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Abstract. When we try to generalize the concept of compactness
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1. Introduction

We are surrounded by vagueness and uncertainties, which make our under-
standing of physical objects incomplete. Unfortunately, in most cases, it is almost
impossible to eliminate vagueness and uncertainties. It is therefore very important
to have a mathematical framework which allows us to handle problems precisely
even in the presence of vagueness and uncertainties.

Such a mathematical framework should be sufficiently universal, i.e., useful in
solving wide range of problems. In order to provide such a system, a great deal
of efforts have been made. Examples include the theory of Fuzzy sets by Zadeh
[11] and the theory of Rough sets by Pawlak [8]. The theory of soft sets is another
mathematical tool to deal with uncertainties introduced by Molodtsov in 1999 [7]. It
aims at modeling wide range of problems from, e.g, physical science, economics and
engineering. Indeed, Molodtsov [7] has already presented applications of his theory
to operations research, game theory, probability theory and so on.

The definition of soft set is simple, so the theory of soft sets finds lots of areas
for its application. From theoretical point of view, its mathematical aspects are of
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interest as well. For these reasons, the research of the theory of soft sets is becoming
more and more active.

Maji et al. [6] defined and studied basic notions of soft set theory. The study of
soft topology was started by Shabir and Naz [9], independently by Çağman et al.
[2]. The purpose of this paper is to obtain a deeper understanding of soft topology.

Since compactness is a very important concept in topology, it is natural to think
about its soft analogue. But then we face the following question: Given a subset of
the initial universe, when should we say the subset is soft compact? In this paper,
we give two different definitions of soft compactness, and compare them in relation
with several soft topological properties.

2. Preliminaries

Definition 2.1 ([7]). Let U be an initial universe and E be a set of parameters.
Then a soft set over U is a function F : E → P(U).

Definition 2.2. Let ϕ : U → U ′ be a function and F (resp. F ′) be a soft set over
U (resp. U ′) with its parameter set E. Then ϕ(F ) (resp. ϕ−1(F ′)) is the soft set on
U ′ (resp. U) defined by (ϕ(F ))(e) = ϕ(F (e)) (resp. (ϕ−1(F ))(e) = ϕ−1(F (e))).

We will identify a soft set F : E → P(U) with a subset of E × U . We shall use
symbols F, F ′, . . . for soft sets.

Soft versions of basic relations (resp. operations) on sets are obtained by requiring
the relations (resp. applying the operations) at each parameter.

Definition 2.3 ([6]). Let F and F ′ be soft sets over U . Then

• (Soft subset) F is a soft subset of F ′, denoted by F ⊂̃F ′, if F (e) is a subset
of F ′(e) for every e ∈ E.

In this case, we also say that F ′ is a soft superset of F .
• (Soft equality) F is soft equal to F ′, denoted by F =̃F ′, if both F ⊂̃F ′ and
F ′ ⊂̃F hold.

• (Soft intersection) The soft intersection of F and F ′, denoted by F ∩̃F ′, is
defined by (F ∩̃F ′)(e) = F (e) ∩ F ′(e) for every e ∈ E.

• (Soft union) The soft union of F and F ′, denoted by F ∪̃F ′, is defined by
(F ∪̃F ′)(e) = F (e) ∪ F ′(e) for every e ∈ E.

• (Soft complement) The soft complement of F , denoted by F c̃, is defined by
F c̃(e) = U \ F (e) for every e ∈ E.

Here and subsequently, the tilde (̃·) is used to distinguish “soft” objects from
classical (usual) ones.

For properties of these relations and operations, we refer the reader to [2].

Definition 2.4. Let X be a subset of U . Then X̃ is the soft set given by X̃(e) = X
for all parameters e ∈ E.

Therefore we have, for example, E × U =̃ Ũ , X̃ c̃ =̃ (̃Xc) and X̃ ∪ Y =̃ X̃ ∪̃ Ỹ .

Definition 2.5. Let x be an element of U and F be a soft set over U . We say that
x is a soft element of F , denoted by x ∈̃F , if x ∈ F (e) holds for every e ∈ E.

The reader should keep in mind that x /̃∈F and ∀e ∈ E (x /∈ F (e)) are different
in general. This simple fact plays an important role in the theory of soft sets.
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3. Soft topology

This section introduces several soft topological concepts and studies their basic
properties.

Definition 3.1 ([2, 9]). A family τ of soft sets over U is called a soft topology on
U if the following three conditions are satisfied:

• ∅̃ and Ũ are in τ ,
• τ is closed under finite soft intersection,
• τ is closed under (arbitrary) soft union.

We refer to a triplet ⟨U, τ, E⟩ as a soft topological space. Each member of τ is
called a soft open set. Throughout this paper, ⟨U, τ, E⟩ stands for a soft topological
space.

Definition 3.2 ([9]). Let x be an element of the universe U . A soft set F is called
a soft neighborhood of x if there exists a soft open set F ′ such that x ∈̃F ′ ⊂̃F .

Definition 3.3. Let F be a soft set over U . Then

• (Soft closure [9]) The soft closure of F , denoted by C̃l(F ), is the soft inter-
section of all soft closed supersets of F .

• (Soft interior [12]) The soft interior of F , denoted by Ĩnt(F ), is the soft
union of all soft open subsets of F .

(Classical) topological concepts, such as boundary and limit points, are general-
ized to the setting of soft sets in a natural way. Interested reader will find more
information from [2, 4, 9].

There are generalizations also of separation axioms.

