rs(n)(aexeb).

IA

So we obtain R;(u) is a T L-fuzzy interior ideal of X by using Theorem 4.20. a

The following example shows that Theorem 4.27 is not true in general unless R
to be serial.

Example 4.28. Let X and Y be the semigroups which is given in Example 4.3.
Let L = N5 and R € F(X x Y, L) be defined by

R‘mnp
a | B BB
b 0 00O

Then R is a T'L-fuzzy complete relational morphism for the t-norm 7 = A. However
R is not serial since for a € X there does not exist any element in Y such that
R(a,y) = 1. Let pp € F(Y, L) be defined by

y | monop
uly) | B8 B0
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Then p is a T L-fuzzy interior ideal of Y. So we have

=T v, ifr=a;
R =
(1)() 0. ifr=b
Since RT(M)(a) =7 £0= ET(u)(b) = ET(M)(b * a % b), then ET(/J,) is not a
T L-fuzzy interior ideal of X.

5. CONCLUSIONS

Since Zadeh and Pawlak proposed the notions of fuzzy sets and rough sets, re-
spectively, their ideas have been applied to various fields. Some properties of rough
sets and fuzzy rough sets are investigated on algebraic structures [4, 6, 7, 8, 18, 20,

, 23, 24, 36, 37]. In [23], Z-lower and T-upper fuzzy rough approximation opera-
tors with respect to T-congruence L-fuzzy relations on a semigroup are investigated.
In this paper, we consider two semigroups as the universal sets and investigate the
Z-lower and T-upper fuzzy rough approximation operators with respect to a T L-
fuzzy relational morphism. We have also studied relationships between (Z, T)-fuzzy
generalized rough sets and the L-fuzzy relations. Our future work on this topic
will focus on considering other L-fuzzy approximation spaces based on a 7T L-fuzzy
relational morphism and the algebraic structures such as groups and modules.
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