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1. Introduction

The fuzzy partial differential equation method is used for solving many prob-
lems in several applied fields like economics, finance, engineering and physics. These
problems often boil down to the solution of a fuzzy equation. Therefore, various
approaches for solving these problems have been reported in the last years.
In present paper, we assume wave-like models which can exactly describe some non-
linear phenomena, for example, wave-like equation can describe earthquake stresses
[11], coupling currents in a flat multi-strand two-layer super conducting cable [1] and
non-homogeneous elastic waves in soils [13]. We suppose the existence of imprecise
parameters in wave-like equations with variable coefficients. Since fuzzy sets theory
[17] is a powerful tool for modeling imprecise and processing vague in mathematical
models, hence, the our idea is solving wave-like equations with fuzzy parameters via
the same strategy as Buckley and Feuring [3] using Variational Iteration Method
(VIM) [3, 9, 10].
In comparison with the paper [2], we investigate problems with fuzzy parameters,
fuzzy initial value and fuzzy forcing functions, we propose a new theorem for finding
the exact fuzzy solutions, witch extended to the Buckley-Feuring for the proposed
models .
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We begin section 2 by defining the notation where we will use in the paper and
then in Sections 3 and 4, fuzzy wave-like equations and the VIM are illustrated,
respectively. In Section 5, the same strategy as in Buckley-Feuring is presented for
two-dimensional fuzzy wave-like equation. Some examples in Section 6 are illus-
trated.

2. Preliminaries

We place a bar over a capital letter to denote a fuzzy number of Rn. So, A, K, γ,
β etc. all represent fuzzy numbers of Rn for some n. We write µA(t), a number

in [0, 1], for the membership function of A evaluated at t ∈ Rn. An α−cut of A is
always a closed and bounded interval that written A[α], is defined as {t | µA(t) ≥ α}
for 0 < α < 1. We separately specify A[0] as the closure of the union of all the A[α]
for 0 < α ≤ 1

Definition 2.1 ([6]). Let RF =
{
A | A : R → [0, 1], satisfies (1)− (4)

}
:

(1) ∀A ∈ RF , A is normal.
(2) ∀A ∈ RF , A is a fuzzy convex set.
(3) ∀A ∈ RF , A is upper semi-continuous on R.
(4) A[0] is a compact set.

Then RF is called fuzzy number space and ∀A ∈ RF , A is called a fuzzy number.

Definition 2.2 ([6, 12]). We represent an arbitrary fuzzy number by an ordered
pair of functions A[α] = [A1(α), A2(α)], α ∈ [0, 1], which satisfy the following
requirements :

(1) A1(α) is a nondecreasing function over [0, 1],
(2) A2(α) is a nonincreasing function on [0, 1]
(3) A1(α) and A2(α) are bounded left continuous on (0, 1], and right continuous

at α = 0, and
(4) A1(α) ≤ A2(α), for 0 ≤ α ≤ 1

Definition 2.3. Let A = (a1, a2, a3), (a1 < a2 < a3). A is called triangular fuzzy
number with peak (center) a2, left width a2 − a1 > 0 and right width a3 − a2 > 0,
if its membership function has the following form :

µA(t) =


1− (a2 − t)

a2 − a1
, a1 ≤ t ≤ a2

1− (t− a2)

a3 − a2
, a2 ≤ t ≤ a3

0, otherwise.

The support of A is [a1, a3]. We can write :

(1) A > 0 if a1 > 0,
(2) A ≥ 0 if a1 ≥ 0,
(3) A < 0 if a3 < 0,
(4) A ≤ 0 if a3 ≤ 0.
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Definition 2.4. For arbitrary fuzzy numbers A[α] =
[
a1(α), a2(α)

]
and

B[α] =
[
b1(α), b2(α)

]
we have algebraic operations as follows :

(1) (A+B)[α] = [a1(α) + b1(α), a2(α) + b2(α)]
(2) (A−B)[α] = [a1(α)− b2(α), a2(α)− b1(α)]
(3)

kA[α] =

{
[ka1(α), ka2(α)] k ≥ 0

[ka2(α), ka1(α)] k < 0

(4) (A.B)[α] = {min z,max z} with

z =
{
a1(α).b1(α), a1(α).b2(α), a2(α).b1(α), a2(α).b2(α)

}
(5) If 0 /∈ [b1(α), b2(α)]

A

B
[α] = [(

a1
b1

)(α), (
a2
b2

)(α)]

where

(
a1
b1

)(α) = min

{
a1(α)

b1(α)
,
a1(α)

b2(α)
,
a2(α)

b1(α)
,
a2(α)

b2(α)

}
(
a2
b2

)(α) = max

{
a1(α)

b1(α)
,
a1(α)

b2(α)
,
a2(α)

b1(α)
,
a2(α)

b2(α)

}
We adopt the general definition of a fuzzy number given in [7].

3. Fuzzy wave-like equations

We consider the wave-like equations in one and tow dimensional cases which can
be written in the forms

• One-dimensional [2] :

(3.1) Utt(t, x) + P (x, γ)Uxx(t, x) = F (t, x, k)

• Two-dimensional [2] :

(3.2) Utt(t, x, y) + P (x, γ)Uxx(t, x, y) +Q(y, β)Uyy(t, x, y) = F (t, x, y, k)

or

(3.3) Utt(t, x, y) +Q(y, β)Uxx(t, x, y) + P (x, γ)Uyy(t, x, y) = F (t, x, k)

subject to certain initial and boundary conditions.
These initial and boundary conditions, in state two-dimensional, can come in a
variety of forms such as

U(0, x, y) = c1 or U(0, x, y) = g1(x, y, c2) or U(M1, x, y) = g2(x, y, c3, c4), . . .

In this paper the method is applied for the wave-like equation (3.2). For (3.1) and
(3.3), the same discussion can be made. In following lines, the components of (3.2)
are enumerated :

• I1 = [0,M1], I2 = [M2,M3] and I3 = [M4,M5] are three intervals, which
Mn1 (n1 = 2, 3, 4, 5) is negative or positive and M1 > 0.
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• F (t, x, y, k), U(t, x, y), P (x, γ) and Q(y, β) will be continuous functions for

(t, x, y) ∈
∏3

j=1 Ij .

• P (x, γ) and Q(y, β) have a finite number of roots for each (x, y) ∈ I2 × I3

• k =
(
k1, . . . , kn

)
, c =

(
c1, . . . , cm

)
, γ =

(
γ1, . . . , γs

)
and β =

(
β1, . . . , βe

)
are vectors of constants with kj ∈ Jj , ci ∈ Li and γr ∈ Hr and βl ∈ Dl.