Definition 3.4. Let ⟨U, τ, E⟩ be a soft topological space. Then

• (Soft Hausdorff space [9]) ⟨U, τ, E⟩ is called a soft Hausdorff space provided
that there exist, for each pair x, y ∈ U of distinct points, soft open sets
Fx, Fy satisfying x ∈̃Fx, y ∈̃Fy and Fx ∩̃Fy =̃ ∅̃.

• (Soft normal space) ⟨U, τ, E⟩ is called a soft normal if for every disjoint

X,Y ⊂ U with X̃, Ỹ soft closed, there exist soft open sets FX , FY such that
X̃ ⊂̃FX , Ỹ ⊂̃FY and FX ∩̃FY =̃ ∅̃.

Remark 3.5. The reader should note that some literature, including [9], uses the
terminology “soft normal space” for a different concept.

It is interesting to see whether or not familiar results about Hausdorff spaces
hold also for soft Hausdorff spaces. Our first example of such a result is related to
product, so we give a definition of soft product here:

Definition 3.6. Let ⟨U, τ, E⟩, ⟨U ′, τ ′, E⟩ be soft spaces. Then their soft product is
the soft space ⟨U × U ′, τ×, E⟩, where τ× is the soft topology on U × U ′ generated
by {F × F ′ | F ∈ τ, F ′ ∈ τ ′}.

In the above definition, F × F ′ is the Cartesian product of F and F ′ defined by
(F × F ′)(e) := F (e)× F ′(e) (∀e ∈ E).
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Remark 3.7. Some literature (e.g., [1, 10]) employ a different definition of the
Cartesian product of soft topological spaces: If F : E → X and F ′ : E′ → X ′ are
soft sets, then F × F ′ is a soft set over X ×X ′ with its parameter set E ×E′ given
by (F × F ′)(e, e′) = F (e)× F ′(e′).

Proposition 3.8. Let ⟨U, τ, E⟩ and ⟨U ′, τ ′, E⟩ be soft spaces.
(i) Both ⟨U, τ, E⟩ and ⟨U ′, τ ′, E⟩ are a soft Hausdorff space =⇒ Their soft product
is a soft Hausdorff space.
(ii) The converse of the above implication is not true.

Proof. (i) Take distinct (x, y), (x′, y′) from U × U ′. Without loss of generality, we
assume x ̸= x′. Then, by assumption, there exist disjoint soft open sets Fx and Fx′

separating x and x′. It is then clear that Fx× Ũ ′ and Fx′ × Ũ ′ are disjoint soft open
sets separating (x, y) from (x′, y′).
(ii) Put S1 := ⟨Z2, τ, E⟩ and S2 := ⟨{u},P(E × {u}), E⟩, where E := {e1, e2} and

τ := {∅̃, {(e1, 0̄), (e2, 1̄)}, {(e1, 1̄), (e2, 0̄)}, Z̃2}. An easy computation shows that the
soft product of S1 and S2 is soft Hausdorff. However, no soft open sets from τ
separate 0̄ from 1̄. So, S1 is not a soft Hausdorff space. 2

Remark 3.9. Varol and Aygün proved that U and U ′ are soft Hausdorff if and
only if U ×U ′ is a soft Hausdorff space [10, Theorem 3.29]. Our result here is not in
conflict with their result, as our definition of soft product is different from their’s.
(cf. Remark 3.7)

Our next example of a well-known result on Hausdorff space is the following:

Proposition 3.10. For any topological space X, the following are equivalent:
(i) X is a Hausdorff space;
(ii) ∆ is closed, where ∆ := {(x, x) | x ∈ X} is the diagonal set;
(iii) For every x ∈ X, we have {x} =

∩
{C | C is closed and x ∈ Int(C)}. 2

The relationship between soft versions of these three conditions is more compli-
cated:

Theorem 3.11. The soft versions of the above conditions
(i) ⟨U, τ, E⟩ is a soft Hausdorff space;

(ii) ∆̃ is soft closed;

(iii) For every x ∈ U , we have {̃x} =
∩̃
{F | F is soft closed and x ∈̃ Ĩnt(F )};

are related as follows:

• (i) implies (ii) and (iii);
• (ii) implies neither (i) nor (iii);
• (iii) implies (ii);
• If the parameter set E is finite, (iii) implies (i). If E is infinite, (iii) does
not imply (i).

Proof.
• For any distinct x, y ∈ U , take disjoint soft open sets Fx, Fy such that x ∈̃Fx and

y ∈̃Fy. Clearly ∆̃ ∩̃ (Fx ×Fy) =̃ ∅̃ holds, as Fx and Fy are disjoint. Since Fx ×Fy is

a soft open neighborhood of (x, y), we conclude that ∆̃ is soft closed.
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We then deduce (iii) from (i). For each y from U \ {x}, pick up a pair Fx, Fy of
disjoint soft open sets with y ∈̃Fy, x ∈̃Fx. Then F c̃

y is a soft closed neighborhood of

x, so
∩̃
{F | F is soft closed and x ∈̃ Ĩnt(F )} ⊂̃F c̃

y holds for every y. Hence∩̃
{F | F is soft closed and x ∈̃ Ĩnt(F )} ⊂̃

∩̃
y∈U\{x}

F c̃
y =̃ {̃x}.

