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1. Introduction

The concept of intuitionistic sets in topological spaces was introduced by Çoker
in [2]. He studied topology on intuitionistic sets in [3]. In 1937, Andre Weil [8]
formulated the concept of uniform space which is a generalization of a metric space.
J. Tong [7] introduced the concept of B-set in topological space. In this paper,
the concepts of intuitionistic B-open symmetric member, intuitionistic uniformly
B-continuous functions and intuitionistic bi-uniformly B-continuous functions are
introduced. The concepts of quasi intuitionistic B-open symmetric functions and
intuitionistic equiuniform actions are introduced. Some interesting properties are
discussed.
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2. Preliminaries

Definition 2.1 ([2]). Let X be a non empty set. An intuitionistic set (IS for short)
A is an object having the form A = ⟨x,A1, A2⟩, where A1 and A2 are subsets of X
satisfying A1 ∩ A2 = ∅ . The set A1 is called the set of members of A, while A2

is called the set of nonmembers of A. Every crisp set A on a nonempty set X is
obviously an intuitionistic set having the form ⟨x,A,Ac⟩.

Definition 2.2 ([3]). Let X be a non empty set and let the intuitionistic sets A
and B be in the form A = ⟨x,A1, A2⟩, B = ⟨x,B1, B2⟩, respectively. Furthermore,
let {Ai : i ∈ J} be an arbitrary family of intuitionistic sets in X, where Ai =
⟨x,Ai

1, Ai
2⟩. Then

(i) A ⊆ B if and only if A1 ⊆ B1 and A2 ⊇ B2.
(ii) A = B if and only if A ⊆ B and B ⊆ A.
(iii) A = ⟨x,A2, A1⟩.
(iv) ∪Ai = ⟨x,∪Ai

1,∩Ai
2⟩.

(v) ∩Ai = ⟨x,∩Ai
1,∪Ai

2⟩.
(vi) ∅∼ = ⟨x,∅, X⟩; X∼ = ⟨x,X,∅⟩.

Definition 2.3 ([3]). An intuitionistic topology (IT for short) on a nonempty set
X is a family T of intuitionistic sets in X satisfying the following axioms:

(i) ∅∼, X∼ ∈ T .
(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T .
(iii) ∪Gi ∈ T for any arbitrary family {Gi : i ∈ J} ⊆ T .

In this case the pair (X,T ) is called an intuitionistic topological space (ITS
for short) and any intuitionistic set in T is called an intuitionistic open set(IOS
for short) in X. The complement A of an intuitionistic open set A is called an
intuitionistic closed set (ICS for short) in X.

Definition 2.4 ([3]). Let (X,T ) be an intuitionistic topological space and A =
⟨x,A1, A2⟩ be an intuitionistic set in X. Then the closure and interior of A are
defined by

Icl(A) = ∩{K : K is an intuitionistic closed set in X and A ⊆ K}.
Iint(A) = ∪{G : G is an intuitionistic open set in X and G ⊆ A}.

Definition 2.5 ([4]). Let X and Y be two nonempty sets and f : X → Y a function,
B = ⟨y,B1, B2⟩ is an intuitionistic set in Y and A = ⟨x,A1, A2⟩ is an intuitionistic
set in X. Then the preimage of B under f, denoted by f−1(B), is the intuitionistic
set in X defined by f−1(B) = ⟨x, f−1(B1), f−1(B2)⟩, and the image of A under f,
denoted by f(A), is the intuitionistic set in Y defined by f(A) = ⟨y, f(A1), f

¯
(A2)⟩

where f
¯
(A2) = Y − (f(X −A2)).

Definition 2.6 ([6]). A uniform space X with uniformity ξ is a set X with a
nonempty collection ξ of subsets containing the diagonal ∆x in X×X satisfying the
following properties:

(i) If E,F ∈ ξ, then E ∩ F ∈ ξ.
(ii) If F ⊂ E and E ∈ ξ then F ∈ ξ.
(iii) If E ∈ ξ then Et = {(x, y) : (y, x) ∈ E} ∈ ξ.
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(iv) For any E ∈ ξ there is some F ∈ ξ such that F 2 ⊂ E.

Theorem 2.7 ([3]). For any intuitionistic set A in (X,T ), the following properties
hold:

(i) cl(A) = int(A),

(ii) int(A) = cl(A).