Assume that (3.2) has a solution

(3.4) U(t, x, y) = G(t, x, y, k, c, γ, β)

for G and Gtt(t, x, y, k, c, γ, β)+P (x, γ)Gxx(t, x, y, k, c, γ, β)+Q(y, β)Gyy(t, x, y, k, c, γ, β)

are continuous with (t, x, y) ∈
3∏

j=1

Ij , k ∈ J =

n∏
j=1

Jj , c ∈ L =

m∏
i=1

Li, γ ∈ H =

s∏
r=1

Hr

and β ∈ D =
e∏

l=1

Dl.

Suppose the constant kj , ci ,γr and βl are imprecise in their values. We will model
this uncertainty by substituting triangular fuzzy numbers for the kj , ci , γr and
βl. If we fuzzify (3.2), then we obtain the fuzzy wave-like equation. Using the
extension principle, we compute F , P and Q from F , P and Q where F (t, x, y,K)
has K = (k1, . . . , kn), P (x, γ) has γ = (γ1, . . . , γs) and Q(y, β) a β = (β1, . . . , βe)
for kj , γr and βl a triangular fuzzy numbers in Jj (0 ≤ j ≤ n), Hr (0 ≤ r ≤ s) and
Dl (0 ≤ l ≤ e).

The function U is changed to U where U :
3∏

j=1

Ij → F(R). That is, U(t, x, y) is a

fuzzy function. The fuzzy wave-like equation is

(3.5) U t(t, x, y) + P (x, γ)Uxx(t, x, y) +Q(y, β)Uyy(t, x, y) = F (t, x, y,K)

subject to certain initial and boundary conditions. The initial and boundary condi-
tions can be of the form

U(0, x, y) = C1 or U(0, x, y) = g1(x, y, C2) or U(M1, x, y) = g2(x, y, C3, C4)

The gj is the fuzzification gi via extension principle. We wish to solve the problem
given in (3.5). Finally, we fuzzify G in (3.4).
Let Z(t, x, y) = G(t, x, y,K,C, γ, β) where Z is computed using the extension prin-
ciple and is a fuzzy solution. In section 5, we will discuss the concept solution with
the same strategy as Buckley-Feuring for fuzzy wave-like equation.
Let K[α] =

∏n
j=1 Kj [α], γ[α] =

∏s
r=1 γr[α], C[α] =

∏m
i=1 Ci[α]

and β[α] =
∏e

l=1 βl[α]

4. The variational iteration method

To illustrate the basic idea of the VIM we consider the following PDE model

(4.1) LtU + LxU + LyU +NU = F (t, x, y, k)

where Lt, Lx and Ly are linear operators of t, x and y, respectively, and N is a
nonlinear operator, also F (t, x, y, k) is the source non-homogeneous term. According

530



L. S. Chadli et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 4, 527–547

to the VIM [15, 16], we can express the following correction function for (4.1) in t,
x and y directions can be written as

Un+1(t, x, y) = Un(t, x, y) +

∫ t

0

λ1{LsUn + (Lx + Ly +N)Ũn − F (s, x, y, k)}ds

Un+1(t, x, y) = Un(t, x, y) +

∫ x

0

λ2{LsUn + (Lt + Ly +N)Ũn − F (s, x, y, k)}ds

Un+1(t, x, y) = Un(t, x, y) +

∫ y

0

λ3{LsUn + (Lt + Lx +N)Ũn − F (s, x, y, k)}ds

where λi, 1 ≤ i ≤ 3 are general Lagrange multipliers, which can be identified opti-

mally via the variational theory [8, 16], and Ũn is a restricted variation which means

δŨn = 0. It is required first to determine the Lagrange multipliers λi that will be
identified optimally via integration by parts.The approximations Un+1, n ≥ 0, of
the solution U(t, x, y) will immediately follow upon using any selective function U0.
The initial values U(0, x, y) and Ut(0, x, y) are usually used for the selected zeroth
approximations U0. With the Lagrange multipliers λi determined, then several ap-
proximation ui(t, x, y), i ≥ 0, can be determined. Consequently, the solution is given
as

U(t, x, y) = lim
n→∞

Un(t, x, y)

According to the VIM, we construct a correction functional for (3.2) in t-direction
as follows

(4.2) Un+1(t, x, y) = Un(t, x, y)

+

∫ t

0

λ(s)
{
(Un)ss + P (x, γ)(Ũn)xx +Q(y, β)(Ũn)yy − F (s, x, y, k)

}
ds

where n ≥ 0 and λ is a lagrange multiplier. We now determine the lagrange multiplier

δUn+1(t, x, y) = δUn(t, x, y)

+ δ

∫ t

0

λ(s)
{
(Un)ss + P (x, γ)(Ũn)xx +Q(y, β)(Ũn)yy − F (s, x, y, k)

}
ds

δUn+1(t, x, y) = δUn(t, x, y)

+ λ(s)δ
(
(Un)s

)
|s=t − λ

′
(s)δUn|s=t +

∫ t

0

λ′′(s)δUnds

Therefore, the stationary conditions are :

δUn : λ′′(s) = 0,

δUn : 1− λ
′
(s)|s=t = 0,

δ
(
(Un)s

)
: λ(s)|s=t = 0.
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So, the lagrange multiplier is λ = s − t. Submitting the results into (4.2) leads to
the following iteration formula

(4.3) Un+1(t, x, y) = Un(t, x, y)

+

∫ t

0

(s− t){(Un)ss + P (x, γ)(Ũn)xx +Q(y, β)(Ũn)yy − F (s, x, y, k)}ds

Iteration formula start with initial approximation, for example U0(t, x, y) = U(0, x, y).
Also the VIM used for system of linear and nonlinear partial differential equation
[16] which handled in obtain Seikkala solution.

5. Buckley-Feuring Solution (BFS) and Seikkala solution (SS)

5.1. Buckley-Feuring solution. Buckley-Feuring first present the BFS [3, 4]. They
define for all t, x, y and α ∈ [0, 1],

Z(t, x, y)[α] =
[
z1(t, x, y, α), z2(t, x, y, α)

]
, F

(
t, x, y, k

)
[α] =

[
F1(t, x, y, α), F2(t, x, y, α)

]
and to check (3.5) we must compute P

(
x, γ

)
and Q

(
y, β

)
. The α-cuts of P

(
x, γ

)
and Q

(
y, β

)
can be found as follows :

∀α ∈ [0, 1]

P (x, γ)[α] =
[
P1(x, α), P2(x, α)

]
, Q(y, β)[α] =

[
Q1(y, α), Q2(y, α)

]
Let W = K[α]× C[α]× γ[α]× β[α]. By definition

(5.1) z1(t, x, y, α) = min
{
G(t, x, y, k, c, γ, β) : (k, c, γ, β) ∈ W

}
(5.2) z2(t, x, y, α) = max

{
G(t, x, y, k, c, γ, β) : (k, c, γ, β) ∈ W

}
and

(5.3) F1(t, x, y, α) = min
{
F (t, x, y, k) : k ∈ K[α]