Since the other inclusion is obvious, the proof is now complete.
• Since we have proven that (i) implies (iii), it suffices to show that (ii) does not
imply (iii). For this purpose, consider a soft topological space S := ⟨Z2, τ, E⟩, where
E := {e1, e2} and τ := {∅̃, {(e1, 0̄), (e2, 1̄)}, {(e1, 1̄), (e2, 0̄)}, Z̃2}. In the soft product

of S and S, one can readily check that ∆̃ is soft closed. An easy computation shows

that
∩̃

{F | F is soft closed and x ∈̃ Ĩnt(F )} =̃E × Z2 holds for both x = 0̄ and 1̄.
Therefore, this soft space does not satisfy the condition (iii).
• Take distinct x, y from the universe U . Since ⟨U, τ, E⟩ satisfies (iii) by assumption,

there exist, for each e ∈ E, a soft closed set Fe such that x ∈̃ Ĩnt(Fe) and y /∈ Fe(e).

If we put F ′ :=
∪̃

e∈E

(
Ĩnt(Fe)× F c̃

e

)
, then F ′ is a soft open neighborhood of (x, y)

and ∆̃ ∩̃F ′ =̃ ∅̃. As x and y were arbitrary, we now conclude that ∆̃ is soft closed.
• Firstly, suppose that E is finite. Take distinct x, y. For each e ∈ E, take a soft

closed neighborhood Fe of x such that y /∈ Fe(e). Then, since E is finite,
∩̃

e∈EFe

is a soft closed neighborhood of x such that y /∈ (
∩̃

e∈EFe)(e) for every e ∈ E.

Ĩnt(
∩̃

e∈EFe) and (
∩̃

e∈EFe)
c̃ are soft open sets which soft separate x and y. Hence

we conclude that (iii) implies (i).
Next we deal with the case where E is infinite: Let us take U := [0, 1) ∪ {2, 3}

and E := N. We induce a soft topology τ on U using the following subbase:

{∅̃, Ũ} ∪ {{̃r} | 0 ≤ r < 1}

∪ {{(m, s) | r < s < 1, n ≤ m} ∪̃ {̃2} | 0 ≤ r < 1, n ∈ N}

∪ {{(m, s) | r < s < 1, n ≤ m} ∪̃ {̃3} | 0 ≤ r < 1, n ∈ N}
∪ {{(m, s) | r < s < 1,m ≤ n} ∪̃ {(m, 2) | m ≤ n} | 0 ≤ r < 1, n ∈ N}
∪ {{(m, s) | r < s < 1,m ≤ n} ∪̃ {(m, 3) | m ≤ n} | 0 ≤ r < 1, n ∈ N}.

One can check at once that there is no pair of disjoint soft open sets that separate
2 from 3. Thus this soft space is not a soft Hausdorff space. Now we claim that
the condition (iii) holds for this soft space. Since this claim is readily verified at

any point r ∈ [0, 1), we prove it only for the point 2. {̃2} is clearly contained in∩̃
{F | F is soft closed and 2 ∈̃ Ĩnt(F )}, so our claim follows from the next lemma.

Lemma 3.12.
∩̃
{F | F is soft closed and 2 ∈̃ Ĩnt(F )} is a soft subset of {̃2}.

Proof. Note first that, for any r ∈ [0, 1) and n ∈ N, the following soft set is soft
closed:

{(m, s) | r < s < 1, n ≤ m} ∪̃ {̃2} ∪̃ {(m, 3) | n ≤ m}.
This soft set clearly contains the following soft open neighborhood of 2:

{(m, s) | r < s < 1, n ≤ m} ∪̃ {̃2}.
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Therefore, we see that
∩̃
{F | F is soft closed and 2 ∈̃ Ĩnt(F )} is a soft subset of

{(m, s) | n ≤ m, r < s < 1} ∪̃ {̃2} ∪̃ {(m, 3) | n ≤ m} for any r ∈ [0, 1) and n ∈ N.
Observe that, for any x ̸= 2 and i ∈ N, there exist sufficiently large n ∈ N and r
close enough to 1 so that

(i, x) /̃∈{(m, s) | n ≤ m, r < s < 1} ∪̃ {̃2} ∪̃ {(m, 3) | n ≤ m}.

It is then easy to see that
∩̃

{F | F is soft closed and 2 ∈̃ Ĩnt(F )} ⊂̃ {̃2}. 2

A similar argument proves that the condition (iii) holds at the point 3 as well.
Hence we have proved the claim. 2

4. Soft compactness

Given (not a soft set but) a subset X of the initial universe U , when should we
say that X is soft compact? — In this section, we first give two definitions of soft
compactness. We then make a comparative study of the two definitions in relation
with several soft topological concepts introduced so far.

Definition 4.1. Let X be a subset of the universe U , and C be a family of soft open
sets over U . Then

(First definition): C is a soft covering (SCV1) of X if for every x ∈ X there
exists an F ∈ C satisfying x ∈̃F .

(Second definition): C is a soft covering (SCV2) of X if it satisfies
∪̃
C =̃ X̃.

Definition 4.2.

(First definition): A subset X ⊂ U is called soft compact (SCPT1) if every
SCV1 of X has a finite subfamily which is again an SCV1 of X.

(Second definition): A subset X ⊂ U is called soft compact (SCPT2) if
every SCV2 of X has a finite subfamily which is again an SCV2 of X.

A soft space ⟨U, τ, E⟩ is called SCPT1 (resp. SCPT2 ) if U is SCPT1 (resp. SCPT2 ).

Remark 4.3. The second definitions in Definitions 4.1 and 4.2 are essentially the
same to the concepts defined in [12], where soft covering and soft compactness are
defined not for subsets of the initial universe but for soft sets. We again emphasis
that our concern here is the following question: Given not a soft set but a subset X
of U , when should we say that X is soft compact?

We first check that these two definitions actually give rise to different concepts:

Proposition 4.4. ⟨U, τ, E⟩ is SCPT2 /=⇒ ⟨U, τ, E⟩ is SCPT1.