Definition 2.8 ([4]). Let A and B be two intuitionistic sets on X and Y , respec-
tively. Then the product intuitionistic set (PIS for short) of A and B on X × Y is
defined by U ×V = ⟨(X,Y ), A1×B1, ((A2)c× (B2)c)c⟩, where A = ⟨X,A1, A2⟩ and
B = ⟨Y,B1, B2⟩.

Definition 2.9 ([4]). Given the nonempty set X, we define the diagonal ∆x as the
following intuitionistic set in X ×X:

∆x = ⟨(x1, x2), {(x1, x2) : x1 = x2}, {(x1, x2) : x1 ̸= x2}⟩.

Definition 2.10 ([7]). Let (X,T ) be a topological space. A subset S in X is said
to be a t-set if intcl(s) = int(S).

Definition 2.11 ([7]). Let (X,T ) be a topological space. A subset S in X is said
to be a B-set if there is a U ∈ T and a t-set A in X such that S = U ∩A.

Definition 2.12 ([7]). Let (X,T ) and (Y, S) be any two topological space. Let
f : X → Y be a mapping. If for each open set V in Y , f−1(V ) is a B-set in (X,T ),
then f is said to be B-continuous.

Definition 2.13 ([1]). A mapping f of a uniform space X into a uniform space
X ′ is said to be uniformly continuous if, for each entourage V ′ of X ′, there is an
entourage V of X such that the relation (x, y) ∈ V implies (f(x), f(y)) ∈ V ′.

Definition 2.14 ([5]). A binary relation ≥ in a set D is said to direct D if and only
if D is nonempty and the following three conditions are satisfied:

(i) If a ∈ D, then a ≥ a.
(ii) If a, b, c are members of D such that a ≥ b and b ≥ c, then a ≥ c.
(iii) If a and b are members of D, then there exists a member c ∈ D such that

c ≥ a and c ≥ b.

By a directed set, a set D furnished with a binary relation ≥ which directs D. In
particular, the set N of all natural numbers together with the usual relation ≥ is a
directed set. Let D be a given directed set and consider an arbitrary subset E of
D. If, for every d ∈ D, there exists an e ∈ E such that e ≥ d, then E is said to be a
cofinal subset of D.

Definition 2.15 ([1]). A topological group is a set G which carries a group structure
and a topology and satisfy the following two axioms:

(i) The mapping (x, y)→ xy of G×G into G is continuous.
(ii) The mapping x → x−1 of G into G (the symmetry of the group G) is

continuous.

A group structure and a topology on a set G are said to be compatible if they satisfy
(i) and (ii).
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Definition 2.16 ([1]). The right uniformity on a topological group G is the unifor-
mity for which a fundamental system of entourages is obtained by making correspond
to each neighbourhood V of the identity element e, the set Vd of pairs (x, y) such
that yx−1 ∈ V .

3. Intuitionistiv B-open symmetric functions

Definition 3.1. An intuitionistic uniform topology (IUS for short) on a non-empty
set X is a collection ξ of subsets containing the intuitionistic diagonal ∆x in X ×X
which satisfies the following axioms

(i) ∅∼, X∼ ∈ ξ.
(ii) E1 ∩ E2 ∈ ξ for any E1, E2 ∈ ξ.
(iii) ∪Ei ∈ ξ for any arbitrary family {Ei : i ∈ J} ⊆ ξ.
(iv) If E1 ⊂ E2 and E1 ∈ ξ then E2 ∈ ξ.
(v) If E1 ∈ ξ then Et

1 = {(x, y) : (y, x) ∈ E1} ∈ ξ.
(vi) For any E1 ∈ ξ there is some E2 ∈ ξ such that E2

2 ⊂ E1.

In this case the pair (X, ξ) is called an intuitionistic uniform topological space
(IUTS for short) and any intuitionistic symmetric member in ξ is called an intu-
itionistic open symmetric member (IOSM for short) in X. The complement A of an
intuitionistic open symmetric member A is called an intuitionistic closed symmetric
member (ICSM for short) in X.

Notation 3.1. Let (X ×X, ξ) be an intuitionistic uniform topological space and it
is simply denoted by (X, ξ).

Notation 3.2. Let X ×X be a non empty set.

(i) ∅∼ = ⟨x,∅,X⟩
(ii) X∼ = ⟨x,X,∅⟩

Definition 3.2. Let (X, ξ) be an intuitionistic uniform topological space and A =
⟨x,A1, A2⟩ be an intuitionistic symmetric member in X.Then the intuitionistic uni-
form closure (IUcl for short) of A are defined by
IUcl(A) = ∩{K : K is an intuitionistic closed symmetric member in X and A ⊆ K}.