}
,

(5.4) F2(t, x, y, α) = max
{
F (t, x, y, k) : k ∈ K[α]

}
∀(t, x, y) ∈

∏3
j=1 Ij and α ∈ [0, 1]

and

(5.5) P1(x, α) = min {P (x, γ)|γ ∈ γ[α]} , P2(x, α) = max {P (x, γ)|γ ∈ γ[α]}

∀x ∈ I2 and α ∈ [0, 1]
and

(5.6) Q1(y, α) = min
{
Q(y, β)|β ∈ β[α]

}
, Q2(y, α) = max

{
Q(y, β)|β ∈ β[α]

}
∀y ∈ I3 and α ∈ [0, 1]
Assume that P (x, γ) > 0, (P1(x, α) > 0), Q(y, β) > 0, (Q1(y, α) > 0) and the
zi(t, x, y, α) i = 1, 2, has continuous partial derivatives so (zi)tt+Pi(zi)xx+Qi(zi)yy
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is continuous for all t, x, y ∈
∏3

j=1 Ij and all α ∈ [0, 1].
Define

Γ(t, x, y, α) =
[
(z1)tt + P1(x, α)(z1)xx +Q1(y, β)(z1)yy, (z2)tt

+ P2(x, α)(z2)xx +Q2(y, β)(z2)yy

]
for all (t, x, y) ∈

∏3
j=1 Ij and all α.

If, for each fixed t, x, y ∈
∏3

j=1 Ij , Γ(t, x, y, α) defines the α−cut of a fuzzy number,

then will be said that Z(t, x, y) is differentiable and is written

Ztt[α] + P [α]Zxx[α] +Q[α]Zyy[α] = Γ(t, x, y, α)

for all (t, x, y) ∈
∏3

j=1 Ij and all α

Sufficient conditions for Γ(t, x, y, α) to define α−cut of a fuzzy number are [7] :

(i) (z1)tt(t, x, y, α) + P1(x, α)(z1)xx(t, x, y, α) + Q1(y, α)(z1)yy(t, x, y, α) is an

increasing function of α for each (t, x, y) ∈
∏3

j=1 Ij
(ii) (z2)tt(t, x, y, α) + P2(x, α)(z2)xx(t, x, y, α) + Q2(y, α)(z2)yy(t, x, y, α) is an

decreasing function of α for each (t, x, y) ∈
∏3

j=1 Ij and

(iii) for (t, x, y) ∈
∏3

j=1 Ij(
z1
)
tt
(t, x, y, 1) + P1(x, 1)

(
z1
)
xx
(t, x, y, 1) +Q1(y, 1)

(
z1
)
yy
(t, x, y, 1)

≤
(
z2
)
tt
(t, x, y, 1) + P2(x, 1)

(
z2
)
xx
(t, x, y, 1) +Q2(y, 1)

(
z2
)
yy
(t, x, y, 1)

Now we assume that the zi(t, x, y, α) has continuous partial derivatives

so (zi)tt + Pi(x, α)(zi)xx +Qi(y, α)(zi)yy is continuous on
∏3

j=1 Ij × [0, 1] i = 1, 2.

Hence, if conditions (i)-(iii) above are hold, Z(t, x, y) is differentiable.

For Z(t, x, y) to be a BFS of the fuzzy wave-like equation we need

(a) Z(t, x, y) differentiable
(b) (3.5) hold for U(t, x, y) = Z(t, x, y),
(c) Z(t, x, y) satisfies the initial and boundary conditions. Since no exist spec-

ified any particular initial and boundary conditions, then only is checked if
(3.5) hold.

Z(t, x, y) is a BFS (without the initial and boundary conditions) if Z(t, x, y) is
differentiable and (Z)tt+P (x, γ)(Z)xx+Q(y, β)(Z)yy = F (t, x, y, k) or the following
equations must hold

(5.7) (z1)tt + P1(x, α)(z1)xx +Q1(y, α)(z1)yy = F1(t, x, y, α)

(5.8) (z2)tt + P2(x, α)(z2)xx +Q2(y, α)(z2)yy = F2(t, x, y, α)

for all (t, x, y) ∈
∏3

j=1 Ij and α ∈ [0, 1].
Now we will present a sufficient condition for the BFS to exist such as Buckley and
Feuring. Since there are such a variety of possible initial and boundary conditions,
so we will omit them from the following theorem. One must separately check out
the initial and boundary conditions. So, we will omit the constants ci, 1 ≤ i ≤ m,
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from the problem. Therefore, (3.4) becomes U(t, x, y) = G(t, x, y, k, γ, β),

so Z(t, x, y) = G
(
t, x, y,K, γ, β

)
.

Theorem 5.1. Assume Z(t, x, y) is differentiable.

(a)

(5.9) if P (x, γi) > 0 and
∂P

∂γi

∂G

∂γi
> 0 x ∈ I2 for i = 1, 2, . . . ,m

and

(5.10) if Q(y, βl) > 0 and
∂Q

∂βl

∂G

∂βl
> 0 y ∈ I3 for l = 1, 2, . . . , e

and

(5.11) if
∂G

∂kj

∂F

∂kj
> 0 for j = 1, 2, . . . , n

Then BFS = Z(t, x, y)
(b) If relations (5.9) does not hold for some i or relation (5.10) does not hold

for some l, or relation (5.11) does not hold for some j, then Z(t, x, y) is not
a BFS.

Proof.
(a) For simplicity assume kj = k, γi = γ , βl = β and ∂G

∂k < 0, ∂F
∂k < 0,

∂P
∂γ > 0, ∂G

∂γ > 0, ∂Q
∂β < 0 and ∂G

∂β < 0. The proof for ∂G
∂k > 0, ∂F

∂k > 0, ∂P
∂γ < 0,

∂G
∂γ < 0, ∂Q

∂β > 0 and ∂G
∂β > 0 is similar and omitted.

Since ∂G
∂k < 0 , ∂G

∂γ > 0 and ∂G
∂β < 0, then from (5.1) and (5.2) we have

z1(t, x, y, α) = G
(
t, x, y, k2(α), γ1(α), β2(α)

)
,

z2(t, x, y, α) = G
(
t, x, y, k1(α), γ2(α), β1(α)

)
from (5.3), (5.4) and ∂F

∂k < 0 we have

F1(t, x, y, α) = F
(
t, x, y, k2(α)

)
F2(t, x, y, α) = F

(
t, x, y, k1(α)

)
since (5.5) and ∂P

∂γ > 0 we have

P1(x, α) = P
(
x, γ1(α)

)
P2(x, α) = P

(
x, γ2(α)

)
from (5.6) and ∂Q

∂β < 0 we have

Q1(y, α) = Q
(
y, β2(α)

)
Q2(y, α) = Q

(
y, β1(α)

)
for all α ∈ [0, 1] where K[α] =

[
k1(α), k2(α)

]
, γ[α] =

[
γ1(α), γ2(α)

]
and

β[α] =
[
β1(α), β2(α)

]
.