Proof. Let us borrow an example from [3]: Consider an ordinal number ω + 1 and
E := {e1, e2}. Let τ be a soft topology on ω + 1 generated by a subbase

{∅̃, ω̃ + 1, F ′} ∪ {Fn | n ∈ ω},
where F ′ := {(e1, α), (e2, ω) | 5 ≤ α ≤ ω} and Fn := {(e1, n), (e2, α) | α ∈ ω + 1}. It
is not hard to see that both ⟨ω + 1, τe1⟩ and ⟨ω + 1, τe2⟩ are compact. Since E is a
doubleton, this soft space is SCPT2. To see that ⟨ω+1, τ, E⟩ is not SCPT1, observe
that no finite subfamily of an SCV1 {F ′, F0, F1 . . . } is an SCV1. 2
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Proposition 4.5. For E finite, ⟨U, τ, E⟩ is SCPT1 =⇒ ⟨U, τ, E⟩ is SCPT2.
For E infinite, ⟨U, τ, E⟩ is SCPT1 /=⇒ ⟨U, τ, E⟩ is SCPT2.

Proof. Let ⟨U, τ, E⟩ be SCPT1 with its parameter set finite, say E = {e1, . . . , en}.
Take an SCV2 C of U arbitrarily. For each x ∈ U and i ∈ {1, . . . , n}, choose

an Fei,x ∈ C so that x ∈ Fei,x(ei) holds. Put Fx :=
∪̃n

i=1Fei,x. Then Fx is a
soft open neighborhood of x, so C′ := {Fx | x ∈ U} is an SCV1 of U . Then, by
assumption, there exist x1, . . . , xk such that {Fxj}kj=1 is an SCV1 of U . It is clear
that {Fei,xj | 1 ≤ i ≤ n, 1 ≤ j ≤ k} is an SCV2 of U .

For the second assertion, we employ a soft space ⟨{u},P({u} × N),N⟩. Since

there is only one SCV1, namely {̃u}, this soft space is SCPT1. However, no finite
subfamily of an SCV2 {{(n, u)} | n ∈ N} is an SCV2. 2

The rest of this section is devoted to a comparative study of the two notions in
relation with several soft topological properties.

4.1. Compactness of e-parameter spaces. It is natural to ask how the soft com-
pactness is related to the compactness of e-parameter spaces ⟨U, τe⟩e∈E . Here are
answers:

Proposition 4.6 ([3]). (i) ⟨U, τ, E⟩ is SCPT1 /=⇒ ⟨U, τe⟩ is compact for every
e ∈ E.
(ii) ⟨U, τe⟩ is compact for every e ∈ E /=⇒ ⟨U, τ, E⟩ is SCPT1.

Proposition 4.7 ([1]). (i) ⟨U, τ, E⟩ is SCPT2 /=⇒ ⟨U, τe⟩ is compact for every
e ∈ E..
(ii) For E finite, ⟨U, τe⟩ is compact for every e ∈ E =⇒ ⟨U, τ, E⟩ is SCPT2.

For E infinite, ⟨U, τe⟩ is compact for every e ∈ E /=⇒ ⟨U, τ, E⟩ is SCPT2.

Proof. For later reference, we give a proof for (i): Consider the following soft space
⟨N, τ, {e1, e2}⟩, where

τ := {∅̃, Ñ} ∪ {{e1} × S | S is a non-empty subset of N}.

The reader will easily see that Ñ is an element of every SCV2 of this soft space. So,
this soft space is trivially SCPT2. However, τe1 is the discrete topology on N, which
is non-compact. 2

4.2. Soft closedness. A familiar result from general topology carries over to soft
sets as follows:

Proposition 4.8. Let X ⊂ U be an SCPT1 subset and A ⊂ X be such that Ã is
soft closed. Then A is SCPT1.

Proof. Let C be an SCV1 of A. Since Ã is soft closed, C ∪ {Ãc̃} is an SCV1 of X.

Since X is SCPT1, the family C ∪ {Ãc̃} has a finite subfamily, say {F1, . . . , Fn},
which is still an SCV1 of X. Then {F1, . . . , Fn} \ {Ãc̃} is an SCV1 of A. Thus, we
conclude that A is SCPT1. 2

Similarly, we can prove:

Proposition 4.9. Let X ⊂ U be an SCPT2 subset and A ⊂ X be such that Ã is
soft closed. Then A is SCPT2. 2

517



T. Hida/Ann. Fuzzy Math. Inform. 8 (2014), No. 4, 511–525

4.3. Soft Hausdorff space. A number of fundamental results regarding compact-
ness in Hausdorff spaces extend naturally to soft spaces. Let us present a few
examples:

Proposition 4.10. Let ⟨U, τ, E⟩ be a soft Hausdorff space. If X ⊂ U is SCPT1 and

a ∈ U is not in X, then there exist soft open sets F1, F2 such that X̃ ⊂̃F1, a ∈̃F2

and F1 ∩̃F2 =̃ ∅̃.

Proof. For each x ∈ X, pick up a pair Fx,1, Fx,2 of soft open sets satisfying that
x ∈̃Fx,1, a ∈̃Fx,2 and Fx,1 ∩̃Fx,2 =̃ ∅̃. Since X is SCPT2 by assumption, there exist
finitely many elements x1, . . . , xn ∈ X such that {Fx1,1, . . . , Fxn,1} is an SCV1 of
X. Then F1 := Fx1,1 ∪̃ · · · ∪̃Fxn,1 and F2 := Fx1,2 ∩̃ · · · ∩̃Fxn,2 have the desired
properties. 2

Corollary 4.11. Let X be an SCPT1 subset of a soft Hausdorff space ⟨U, τ, E⟩.
Then X̃ is soft closed. 2

Corollary 4.12. Let X1, X2 be disjoint SCPT1 sets from a soft Hausdorff space
⟨U, τ, E⟩. Then we can separate X̃1 and X̃2 by soft open sets.