Definition 3.3. Let (X, ξ) be an intuitionistic uniform topological space and A =
⟨x,A1, A2⟩ be an intuitionistic symmetric member in X. Then the intuitionistic
uniform interior (IUint for short) of A are defined by
IUint(A) = ∪{G : G is an intuitionistic open symmetric member in X and G ⊆ A}.

Definition 3.4. Let (X, ξ) be an intuitionistic uniform topological space and S =
⟨x, S1, S2⟩ be an intuitionistic symmetric member in X is said to be an intuitionistic
t-open symmetric member if IUint(IUcl(S)) = IUint(S).The complement of an in-
tuitionistic t-open symmetric member S is called an intuitionistic t-closed symmetric
member in X.

Definition 3.5. Let (X, ξ) be an intuitionistic uniform topological space and S =
⟨x, S1, S2⟩ be an intuitionistic symmetric member in X is said to an intuitionistic
B-open symmetric member if there is a U ∈ ξ and an intuitionistic t-open symmetric
member A in X such that S = U ∩ A. The complement of an intuitionistic B-open
symmetric member S is called an intuitionistic B-closed symmetric member in X.
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Definition 3.6. Let (X, ξ1) and (Y, ξ2) be any two intuitionistic uniform topological
spaces. A function f : (X, ξ1) → (Y, ξ2) is said to be intuitionistic uniformly B-
continuous if f−1(V ) is an intuitionistic B-open symmetric member in (X, ξ1) for
every intuitionistic open symmetric member V in (Y, ξ2).

Definition 3.7. Let (X, ξ1) and (Y, ξ2) be any two intuitionistic uniform topological
spaces.A surjection f : (X, ξ1) → (Y, ξ2) between intuitionistic uniform topological
spaces are called intuitionistic bi-uniformly B-continuous if the image of every in-
tuitionistic B-open symmetric member is intuitionistic B-open symmetric and the
inverse image of any intuitionistic B-open symmetric is an intuitionistic B-open
symmetric member.

That is, f is an intuitionistic uniformly B-continuous and if E is any intuitionistic
B-open symmetric member of X then f(E) is an intuitionistic B-open symmetric
member of Y. If f is not surjective then it is called intuitionistic bi-uniformly B-
continuous if it is intuitionistic bi-uniformly B-continuous onto its image with the
subspace intuitionistic uniformity.

Proposition 3.8. Let (X, ξ1), (Y, ξ2) and (Z, ξ3) be any three intuitionistic uniform
topological spaces. A function f : (X, ξ1) → (Y, ξ2) is an intuitionistic bi-uniformly
B-continuous function and g : (Y, ξ2) → (Z, ξ3) is an intuitionistic bi-uniformly B-
continuous function. Then g o f : (X, ξ1) → (Z, ξ3) is an intuitionistic bi-uniformly
B-continuous function.

Proof. Let E = ⟨z, E1, E2⟩ be an intuitionistic B-open symmetric member in (Z, ξ3).
Since g is an intuitionistic bi-uniformly B-continuous function, g−1(E) is an intuition-
istic B-open symmetric member in (Y, ξ2). Since f is an intuitionistic bi-uniformly B-
continuous function then f−1(g−1(E)) is an intuitionistic B-open symmetric member
in (X, ξ1). Hence g o f is an intuitionistic bi-uniformly B-continuous function. □

An intuitionistic bi-uniformly continuous bijection between intuitionistic uniform
topological spaces will be called an intuitionistic uniform homeomorphism. The
inverse limit of this system is the subset X = lim←−Xα of the intuitionistic product

uniform topological space Πα∈ΛXα consisting of all (xα) such that when α ≤ β,
xα = ϕαβ(xβ). The restriction to X of the natural projection of Πα∈ΛXα onto Xα

will be denoted by ϕα, and will also be referred to as a projection; these functions are
intuitionistic uniformly B-continuous. The intuitionistic uniformity on the inverse
limit is the subspace intuitionistic uniformity induced by the intuitionistic product
uniformity on Πα∈ΛXα; more importantly for our purposes, a intuitionistic base for
this intuitionistic uniformity consists of all an intuitionistic symmetric members of
the form ϕ−1

α (E) where E = ⟨E1, E2⟩ is an intuitionistic B-open symmetric member
in Xα and α ∈ Λ. Given an inverse system {Xα, ϕαβ}α∈Λ of intuitionistic uniform
topological spaces, the inverse limit with respect to any cofinal subset of Λ is nat-
urally intuitionistic uniformly homeomorphic to the inverse limit with respect to
Λ.