Now G(t, x, y, k, γ, β) solves (3.2), which means

Gtt + P (x, γ)Gxx +Q(y, β)Gyy = F (t, x, y, k)
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for all (t, x, y) ∈
3∏

j=1

Ij , k ∈ J , γ ∈ H and β ∈ D

Suppose Z(t, x, y) is differentiable and P (x, γ) > 0 and Q(y, β) > 0 so

∂ttz1(t, x, y, α) + P1(x, α)∂xxz1(t, x, y, α) +Q1(y, α)∂yyz1(t, x, y, α) = F1(t, x, y, α)

∂ttz2(t, x, y, α) + P2(x, α)∂xxz2(t, x, y, α) +Q2(y, α)∂yyz2(t, x, y, α) = F2(t, x, y, α)

for all (t, x, y) ∈
3∏

j=1

Ij and α ∈ [0, 1]

Hence, (5.7) and (5.8) holds and Z(t, x, y) is a BFS.

(b) Now consider the situation where (5.9) or (5.10) or (5.11) does not hold.

Let us only look at one case where ∂Q
∂β < 0

(
assume ∂G

∂k > 0, ∂F
∂k > 0, ∂G

∂γ > 0,

∂P
∂γ > 0 and ∂G

∂β > 0, P (x, γ) > 0 and Q(y, β) > 0
)
. Then we have

z1(t, x, y, α) = G
(
t, x, y, k1(α), γ1(α), β1(α)

)
z2(t, x, y, α) = G

(
t, x, y, k2(α), γ2(α), β2(α)

)
F1(t, x, y, α) = F

(
t, x, y, k1(α)

)
, F2(t, x, y, α) = F

(
t, x, y, k2(α)

)
and

P1(x, α) = P
(
x, γ1(α)

)
P2(x, α) = P

(
x, γ2(α)

)
Q1(y, α) = Q

(
y, β2(α)

)
Q2(y, α) = Q

(
y, β1(α)

)
then we have

∂ttz1(t, x, y, α) + P1(x, α)∂xxz1(t, x, y, α) +Q1(y, α)∂yyz1(t, x, y, α) = F1(t, x, y, α)

∂ttz2(t, x, y, α) + P2(x, α)∂xxz2(t, x, y, α) +Q2(y, α)∂yyz2(t, x, y, α) = F2(t, x, y, α)

which is not true, because

Gtt

(
t, x, y, k1(α), γ1(α), β1(α)

)
+ P

(
x, γ1(α)

)
Gxx

(
t, x, y, k1(α), γ1(α), β1(α)

)
+Q

(
x, β2(α)

)
Gyy

(
t, x, y, k1(α), γ1(α), β1(α)

)
= F

(
t, x, y, k1(α)

)
Gtt

(
t, x, y, k2(α), γ2(α), β2(α)

)
+ P

(
x, γ1(α)

)
Gxx

(
t, x, y, k2(α), γ2(α), β2(α)

)
+Q

(
y, β1(α)

)
Gyy

(
t, x, k1(α), γ1(α), β2(α)

)
= F

(
t, x, y, k2(α)

)
□

Therefore, if Z(t, x, y) is a BFS and it satisfies the initial and boundary conditions
we will say that Z(t, x, y) is a BFS satisfying the initial and boundary conditions.
If Z(t, x, y) is not a BFS, then we will consider the SS.
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5.2. Seikkala solution (SS). Now let us define the SS [14]. Let

U(t, x, y)[α] =
[
u1(t, x, y, α), u2(t, x, y, α)

]
For example suppose P (x, γ) < 0 and Q(y, β) > 0, so consider the system of wave-
like equations

(5.12) (u1)tt + P1(x, α)(u2)xx +Q1(y, α)(u1)yy = F1(t, x, y, α)

(5.13) (u2)tt + P2(x, α)(u1)xx +Q2(y, α)(u2)yy = F2(t, x, y, α)

Or if P (x, γ) > 0, Q(y, β) > 0, ∂P
∂γ > 0, ∂G

∂γ < 0, ∂Q
∂β > 0, ∂G

∂β > 0

(u1)tt + P1(x, α)(u1)xx +Q1(y, α)(u1)yy = F1(t, x, y, α)

(u2)tt + P2(x, α)(u2)xx +Q2(y, α)(u2)yy = F2(t, x, y, α)

for all (t, x, y) ∈
∏3

j=1 Ij and α ∈ [0, 1]. We append to Eqs. (5.12) and (5.13) any

initial and boundary conditions. For example, if it was U(0, x, y) = C then we add

u1(0, x, y, α) = c1(α)

u2(0, x, y, α) = c2(α)

where C[α] =
[
c1(α), c2(α)

]
.

Let ui(t, x, y, α) i=1,2 solve Eqs. (5.12) and (5.13) plus initial and boundary condi-
tions.
If [

u1(t, x, y, α), u2(t, x, y, α)
]
,

defines the α−cut of a fuzzy number, for all (t, x, y) ∈
∏3

j=1 Ij , then U(t, x, y) is the
SS.
We will say that derivative condition holds for fuzzy wave-like equation
when Eqs.(5.9),(5.10) and (5.11) are true.

Theorem 5.2.

(1) If BFS = Z(t, x, y), then SS = Z(t, x, y).
(2) If SS = Z(t, x, y) and the derivative condition holds, then BFS = U(t, x, y).

Proof.

(1) Follows from the definition of BFS and SS.
(2) If SS = U(t, x, y) then the Seikkala derivative [4] exists and since the deriv-

ative condition holds, therefore, Eqs. following holds

(u1)tt + P1(x, α)(u1)xx +Q1(y, α)(u1)yy = F1(t, x, y, α)

(u2)tt + P2(x, α)(u2)xx +Q2(y, α)(u2)yy = F2(t, x, y, α)

Also suppose one kj = k, γi = γ, βl = β, ∂G
∂γ < 0, ∂P

∂γ < 0, ∂G
∂k < 0 and

∂F
∂k < 0, ∂G

∂β > 0, ∂Q
∂β > 0 (the other cases are similar and are omitted). We
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see

z1(t, x, y, α) = G
(
t, x, y, k2(α), γ2(α), β1(α)

)
z2(t, x, y, α) = G

(
t, x, y, k1(α), γ1(α), β2(α)

)
F1(t, x, y, α) = F

(
t, x, y, k2(α)

)
, F2(t, x, y, α) = F

(
t, x, y, k1(α)

)
P1(x, α) = P

(
x, γ2(α)

)
, P2(x, α) = P

(
x, γ1(α)

)
Q1(y, α) = Q

(
y, β1(α)

)
, Q2(y, α) = Q

(
y, β2(α)

)
Now look at Eqs. (5.7), (5.8) also Eqs. (5.1) and (5.2), implies that

u1(t, x, y, α) = G
(
t, x, y, k2(α), γ2(α), β1(α)

)
= z1(t, x, y, α)

u2(t, x, y, α) = G
(
t, x, y, k1(α), γ1(α), β2(α)

)
= z2(t, x, y, α)

Therefore BFS = U(t, x, y)

□

Lemma 5.3. Consider (3.1) suppose Z(t, x) is differentiable.