Proof. For each point a from X2, apply Proposition 4.10 to X = X1 and a. Let
F a
1 , F

a
2 be as in the proposition. The family {F a

2 | a ∈ X2} is then an SCV1 of X2,
so it has a finite subfamily, say {F a1

2 , . . . , F an
2 }, which is still an SCV1 of X2. It is

then obvious that F1 := Fa1,1 ∩̃ · · · ∩̃Fan,1 and F2 := Fa1,2 ∪̃ · · · ∪̃Fan,2 have the

desired property, i.e., X̃i ⊂̃Fi (i = 1, 2) and F1 ∩̃F2 =̃ ∅̃. 2

Corollary 4.13. SCPT1 soft Hausdorff space is soft normal.

Proof. This assertion follows easily from Proposition 4.8 and Corollary 4.12. 2

Similarly, one can show that:

Proposition 4.14. ([10]) Let ⟨U, τ, E⟩ be a soft Hausdorff space. If X ⊂ U is
SCPT2 and a ∈ U is not in X, then there exist soft open sets F1, F2 such that
X̃ ⊂̃F1, a ∈̃F2 and F1 ∩̃F2 =̃ ∅̃. 2

Corollary 4.15. Let X be an SCPT2 subset of a soft Hausdorff space ⟨U, τ, E⟩.
Then X̃ is soft closed. 2

Corollary 4.16. Let X1, X2 be disjoint SCPT2 sets from a soft Hausdorff space
⟨U, τ, E⟩. Then we can separate X̃1 and X̃2 by soft open sets. 2

Corollary 4.17. SCPT2 soft Hausdorff space is soft normal. 2

Our next topic is related to the cardinality of a space. Recall first the following
result from general topology:

Proposition 4.18. A non-empty compact Hausdorff space without isolated point is
uncountable. 2

In order to think about the soft version of the above proposition, we give a precise
definition of isolated point in the setting of soft sets here:
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Definition 4.19. Let x be a point from U and A be a subset of U . Then we say
x is a soft isolated point of A if there exists a soft open neighborhood F of x such
that no element y ( ̸= x) from A satisfies y ∈̃F .

We now prove the soft version of Proposition 4.18:

Proposition 4.20. A non-empty SCPT1 soft Hausdorff space without soft isolated
point is uncountable.

Proof. To obtain a contradiction, suppose that U = {xn}n∈N is a non-empty SCPT1
soft Hausdorff space. We inductively construct sequences {F x

n}n∈N, {F y
n}n∈N of soft

sets having the following properties:

• Each F x
n , F

y
n is soft open;

• xn ∈̃F x
n holds for every n ∈ N;

• F y
n has a soft element for every n ∈ N;

• F y
1 ⊃̃F y

2 ⊃̃ · · · ;
• F x

n ∩̃F y
n =̃ ∅̃ for every n ∈ N.

As x1 is not a soft isolated point, we can choose a y1 different from x1. Then
take disjoint soft open sets F x

1 , F
y
1 such that x1 ∈̃F x

1 , y1 ∈̃F y
1 . Suppose that F x

n

and F y
n have been constructed. Since xn+1 is not a soft isolated point, we have a

yn+1 (̸= xn+1) such that yn+1 ∈̃F y
n . Then take disjoint soft open sets F x

n+1, F
y
n+1

so that xn+1 ∈̃F x
n+1 and yn+1 ∈̃F y

n+1 ⊂̃F y
n holds. It is obvious that the resulting

sequences {F x
n}n∈N, {F y

n}n∈N have the desired properties.
Since xn ∈̃F x

n holds for every n ∈ N, it follows that {F x
n}n∈N is an SCV1 of U . As

⟨U, τ, E⟩ is SCPT1, there exists a finite subfamily {F x
n1
, . . . , F x

nk
} (n1 < · · · < nk)

which is again an SCV1 of U . However, ynk
is not a soft element of

∪̃k

i=1F
x
ni
, because

ynk
∈̃F y

nk
and F x

ni
∩̃F y

nk
=̃ ∅̃ (i = 1, . . . , k). 2

By observing that the family {F x
n}n∈N in the above proof is not only an SCV1

but also an SCV2, we have

Proposition 4.21. A non-empty SCPT2 soft Hausdorff space without soft isolated
point is uncountable. 2

Problem. Is the above proposition true if we change the definition of soft isolated
point as follows? x is a soft isolated point ofA if there exists a soft open neighborhood
F of x such that no element y (̸= x) from A satisfies y ∈ F (e) for some e ∈ E.

4.4. Soft continuous mapping. Continuous functions play an important role in
the study of topological spaces. It would be interesting to investigate the notion of
soft continuity in connection with soft compactness.

Definition 4.22. We say that ϕ : U → U ′ is a soft continuous function from
⟨U, τ, E⟩ to ⟨U ′, τ ′, E⟩ if the following condition is satisfied:

(SC1): For every x ∈ U and for every soft neighborhood F ′ of ϕ(x), there
exists a soft neighborhood F of x such that ϕ(F ) ⊂̃F ′.