Definition 3.9. Let {Xα, ϕαβ}α∈Λ be an inverse system of intuitionistic uniform
topological spaces indexed over a directed set Λ. The function ϕαβ : Xβ → Xα, α ≤ β
(called the intuitionistic bonding maps) are intuitionistic uniformly B-continuous and
satisfy, for α ≤ β ≤ γ, ϕαβ ◦ ϕβγ = ϕαγ .
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Proposition 3.10. Let {Xα, ϕαβ}α∈Λ be an inverse system of intuitionistic uniform
topological spaces having intuitionistic bi-uniformly B-continuous bonding maps. If
each of the projections ϕα is surjective then each ϕα is intuitionistic bi-uniformly
B-continuous.

Proof. Let each ϕαβ is surjective. Let F = ⟨x, F1, F2⟩ = ⟨x, ϕ−1
α (E1), ϕ

−1
α (E2)⟩ =

ϕ−1
α (E), where E is an intuitionistic B-open symmetric member in Xα, be an intu-

itionistic base element of the intuitionistic uniformity on X = lim←−Xα. If β ≥ α then

since ϕβ is surjective.

ϕβ(F ) = ⟨x, ϕβ(F1), ϕβ(F2)⟩
= ⟨x, ϕβ(ϕ

−1
β (ϕ−1

αβ(E1))), ϕβ(ϕ
−1
β (ϕ−1

αβ(E2)))⟩,

= ⟨x, ϕ−1
αβ(E1), ϕ

−1
αβ(E2)⟩,

= ϕ−1
αβ(E)

Thus ϕβ(F ) = ϕ−1
αβ(E), which is an intuitionistic B-open symmetric member. If

β ≤ α then we have

ϕβ(F ) = ⟨x, ϕβ(F1), ϕβ(F2)⟩
= ⟨x, ϕβα(ϕα(F1)), ϕβα(ϕα(F2))⟩
= ⟨x, ϕβα(ϕα(ϕ

−1
α (E1))), ϕβα(ϕα(ϕ

−1
α (E2)))⟩,

= ⟨x, ϕβα(E1), ϕβα(E2)⟩,
= ϕβα(E).

Thus ϕβ(F ) = ϕβα(E). □

4. Quasi intuitionistic B-open symmetric functions

Definition 4.1. Let (X, ξ1) and (Y, ξ2) be any two intuitionistic uniform topological
spaces. A function f : (X, ξ1) → (Y, ξ2) is said to be quasi intuitionistic B-open
symmetric if the image of every intuitionistic B-open symmetric member in (X, ξ1)
is an intuitionistic open symmetric member in (Y, ξ2).

Definition 4.2. Let (X, ξ) be an intuitionistic uniform topological space and A =
⟨x,A1, A2⟩ be an intuitionistic symmetric member in X. Then the intuitionistic
uniform B-interior (IUBint for short) of A are defined by
IUBint(A) = ∪{G : G is an intuitionistic B-open symmetric member in X and
G ⊆ A}.

Definition 4.3. Let (X, ξ) be an intuitionistic uniform topological space and A =
⟨x,A1, A2⟩ be an intuitionistic symmetric member in X. Then the intuitionistic
uniform B-closure (IUBcl for short) of A are defined by
IUBcl(A) =∩{K : K is an intuitionistic B-closed symmetric member in X and
A ⊆ K}.

Proposition 4.4. Let (X, ξ1) and (Y, ξ2) be any two intuitionistic uniform topo-
logical spaces. A function f : (X, ξ1) → (Y, ξ2) is said to be quasi intuitionis-
tic B-open symmetric iff for every intuitionistic set A = ⟨x,A1, A2⟩ of (X, ξ1),
f(IUBint(A)) ⊂ Iint(f(A)).
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Proof. Let f be a quasi intuitionistic B-open symmetric function. Now, we have
IUBint(A) ⊆ A and IUBint(A) is an intuitionistic B-open symmetric member.
Hence we obtain that f(IUBint(A)) ⊆ f(A). Since f is quasi intuitionistic B-open
symmetric member then f(IUBint(A)) is intuitionistic open symmetric member.
Iint(f(IUBint(A))) ⊆ Iint(f(A)). That is, f(IUBint(A))) ⊆ Iint(f(A)).