(a)

(5.14) if P (x, γi) > 0 and
∂P

∂γi

∂G

∂γi
> 0 x ∈ I2 for i = 1, 2, . . . ,m

and

(5.15) if
∂G

∂kj

∂F

∂kj
> 0 for j = 1, 2, . . . , n

Then BFS=Z(t, x)
(b) If relations (5.14) does not hold for some i or relation (5.15) does not hold

for some j, then Z(t, x) is not a BFS.

Proof. It is similar to theorem (5.1) □

6. Examples

We consider the following examples ([2],[15]) and we added fuzzy parameters to
these references.

Example 6.1. We first consider the one-dimensional wave-like equation with vari-
able coefficients as

(6.1) Utt +
γ

2
x2Uxx = kxt

with the initial conditions

U(0, x) = cx2 (U(0, x))t = 1
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where x ∈ [0, 1], t ∈]0, π/2], k ∈ [0, J ], γ ∈]0, 1] and c ∈ [L, 0[ are constants.
According to the VIM, a correct functional for (6.1) from (4.3) can be constructed
as follows

Un+1(t, x) = Un(t, x) +

∫ t

0

(s− t){(Un(s, x))ss +
γ

2
x2(Ũn(s, x))xx − kxs}ds

Beginning with an initial approximation U0(t, x) = U(0, x) = cx2 + t, we can obtain
the following successive approximations

U1(t, x) = cx2(1− γ t2

2! ) + kx t3

6 + t

U2(t, x) = cx2(1− γ t2

2! + γ2 t4

4! ) + kx t3

6 + t

and Un(t, x) = cx2(1− γ t2

2! + γ2 t4

4! + . . .+ (−1)nγn t2n

(2n)! ) + kx t3

6 + t, n ≥ 1

The VIM admits the use of U(t, x) = lim
n→∞

Un(t, x), which gives the exact solution

U(t, x) = cx2 cos(
√
γt) + kx

t3

6
+ t

Now we fuzzify F (t, x, k), P (x, γ) and

G(t, x, k, c, γ) = cx2 cos(
√
γt) + kx

t3

6
+ t

Clearly

F (t, x,K) = Kxt

P (x, γ) =
γ

2
x2

so that

F1(t, x, α) = k1(α)xt, F2(t, x, α) = k2(α)xt

P1(x, α) =
γ1(α)

2
x2, P2(x, α) =

γ2(α)

2
x2

Also G(t, x,K,C, γ) = Cx2 cos(
√
γt) +Kx t3

6 + t, therefore

zi(t, x, α) = ci(α)x
2 cos(

√
γi(α)t) + ki(α)x

t3

6
+ t

for i = 1, 2 and C < 0 ( C = (c1, c2, c3) also with c3 < 0 ), K[α] = [k1(α), k2(α)],
C[α] = [c1(α), c2(α)], and γ[α] = [γ1(α), γ2(α)].

Z(t, x) is differentiable because (zi(t, x, α))tt +
γi(α)

2 x2(zi(t, x, α))xx for i = 1, 2 are

α−cuts of Kxt i.e. α−cuts of a fuzzy number. Due to

P (x, γ) > 0

∂G

∂k1
> 0,

∂F

∂k1
> 0

∂P

∂γ
> 0,

∂G

∂γ
= −cx2 t

2
√
γ
sin(

√
γt) > 0
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That is, (Z)tt +
γ
2x

2(Z)xx = Kxt, a fuzzy number.

So Lemma 5.3 implies the result that Z(t, x) is a BFS. We easily see that

zi(0, x, α) = ci(α)x
2

(
zi(0, x, α)

)
t
= 1

for i = 1, 2, so Z(t, x) also satisfies the initial condition. The BFS that satisfies the
initial condition may be written as

Z(t, x) = Cx2 cos(
√
γt) +Kx

t3

6
+ t

for all t ∈]0, π/2], x ∈ [0, 1]

Example 6.2. Consider the two-dimensional wave-like equation with variable co-
efficients as

(6.2)


Utt +

γ
2x

2Uxx + β
2 y

2Uyy = k1x
2 − k2y

2

U(0, x, y) = c1x
2(

U(0, x, y)
)
t
= c2y

which t ∈ [ 3π2 , 2π], x, y ∈ [0, 1], k1 ∈ [J1, 0[, k2 ∈]0, J2], γ ∈ [ 12 , 1], c1 ∈]0, L1],

c2 ∈ [0, L2] and β ∈ [ 12 , 1]
Similarly we can establish an iteration formula in the form

(6.3) Un+1(t, x, y) = Un(t, x, y) +

∫ t

0

(s− t)
{
(Un(s, x, y))ss

+
γ

2
x2(Ũn(s, x, y))xx +

β

2
y2(Ũn(s, x, y))yy − k1x

2 + k2y
2
}
ds

We begin with an initial arbitrary approximation :

U0(t, x, y) = U(0, x, y) = c1x
2 + c2yt

and using the iteration formula (6.3), we obtain the following successive approxima-
tions

U1(t, x, y) = c1x
2(1− γ t2

2! ) +
k1

γ x2(γt
2

2! )−
k2

β y2(βt
2

2! ) + c2yt

U2(t, x, y) = c1x
2(1− γ t2

2! + γ2 t4

4! ) +
k1

γ x2(γt
2

2! − γ2 t4

4! )−
k2

β y2(βt
2

2! − β2 t4

4! ) + c2yt

U3(t, x, y) = c1x
2(1− γ t2

2! + γ2 t4

4! − γ3 t6

6! ) +
k1

γ x2(γ t2

2! − γ2 t4

4! + γ3 t6

6! )−
k2

β y2(β t2

2! − β2 t4

4! + β3 t6

6! ) + c2yt

and

Un(t, x, y) = c1x
2(1− γ

t2

2!
+ γ2 t

4

4!
+ . . .+ (−1)nγn t

2n

2n!
) +

k1
γ
x2(γ

t2

2!
− γ2 t

4

4!
+

(−1)n+1γn t
2n

2n!
)− k2

β
y2(β

t2

2!
− β2 t

4

4!
+ (−1)n+1βn t

2n

2n!
) + c2yt

Then, the exact solution is given by

U(t, x, y) = c1x
2 cos(

√
γt) +

k1
γ
x2

(
1− cos(

√
γt)