In order to make explicit the underlying soft topological structure, we sometimes
write ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ instead of just ϕ : U → U ′.
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It is a fundamental fact from general topology that there are several equivalent
ways to define the notion of continuity. It is then natural to ask whether or not this
is the case for soft topology. In order to answer this question, let us introduce the
following three conditions on a function ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩:

(SC2): For every soft open set F ′ ∈ τ ′, the inverse image ϕ−1(F ′) is also soft
open.

(SC3): For every soft closed set F ′, the inverse image ϕ−1(F ′) is also soft
closed.

(SC4): For every soft set F , we have ϕ(C̃l(F )) ⊂̃ C̃l(ϕ(F )).

These four conditions on a function are related as follows:

Theorem 4.23 ([3]). (i) The conditions (SC2), (SC3) and (SC4) are equivalent.
(ii) The condition (SC1) follows from but not imply (SC2).

Remark 4.24 ([3]). also explains the reason for employing not (SC2) (or any equiv-
alent ones) but (SC1) as the definition of soft continuity.

We are now in a position to investigate two notions of soft compactness in relation
with soft continuity.

Proposition 4.25.
(i) The image of an SCPT1 set under a soft continuous function is also SCPT1.
(ii) The image of an SCPT1 set under a function satisfying the condition (SC2) is
also SCPT1.

Proof. (i) See [3, Proposition 3.17].
(ii) This assertion follows from (i) and Theorem 4.23 (ii). 2

For the other notion of soft compactness, we have:

Proposition 4.26.
(i) If E is finite, then the image of an SCPT2 set under a soft continuous function
is also SCPT2.

If E is infinite, the image of an SCPT2 set under a soft continuous function is
not necessarily SCPT2.
(ii) The image of an SCPT2 set under a function satisfying the condition (SC2) is
also SCPT2.

Proof. (i) For the first assertion, let ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ be a soft continuous
function with E finite, say {e1, . . . , en}. Suppose X ⊂ U is SCPT2. Take any
SCV2 C′ of ϕ(X). For each ∈ X and i ∈ {1, . . . , n}, pick up an F ′

ei,x ∈ C′ so

that ϕ(x) ∈ F ′
ei,x(ei) holds. Then F ′

x :=
∪̃n

i=1F
′
ei,x is a soft neighborhood of ϕ(x).

By the soft continuity of ϕ, there exists a soft neighborhood Fx of x such that
ϕ(Fx) ⊂̃F ′

x. Since {Fx | x ∈ X} is an SCV1, we can choose x1, . . . , xm ∈ X such

that X̃ ⊂̃
∪̃m

j=1Fxj . Then, we have

ϕ̃(X) =̃ϕ(X̃) ⊂̃ϕ (
∪̃m

j=1
Fxj ) =̃

∪̃m

j=1
ϕ(Fxj ) ⊂̃

∪̃m

j=1
F ′
xj
.

Therefore, {F ′
ei,xj

| 1 ≤ i ≤ n, 1 ≤ j ≤ m} ⊂ C′ is a finite SCV2 of X.
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For the second assertion, consider the identity function

id : ⟨{u}, {∅̃, {̃u}},N⟩ → ⟨{u},P(N× {u}),N⟩.

It is clear that the identity function is soft continuous, but the set {u} is not SCPT2
in the second space, as witnessed by an SCV2 {{(n, u)} | n ∈ N}.
(ii) The proof is very similar to the standard proof for compactness, so left to the
reader. 2

Recall the following important result regarding a continuous function from a com-
pact space to a Hausdorff space:

Proposition 4.27. Let ϕ : X → Y be a continuous function from a compact space
X to a Hausdorff space Y . If ϕ is bijective, then it is a homeomorphism. 2

For neither notion of soft compactness, the soft version of this proposition holds:

Proposition 4.28.
(i) There exist soft spaces ⟨U, τ, E⟩, ⟨U ′, τ ′, E⟩ and a bijective soft continuous func-
tion ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ with the following properties:

• ⟨U, τ, E⟩ is both SCPT1 and SCPT2;
• ⟨U ′, τ ′, E⟩ is a soft Hausdorff space;
• ϕ−1 : ⟨U ′, τ ′, E⟩ → ⟨U, τ, E⟩ is not soft continuous.

(ii) There exists a bijective function ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ from a soft space
⟨U, τ, E⟩ to ⟨U ′, τ ′, E⟩ satisfying the following properties:

• ⟨U, τ, E⟩ is both SCPT1 and SCPT2;
• ⟨U ′, τ ′, E⟩ is a soft Hausdorff space;
• ϕ : ⟨U, τ, E⟩ → ⟨U ′, τ ′, E⟩ does, but ϕ−1 : ⟨U ′, τ ′, E⟩ → ⟨U, τ, E⟩ does not
satisfy the condition (SC2).

Proof. (i) Let U and U ′ be [0, 1] ∪ {2} (⊂ R), E be {e1, e2} and ϕ be the identity
function. For soft topology τ , put τ := {E × O | O ∈ O}. τ ′ is given by a subbase

{E ×O | O ∈ O and 2 /∈ O} ∪ {{̃2} ∪̃ {(e2, x) | r < x} | r < 1}. (In both definitions
of soft topology, O denotes the relative topology on [0, 1] ∪ {2} given by the usual
topology on R.) Being a closed and bounded subset of R, the topological space
⟨[0, 1] ∪ {2},O⟩ is compact. By the definition of the soft topology τ , it is then clear
that ⟨U, τ, E⟩ is both SCPT1 and SCPT2. The reader will be able to verify that
⟨U ′, τ ′, E⟩ is a soft Hausdorff space and that ϕ (= id) : U → U ′ is soft continuous.