Conversely, assume that A is an intuitionistic B-open symmetric member in
(X, ξ1). Then f(A) = f(IUBint(A)) ⊆ Iint(f(A)). This implies that f(A) ⊆ Iint(f(A))
but Iint(f(A)) ⊆ f(A).

Consequently f(A) = Iint(f(A)) and hence f is quasi intuitionistic B-open sym-
metric member. □

Proposition 4.5. Let (X, ξ1) and (Y, ξ2) be any two intuitionistic uniform topologi-
cal spaces. If a function f : (X, ξ1)→ (Y, ξ2) is quasi intuitionistic B-open symmetric,
then IUBint(f−1(G)) ⊆ f−1(Iint(G)) for every intuitionistic set G = ⟨y,G1, G2⟩ of
(Y, ξ2).

Proof. Let f be a quasi intuitionistic B-open symmetric function. Let G be any
arbitrary intuitionistic set of (Y, ξ2). Then, IUBint(f−1(G)) is an intuitionistic B-
open symmetric member in (X, ξ1) and f is quasi intuitionistic B-open symmetric
function. Then by Proposition (4.4),

f(IUBint(f−1(G))) ⊆ Iint(f(IUBint(f−1(G)))) ⊆ int(G).

Thus IUBint(f−1(G)) ⊂ f−1(int(G)). □

5. Intuitionistic equiuniform action

Let G be a group of bijection of an intuitionistic symmetric member X. We will
denote the evaluation map by α : G × X → X, where α(g, x) = g(x). As usual the
group G is said to act freely if only the identity map in G has a fixed point. The
action is transitive if Gx = X for some, and hence all, x ∈ X. The orbit space X/G
is defined to be the set of all orbits Gx = {g(x) : g ∈ G} and the quotient map is
π : X → X/G, where π(x) = Gx. For any x ∈ X let ϕx : G → Gx be defined by
ϕx(g) = g(x).

Definition 5.1. LetG be a group of bijection of an intuitionistic uniform topological
space (X, ξ). We will call G an intuitionistic equiuniform or say G acts intuitionistic
equiuniformly, if for each intuitionistic B-open symmetric member E = ⟨x,E1, E2⟩
there exists an intuitionistic B-open symmetric member F = ⟨x, F 1, F 2⟩ such that
for all g ∈ G, g(F ) ⊆ E.

Proposition 5.2. Let G be a group acting intuitionistic equiuniformly on an intu-
itionistic uniform topological space (X, ξ).For any intuitionistic B-open symmetric
member E = ⟨x,E1, E2⟩ there exists an intuitionistic B-open symmetric member
F = ⟨x, F 1, F 2⟩ such that if (Gx,Gy) ∈ π(F ) then for some g ∈ G,(g(x), y) ∈ E.

Proof. Let G be a group acting intuitionistic equiuniformly on an intuitionistic uni-
form structure space (X, ξ). Let F be an intuitionistic B-open symmetric member
such that for all g ∈ G, g(F ) ⊂ E and suppose that (Gx,Gy) ∈ π(F ). This means
that for some g1, g2 ∈ G, We have (g1(x), g2(y)). Thus (g1(x), g2(y)) ∈ F . But then
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(g−1
2 g1(x), y) ∈ E. Therefore (g(x), y) ∈ E, where g = g−1

2 ◦ g1 ∈ G and the proof is
finished. □

Notation 5.1. Let IHX denote the group of intuitionistic uniform homeomor-
phisms of an intuitionistic uniform topological space (X, ξ) with composition as the
operation.

Notation 5.2. For any intuitionistic uniformity E on (X, ξ).We define

H(E) = {(g, h) ∈ IHX × IHX : (g(x), h(x)) ∈ E for all x ∈ X} and
U(E) = {g ∈ IHX : (x, g(x)) ∈ E for all x ∈ X}.

Proposition 5.3. If H is a subgroup of G acting by intuitionistic left translation
then for any intuitionistic open symmetric member V = ⟨x, V 1, V 2⟩ containing the
identity, U(E(V )) = V ∩H.