)
− k2

β
y2
(
1− cos(

√
βt)

)
+ c2yt
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Fuzzify F (t, x, k1, k2), P (x, γ), Q(y, β) and

G
(
t, x, k1, k2, c, γ, β

)
= c1x

2 cos(
√
γt) +

k1
γ
x2

(
1− cos(

√
γt)

)
−

k2
β
y2
(
1− cos(

√
βt)

)
+ c2yt

producing their α-cuts

z1(t, x, y, α) = c11(α)x
2 cos(

√
γ1(α)t) +

k11(α)

γ1(α)
x2(1− cos(

√
γ1(α)t))

− k22(α)

β1(α)
y2(1− cos(

√
β1(α)t)) + c21(α)yt

z2(t, x, y, α) = c12(α)x
2 cos(

√
γ2(α)t) +

k12(α)

γ2(α)
x2(1− cos(

√
γ2(α)t))

− k21(α)

β2(α)
y2(1− cos(

√
β2(α)t)) + c22(α)yt

F1(t, x, y, α) = k11(α)x
2 − k22(α)y

2, F2(t, x, y, α) = k12(α)x
2 − k21(α)y

2

P1(x, α) =
γ1(α)

2
x2, P2(x, α) =

γ2(α)

2
x2

Q1(x, α) =
β1(α)

2
y2, Q2(x, α) =

β2(α)

2
y2

where K1[α] =
[
k11(α), k12(α)

]
, K2[α] =

[
k21(α), k22(α)

]
, C1[α] =

[
c11(α), c12(α)

]
,

C2[α] =
[
c21(α), c22(α)

]
, γ[α] =

[
γ1(α), γ2(α)

]
and β[α] =

[
β1(α), β2(α)

]
.

We first check to see if Z(t, x, y) is differentiable. We compute[
(z1)tt +

γ1(α)

2
x2(z1)xx +

β1(α)

2
y2(z1)yy, (z2)tt +

γ2(α)

2
x2(z2)xx +

β2(α)

2
y2(z2)yy

]
which are α−cuts of K1x

2 −K2y
2 i.e. α−cuts of a fuzzy number. Hence, Z(t, x, y)

is differentiable.
Since

P (x, γ) > 0, Q(y, β) > 0

∂G

∂k
> 0,

∂F

∂k
> 0

∂P

∂γ
> 0,

∂G

∂γ
= − ctx2

2
√
γ
sin(

√
γt) + (− k1

β2
(1− cos(

√
γt)) +

k1t

2γ
√
γ
sin(

√
γt))x2 > 0

∂Q

∂β
> 0,

∂G

∂β
= (

k2
β2

(1− cos(
√
βt))− k2t

2β
√
β
sin(

√
βt))y2 > 0

Then Theorem (5.1) tells us that Z(t, x, y) is a BFS. The initial condition

zi(0, x, y, α) = c1i(α)x
2

(zi(0, x, y, α))t = c2i(α)y
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Therefore Z(t, x, y) is a BFS which also satisfies the initial condition. This BFS may
be written

Z(t, x, y) = C1x
2 cos(

√
γt) +

k1
γ
x2

(
1− cos(

√
γt)

)
− k2

β
y2
(
1− cos(

√
βt)

)
+ C2yt

for all (x, y) ∈ [0, 1], t ∈ [ 3π2 , 2π]

Example 6.3. We consider the one-dimensional wave-like model

(6.4)

 ∂ttU(t, x)− γx∂xxU(t, x) = kxt2

U(0, x) = 0
∂tU(0, x) = cx2

which t ∈ [0, 1], x ∈]0, 1], and the value of parameters k, c and γ are in intervals
[0, J ], [0, L1] and [L2, 0[, respectively.
We can obtain the following iteration formula for the Eq.(6.4)

(6.5) Un+1(t, x) = Un(t, x) +

∫ t

0

(s− t)
{
(Un(s, x))ss − γx(Ũn(s, x))xx − kxt2

}
ds

We begin with an initial approximation : U(0, x) = cx2t. By Eq (6.5), after than
two iterations the exact solution is given in the closed form as

U(t, x) = G(t, x, k, c, γ) = cx2t+ cγx
t3

3
+ kx

t4

4!
Since

P (x, γ) > 0

∂G

∂k
> 0,

∂F

∂k
> 0

∂P

∂γ
< 0,

∂G

∂γ
= cx

t3

3
> 0

then there is no BFS (lemma (5.3)). We proceed to look for a SS. We must solve

(u1(t, x, α))tt − γ2(α)x(u1(t, x, α))xx = k1(α)xt
2

(u2(t, x, α))tt − γ1(α)x(u2(t, x, α))xx = k2(α)xt
2

subject to
ui(0, x, α) = ci(α)x

2t

for i= 1,2 and

K̃[α] =
[
k1(α), k2(α)

]
, C̃[α] =

[
c1(α), c2(α)

]
, and γ[α] =

[
γ1(α), γ2(α)

]
.

By VIM, the solution is

u1(t, x, α) = c1(α)x
2t+ c1(α)γ2(α)x

t3

3
+ k1(α)x

t4

4!

u2(t, x, α) = c2(α)x
2t+ c2(α)γ1(α)x

t3

3
+ k2(α)x

t4

4!
.

Now we show
[
u1(t, x, α), u2(t, x, α)

]
defines α−cut of a fuzzy number.

Thus we only need to check if ∂u1

∂α > 0and ∂u2

∂α < 0. Since ui(t, x, α) are continuous
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and u1(t, x, 1) = u2(t, x, 1). There is a region R contained in [0, 1]×]0, 1] for which
the SS exists and in [0, 1]×]0, 1]−R there may be no SS.
Since K, C and γ are triangular fuzzy numbers, hence, we pick simple fuzzy param-
eter so that k

′

1(α) = c
′

1(α) = γ
′

1(α) = λ and k
′

2(α) = c
′

2(α) = γ
′

2(α) = −λ. Then, for
the SS exists we need

∂u1

∂α
= λ(x2t+ γ2(α)x

t3

3
− c1(α)x

t3

3
+ x

t4

4!
) > 0

∂u2

∂α
= −λ(x2t+ γ1(α)x

t3

3
− c2(α)x

t3

3
+ x

t4

4!
) < 0

Therefore inequalities hold if

(6.6) x2t+ γ1(α)x
t3

3
− c2(α)x

t3

3
+ x

t4

4!
> 0

for t ∈ [0, 1], x ∈]0, 1]. The inequality (6.6) holds if

0 ≤ t ≤ 1 (c2(α)− γ1(α))
t2

3
− t3

4!
< x ≤ 1 for all α ∈ [0, 1]

So under the above assumptions we may choose

R =
{
(t, x)|0 ≤ t ≤ 1 (c2(α)− γ1(α))

t2

3
− t3

4!
< x ≤ 1 for all α ∈ [0, 1]

}
and the SS exists on R in form Eqs.