Consider the inverse id−1 : U ′ → U at the point 2. From the definition of τ and

τ ′, we see at once that {̃2} is soft open with respect to τ , while it is not soft open

with respect to τ ′. Hence, no soft neighborhood F of 2 satisfies F =̃ id−1(F ) ⊂̃ {̃2},
witnessing the failure of soft continuity for ϕ−1.
(ii) Consider the following two soft spaces:

⟨U, τ, E⟩ = ⟨{u}, {∅̃, {(e2, u)}, {̃u}}, {e1, e2}⟩,

⟨U ′, τ ′, E⟩ = ⟨{u}, {∅̃, {̃u}}, {e1, e2}⟩.

Take ϕ to be the identity function. Clearly, ⟨U, τ, E⟩ is both SCPT1 and SCPT2, as
E × U is finite. It is also evident that ⟨U ′, τ ′, E⟩ is a soft Hausdorff space, as U ′ is
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a singleton. From the observation that τ ⊋ τ ′, one can easily see that id : U → U ′

does, but id−1 : U ′ → U does not, satisfy the condition (SC2). 2

4.5. Soft product.
The relationship between soft compactness and soft product is not as clear as the

relationship between compactness and product. We present two such results:
Our first concern is the soft version of the next well-known result (A proof can

be found in, e.g., [5]):

Theorem 4.29. Let A,B be compact subsets of a topological space T . If A×B ⊂ C
holds for an open subset C of T ×T , then there exist open sets VA, VB ⊂ T such that
VA × VB ⊂ C and A ⊂ VA, B ⊂ VB. 2

Neither definition of soft compactness has this property:

Example 4.30. Consider a soft topological space ⟨Z2, τ, E⟩, where E := {e1, e2}
and τ := {∅̃, {(e1, 0̄), (e2, 1̄)}, {(e1, 1̄), (e2, 0̄)}, Z̃2}. Put A := {1̄} and B := {0̄}.
Then, as Z2 being finite, it is evident that both A and B are both SCPT1 and

SCPT2. An easy computation shows that ˜{(0̄, 1̄), (1̄, 0̄)} is a soft open subset in the

soft product space containing Ã×B. However, there are no soft open sets FA, FB

such that Ã ⊂̃FA, B̃ ⊂̃FB and FA × FB ⊂̃ ˜{(0̄, 1̄), (1̄, 0̄)}.

It is an important result that compactness is preserved under product. This fact
is provable without any extra assumption for the case of finite product. For the case
of infinite product, it is equivalent to the Axiom of Choice (known as Tychonoff’s
theorem). For soft compactness, however, we have the following result:

Proposition 4.31. (i) The property SCPT1 is not preserved under soft product.
(ii) The property SCPT2 is not preserved under soft product.

Proof. (i) See [3, Example 3.27].
(ii) Consider the following soft spaces ⟨N, τ1, {e1, e2}⟩, ⟨N, τ2, {e1, e2}⟩, where

τ1 := {∅̃, Ñ} ∪ {{e1} × S | S is a non-empty subset of N},

τ2 := {∅̃, Ñ} ∪ {{e2} × S | S is a non-empty subset of N}.
A similar reasoning to the proof of Proposition 4.7 proves that both soft spaces are
SCPT2. In their soft product, however, the following SCV2 has no finite subfamily
which is again an SCV2:

{{e1} × ({n} × N) | n ∈ N} ∪ {{e2} × (N× {n}) | n ∈ N}.

2

Remark 4.32. Aygünoğlu and Aygün proved that the product soft topology of
(arbitrary many) soft compact topology is again soft compact [1, Theorem 4.4].
(Note that their notion of soft compactness corresponds to SCPT2 in this paper.)
Our result above is not in conflict with their’s, as we employed different definition
of soft product. (cf. Remark 3.7)
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4.6. Finite soft intersection property.
We can characterize compactness using finite intersection property. It is interest-

ing to investigate whether or not this is the case also for soft compactness.

Definition 4.33. Let ⟨U, τ, E⟩ be a soft space and C be a family of soft sets. We

say that C has the finite soft intersection property (FSIP, for short) if
∩̃

C′ /̃= ∅̃ holds
for every finite subfamily C′ of C.

Proposition 4.34. The following conditions are equivalent:
(i) ⟨U, τ, E⟩ is SCPT2;
(ii) Every non-empty family of soft closed sets which has the FSIP has a non-empty
soft intersection.

Proof. (i) ⇒ (ii): Let C be a non-empty family of soft closed sets having the FSIP.

Assume for contradiction that we have
∩̃

C =̃ ∅̃. Then {F c̃ | F ∈ C} is an SCV2,
so, by assumption, there exists a finite subfamily {F c̃

1 , . . . , F
c̃
n} which is an SCV2.

These soft closed sets then satisfy F1 ∩̃ · · · ∩̃Fn =̃ ∅̃, contradicting the assumption
that C has the FSIP.
(ii) ⇒ (i): Let C be an arbitrary SCV2. Then we have

∩̃
{F c̃ | F ∈ C} =̃ ∅̃, so

the family {F c̃ | F ∈ C} of soft closed sets cannot have the FSIP. Put another
way, F c̃

1 ∩̃ · · · ∩̃F c̃
n =̃ ∅̃ holds for some F1, . . . , Fn ∈ C. These soft open sets satisfy

F1 ∪̃ · · · ∪̃Fn =̃ Ũ , witnessing that C has a finite subfamily which is an SCV2. 2

This proposition, together with Proposition 4.4 and 4.5, yields the next result:

Corollary 4.35. Two conditions
(i) ⟨U, τ, E⟩ is SCPT1;
(ii)Every non-empty family of soft closed sets which has the FSIP has a non-empty
soft intersection.

are related as follows:

• (ii) does not imply (i).
• If E is finite, (i) implies (ii). If E is infinite, (i) does not imply (ii). 2

A natural question would be: Is there a variant of finite soft intersection property
which allows us to characterize the property SCPT1 as in the form of Proposition
4.34? Below, we present two approaches:

Our first approach is to replace “having non-empty soft intersection” by “having
a soft element”.