Proof. Let V be an intuitionistic open symmetric member, and let H be a subgroup
of G acting by intuitionistic left translation. Some h ∈ H lies in U(E(V )) if and only
if (g, hg) ∈ E(V ) for all g ∈ G that is, iff gg−1h−1 ∈ V for all g ∈ G. But the latter is
equivalent to h−1 ∈ V , which is equivalent to h ∈ V . Hence U(E(V )) = V ∩H. □

Definition 5.4. An intuitionistic uniform topological group is a symmetric member
G which carries a group structure and an intuitionistic uniform topology and satisfies
the following two axioms:

(i) The mapping (x, y) → xy of G × G into G is an intuitionistic uniformly
continuous.

(ii) The mapping x → x−1 of G into G (the symmetry of the group G) is an
intuitionistic uniformly continuous.

A group structure and an intuitionistic uniform structure on a symmetric member
G are said to be compatible if they satisfy (i) and (ii).

Definition 5.5. An intuitionistic uniform topology compatible with a group struc-
ture on G consists in giving an intuitionistic filter base B satisfying the following
axioms

(i) Given any U ∈ B,there exists V ∈ B such that V ◦ V ⊂ U .
(ii) Given any U ∈ B,there exists V ∈ B such that V −1 ⊂ U .
(iii) Given any a ∈ G and any U ∈ B, there exist V ∈ B such that V ⊂ a◦U◦a−1.

Proposition 5.6. The collection of all intuitionistic symmetric members U(E),
where E = ⟨x,E1, E2⟩ is an intuitionistic B-open symmetric in an intuitionistic
uniform topological space (X, ξ) is a neighbourhood intuitionistic filter base at e that
makes IHX into an intuitionistic uniform topological group. The intuitionistic sym-
metric members H(E) are the intuitionistic B-open symmetric member of the intu-
itionistic right uniformity determined by this intuitionistic uniform topology. More-
over, if G is an intuitionistic uniform topological group with the intuitionistic right
uniformity and H is a subgroup acting on G by intuitionistic left translation then
this intuitionistic uniform topology coincides with subgroup intuitionistic uniform
structure on H.
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Proof. Let E be an any intuitionistic B-open symmetric member. Let F = ⟨x,E1, E2⟩
be intuitionistic B-open symmetric such that F 2 = ⟨x, F 21 , F 22⟩, thus F 2 ⊂ E. Let
g, h ∈ U(F ). Then for all x,(x, h(x)) ∈ F . So(h(x), g(h(x))) ∈ F for all x and
therefore (x, h(x)) ◦ (h(x), g(h(x))) ∈ F ◦ F . (x, g(h(x)) ∈ F 2 ⊂ E for all x. It fol-
lows that U(F )2(this is product of U(F ) with itself with respect to the composition
operation) is contained in U(E) the first condition is proved. Now U(E)−1 = {g−1 :
(g(x), x) ∈ E}. But if g−1 ∈ U(E)−1 then (x, g−1(x)) = (g(g−1(x), g−1(x)) ∈ E for
all x. Therefore g−1 ∈ U(E). That is, U(E)−1 ⊂ U(E). Hence the second condition.

For the third axiom let E = ⟨x,E1, E2⟩ be an intuitionistic B-open symmetric
member and let g ∈ IHX . Since g is an intuitionistic uniform homeomorphism,
g(E) is intuitionistic B-open symmetric. Suppose k ∈ U(g(E)) and h = g−1 ◦
k ◦ g. Since (k(x), x) ∈ g(E) for all x. Therefore (g−1(k(x)), g−1(x)) ∈ E for all
x. In particular (h(x), x) = (g−1(k(g(x))), x) = (g−1(k(g(x))), g−1(g(x))). Thus
(h(x), x) = (g−1(k(g(x))), x) = (g−1(k(g(x))), g−1g(x))) ∈ E. Therefore k = g ◦
h ◦ g−1 ∈ g(U(E))g−1. In otherwords, U(g(E)) ⊂ g(U(E))g−1. Hence the third
condition. To show the second statement simply note that (g(x), h(x)) ∈ E for all
x iff (x, h(g−1(x))) ∈ E for all x and therefore (g, h) ∈ H(E) iff g ◦ h−1 ∈ U(E). To
prove the last statement, Let V be an intuitionistic open symmetric member about
e. Then since V is an intuitionistic symmetric member if H acts as intuitionistic
left translations,

H ∩ U(E(V )) = {g ∈ H : (x, gx) ∈ E(V )forallx ∈ G}
= {g ∈ H : xx−1g−1 ∈ V forallx ∈ G} = H ∩ V.

□
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