U(t, x) = Cx2t+ Cγx
t3

3
+Kx

t4

4!

for all t ∈ [0, 1], x ∈]0, 1].

Example 6.4. We consider the one-dimensional wave-like model

(6.7)

{
∂ttU(t, x) + γx∂xxU(t, x) = −kx2

U(0, x) = c sin(x)

which t ∈ [0, 1], x ∈ [0, π] ,and the value of parameters k, c and γ are in intervals
[0, J ], [0, L] and ]0,H], respectively.
We can obtain the following iteration formula for the Eq.(6.7)

(6.8) Un+1(t, x) = Un(t, x) +

∫ t

0

(s− t)
{
(Un(s, x))ss + γx(Ũn(s, x))xx + kx2

}
ds

We begin with an initial approximation : U(0, x) = c sin(x). By Eq (6.8), after than
two iterations the exact solution is given in the closed form as

U(t, x) = G(t, x, k, c, γ) = c sin(x) + cx sin(x)(cosh(
√
γt)− 1) + γkx

t4

12
− x2 t

2

2

since ∂F
∂k = −x2 < 0 and ∂G

∂k = γx t4

12 − x2 t2

2 > 0 for√
6x

γ
< t ≤ 1 and 0 < x <

γ

6
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then there is no BFS (lemma (5.3)). We proceed to look for a SS. We must solve

(u1(t, x, α))tt + γ1(α)x(u1(t, x, α))xx = −k2(α)x
2

(u2(t, x, α))tt + γ2(α)x(u2(t, x, α))xx = −k1(α)x
2

subject to

ui(0, x, α) = ci(α) sin(x)

for i = 1, 2 and

k̃[α] =
[
k1(α), k2(α)

]
, c̃[α] =

[
c1(α), c2(α)

]
and γ[α] =

[
γ1(α), γ2(α)

]
.

By VIM, the solution is

(6.9) u1(t, x, α) = c1(α) sin(x)

+ c1(α)x sin(x)
(
cosh(

√
γ1(α))t− 1

)
+ γ1(α)k2(α)x

t4

12
− k2(α)x

2 t
2

2

u2(t, x, α) = c2(α) sin(x)

+ c2(α)x sin(x)
(
cosh(

√
γ2(α))t− 1) + γ2(α)k1(α)x

t4

12
− k1(α)x

2 t
2

2
.

Since ui(t, x, α) are continuous and u1(t, x, 1) = u2(t, x, 1) then we only require to
check if ∂u1

∂α > 0, ∂u2

∂α < 0 and K, C, γ are triangular fuzzy numbers, hence, we pick

simple fuzzy parameter so that k
′

1(α) = c
′

1(α) = γ
′

1(α) = λ and

k
′

2(α) = c
′

2(α) = γ
′

2(α) = −λ. Then, for the SS exists we need

∂u1

∂α
= λ

(
sin(x) + x sin(x)

(
cosh(

√
γ1(α))t− 1

)
+ c1(α)

t

2
√

γ1(α)
x sin(x) sinh

(√
γ1(α) t

)
− γ1(α)x

t4

12
+ k2(α)x

t4

12
+ x2 t

2

2

)
> 0.

∂u2

∂α
= −λ

(
sin(x) + x sin(x)

(
cosh(

√
γ2(α))t− 1

)
+ c2(α)

t

2
√
γ2(α)

x sin(x) sinh
(√

γ2(α)t
)
− γ2(α)x

t4

12
+ k2(α)x

t4

12
+ x2 t

2

2

)
< 0.

Therefore inequalities hold if

(6.10) sin(x) + x sin(x)
(
cosh(

√
γ1(α))t− 1

)
+ c1(α)

t

2
√
γ1(α)

x sin(x) sinh
(√

γ1(α)t
)
− γ1(α)x

t4

12
+ k2(α)x

t4

12
+ x2 t

2

2
> 0

(6.11) sin(x) + x sin(x)
(
cosh(

√
γ2(α))t− 1

)
+ c2(α)

t

2
√
γ2(α)

x sin(x) sinh
(√

γ2(α)t
)
− γ2(α)x

t4

12
+ k1(α)x

t4

12
+ x2 t

2

2
> 0
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it is sufficient that

(6.12) − γ2(α)x
t4

12
+ k1(α)x

t4

12
+ x2 t

2

2
> 0

for t ∈ [0, 1], x ∈ (0, π]. The inequality (6.12) holds if

0 ≤ t ≤ 1 (γ2(α)− k1(α))
t2

6
< x ≤ π for all α ∈ [0, 1]

So under the above assumptions we may choose

R =
{
(t, x)|0 ≤ t ≤ 1 (γ2(α)− k1(α))

t2

6
< x ≤ π for all α ∈ [0, 1]

}
and the SS exists on R in form Eqs.(6.9).

Example 6.5. We consider the one-dimensional wave-like model Utt(t, x)− γUxx = −k
U(0, x) = 0
Ut(0, x) = c exp(x)

which x ∈ [0, 1] , t ∈]0, 1
2 ] and the value of parameters k, c and γ are in intervals

[0, J ], [0, 10] and ]0, 10] respectively.
We can obtain the following iteration formula

(6.13) Un+1(t, x) = Un(t, x) +

∫ t

0

(s− t){(Un)ss(s, x)− γ(Ũn)xx(s, x) + k}ds

We begin with an initial approximation : U0(t, x) = U(0, x) = c exp(x)t. By (6.13),
the following successive approximation are obtained

U0(t, x) = U(0, x) = c exp(x)t

U1(t, x) =
c√
γ exp(x)(t+ (

√
γ)3 t3

3! )− k t2

2

U2(t, x) =
c√
γ exp(x)(t+ (

√
γ)3 t3

3! + (
√
γ)5 t5

5! )− k t2

2

...