Proposition 4.36. Two conditions
(i) ⟨U, τ, E⟩ is SCPT1;
(ii) The soft intersection of any non-empty family of soft closed sets has a soft ele-
ment provided that the soft intersection of every finite subfamily has a soft element;

are related as follows:

• (i) does not imply (ii).
• (ii) does not imply (i).

Proof.
• Put U := (0, 1) (⊂ R), E := {e1, e2} and induce a soft topology on U by a subbase

{∅̃, Ũ} ∪ {{e2} × (1/2i, 1) | i ∈ N}. It is evident that this soft space is SCPT1, as
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every SCV1 of U has E×U as an element. Then consider a family C := {Fi | i ∈ N}
of soft closed sets, where Fi := ({e2}× (1/2i, 1))c̃. We have 1/2ik+1 ∈̃Fi1 ∩̃ · · · ∩̃Fik

for any i1 < · · · < ik. As
∩̃

C =̃ {e1} × (0, 1), no element r ∈ (0, 1) satisfies that

r ∈̃
∩̃
C. In other words,

∩̃
C does not have a soft element.

• We use again the soft space ⟨ω + 1, τ, E⟩ from the proof of Proposition 4.4. It is
proved in the proposition that this soft space is not SCPT1.

We claim that the condition (ii) does not hold for this soft space. To prove this
claim, let us recall how we gave a soft topology τ : We induced a soft topology τ on

ω + 1 by a subbase {∅̃, ω̃ + 1, F ′} ∪ {Fn | n ∈ ω}, where
F ′ := {(e1, α), (e2, ω) | 5 ≤ α ≤ ω} and

Fn := {(e1, n), (e2, α) | α ∈ ω + 1}.
We prepare a lemma.

Lemma 4.37. Let F be a soft closed set such that α ∈̃F holds for some α ∈ ω+ 1.
Then n ∈̃F holds for n = 0, 1, . . . , 4.

Proof. By the definition of subbase, F c̃ is of the form
∪̃

λ∈Λ (F 1,λ ∩̃ · · · ∩̃Fmλ,λ),

where F 1,λ, . . . , Fmλ,λ are from the subbase. Since α /∈
(
F 1,λ ∩̃ · · · ∩̃Fmλ,λ

)
(e2)

for every λ ∈ Λ, and since Fn(e2) is ω+1 for every n, it follows that for every λ ∈ Λ
there exists a kλ ≤ mλ such that F kλ,λ is either ∅̃ or F ′. Then, for every λ ∈ Λ, we
have F 1,λ ∩̃ · · · ∩̃Fmλ,λ ⊂̃F ′, and so

F c̃ =̃
∪̃

λ∈Λ
(F 1,λ ∩̃ · · · ∩̃Fmλ,λ) ⊂̃F ′.

Therefore n ∈̃F ′c̃ ⊂̃F holds for n = 0, 1, . . . , 4. 2

Let C be a non-empty family of soft closed sets such that the soft intersection of
every finite subfamily of C has a soft element. Then, in particular, every element
F ∈ C has a soft element. From the above lemma, we conclude that every F ∈ C
satisfies n ∈̃F (n = 0, 1, . . . , 4). Therefore, the soft intersection of C has soft elements
0, 1, . . . , 4. Hence we have shown that ⟨ω + 1, τ, E⟩ does not satisfy the condition
(ii). 2

The second approach is to restrict the form of soft closed sets in the families:

Proposition 4.38. Two conditions
(i) ⟨U, τ, E⟩ is SCPT1;

(ii) The soft intersection of any non-empty family of soft closed sets of the form Ã
for A ⊂ X is non-empty provided that it has the FSIP;

are related as follows:

• (i) implies (ii).
• (ii) does not imply (i).

Proof.
• Assume for the sake of contradiction that a non-empty family C = {Ã | A ∈ Φ}
witnesses the failure of (ii). Since

∩̃
C =̃ ∅̃, we see that

∪̃
{Ãc̃ | A ∈ Φ} =̃ Ũ . It is

readily seen that {Ãc̃ | A ∈ Φ} is not only an SCV2 but also an SCV1 of U . One
can then deduce contradiction as in the proof of Proposition 4.34.
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• Consider the following soft topological space ⟨Z, τ, E⟩, where E := {e1, e2} and τ
is generated by a subbase

{∅̃, Z̃} ∪ {{(e1, i), (e2, i− 1), (e2, i), (e2, i+ 1)} | i ∈ Z}.
From the way we gave a soft topology, it follows that if a family C of soft closed sets
is of the form {Ã | A ∈ Φ}, then it is {E × Z}. Hence ⟨Z, τ, E⟩ trivially satisfies the
condition (ii). However, it is obvious that the following SCV1 does not have a finite
subfamily which is still an SCV1:

{{(e1, i), (e2, i− 1), (e2, i), (e2, i+ 1)} | i ∈ Z}
Therefore, we conclude that ⟨Z, τ, E⟩ is not SCPT1. 2

Problem. Find a suitable notion of finite soft intersection property so that we can
characterize the property SCPT1.
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