Un(t, x) =
c√
γ exp(x)(t+ (

√
γ)3 t3

3! ) + ...+ (
√
γ)2n+1 t2n+1

2n+1! )− k t2

2 , n ≥ 1

The VIM admits the use of U(t, x) = lim
n→∞

Un(t, x)

U(t, x) = G(t, x, k, c, γ) =
c
√
γ
exp(x) sinh(

√
γt)− k

t2

2

which gives the exact solution. There is no BFS because P (x, γ) = −γ < 0 with
γ ∈]0, 10] (lemma (5.3)). We proceed to look for a SS. We must solve

(u1(t, x, α))tt − γ2(u2(t, x, α))xx = −k2(α)

(u1(t, x, α))tt − γ1(u1(t, x, α))xx = −k1(α)

subject to ui(0, x, α) = ci(α) exp(x)t for i = 1, 2
and K[α] = [k1(α), k2(α)], C[α] = [c1(α), c2(α)] and γ[α] = [γ1(α), γ2(α)].

544



L. S. Chadli et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 4, 527–547

We note

ξ1 =
c1(α)

4
√

γ1(α)γ2(α)
, ζ1 =

c2(α)
4
√

γ1(α)γ2(α)

γ1(α)

ξ2 =
c2(α)

4
√

γ1(α)γ2(α)
, ζ2 =

c1(α)
4
√

γ1(α)γ2(α)

γ2(α)

The solution is

(6.14) u1(t, x, α) = ξ1
exp(x)

2

(
sinh

(
4
√

γ1(α)γ2(α)t
)
+ sin

(
4
√
γ1(α)γ2(α)t

))
+ ζ1

exp(x)

2

(
sinh

(
4
√
γ1(α)γ2(α)t

)
− sin

(
4
√
γ1(α)γ2(α)t

))
− k2(α)

t2

2

u2(t, x, α) = ξ2
exp(x)

2

(
sinh

(
4
√

γ1(α)γ2(α)t
)
+ sin

(
4
√
γ1(α)γ2(α)t

))
+ ζ2

exp(x)

2

(
sinh

(
4
√
γ1(α)γ2(α)t

)
− sin

(
4
√
γ1(α)γ2(α)t

))
− k1(α)

t2

2

We only need to check if ∂u1

∂α > 0 and ∂u2

∂α < 0, since the ui(t, x, α) are continuous
and u1(t, x, 1) = u2(t, x, 1).
We pick simple fuzzy parameter k′1(α) = c′1(α) = γ′

1(α) = λ > 0
and k′2(α) = c′2(α) = γ′

2(α) = −λ.

Let w = 4
√
γ1(α)γ2(α), s = γ1(α)γ2(α) and b = γ2(α)− γ1(α)

Now we need to check if ∂u1

∂α > 0 and ∂u2

∂α < 0, for all t ∈]0, 1
2 ].

We note

η1 =

(
− 4sγ1(α) + c2(α)γ1(α)b− 4c2(α)s

)
4w3

(
γ1(α)

)2

η2 =

(
− 4sγ2(α)− c1(α)γ2(α)b− 4c1(α)s

)
4w3

(
γ2(α)

)2

∂u1

∂α
=

λ

2

((
(
4s− c1(α)b

4w5
)
(
sinh(wt) + sin(wt)

)
+ η1

(
sinh(wt)− sin(wt)

)
+

c1(α)b

4s
t
(
cosh(wt) + cos(wt)

)
+

c2(α)b

4γ1(α)
√
s
t
(
cosh(wt)− cos(wt)

))
exp(x) + t2

)
> 0
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(6.15)
∂u2

∂α
=

−λ

2

(((4s+ c2(α)b

4w5

)(
sinh(wt) + sin(wt)

)
+ η2

(
sinh(wt)− sin(wt)

)
− c2(α)b

4s
t
(
cosh(wt) + cos(wt)

)
− c1(α)b

4γ2(α)
√
s
t
(
cosh(wt)− cos(wt)

))
exp(x) + t2

)
< 0

Since (6.15) holds for each t ∈]0, 1
2 ], x ∈ [0, 1], c ∈ [0, 10] and γ ∈]0, 10], therefore,

U(t, x) is SS in form Eqs.(6.14), for all t ∈]0, 1
2 ], x ∈ [0, 1], c ∈ [0, 10] and γ ∈]0, 10]

7. Conclusion

In this paper, we give sufficient condition for the Buckley-Feuring solution to exist
by the VIM for the proposed models , we obtain the exact solution of various kinds
of fuzzy wave-like equations. Application of this method is easy and calculation
of successive approximations is direct and straightforward. We using the VIM and
strategy based on [5] introduced two type of solutions, the Buckley-Feuring solution
and the Seikkala solution. If the Buckley-Feuring solution fails to exist and when the
Seikkala solution fails to exist we offer no solution to the fuzzy wave-like equations.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the quality of the paper.

References

[1] A. A. Akhmetov, Long current loops as regular solutions of the equation for coupling currents
in a flat two-layer superconducting cable, Elsevier, Cryogenics 43 2003.

[2] T. Allahviranloo, S. Abbasbandy and H. Rouhparvar, The exact solutions of fuzzy wave-like

equations with variable coefficients by a variational iteration method, Appl. Soft Comput. 11
(2011) 2186–2192.

[3] J. J. Buckley and Y. Qu, Solving fuzzy equations : a new solution concept, Fuzzy Sets and

Systems 50 (1992) 1–14.
[4] J. J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems 110 (2000)

43–54.
[5] J. J. Buckley and T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets

and Systems 105 (1999) 241–248.
[6] P. Diamond and P. E. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World

Scienific, Singapore, 1994.
[7] R. Getschel and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986)

31–43.
[8] J. H. He, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern

Phys. B 20(10) (2006) 1141–1199.
[9] J. H. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci.

Numer. Simul. 2 (4) (1997) 203–205.
[10] J. H. He, Variational iteration method-a kind of non-linear analytical technique: some exam-

ples, Int. J. Nonlinear Mech. 34 (1999) 699–708.
[11] J. R. Holliday, J. B. Rundle, K. F. Tiampo, W. Klein and A. Donnellan, Modification of the

pattern informatics method for forecasting large earthquake events using complex eigenfactors,
Elsevier, Tectonophysics 413 2006.

[12] M. Ma, M, Friedman and A. Kandel, A new fuzzy arithmetic, Fuzzy Sets and Systems 108

(1999) 83–90.
[13] G. D. Manolis and T. V. Rangelov, Non-homogeneous elastic waves in soils: Notes on the

vector decomposition technique, Soil Dyn. Earthq. Eng. 26 (2006) 952–959.

546



L. S. Chadli et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 4, 527–547

[14] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319–330.
[15] AM. Wazwaz and A. Gorguis, Exact solutions for heat-like and wave-like equations with vari-

able coefficients, Appl. Math. Comput. 149(1) (2004) 15–29.

[16] AM. Wazwaz, The variational iteration method for solving linear and nonlinear systems of
PDEs, Comput. Math. Appl. 54 (2007) 95–902.

[17] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

Lalla Saadia Chadli (chadli@fstbm.ac.ma)
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