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Abstract. This paper presents some new results on the existence and
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1. Introduction

Fuzzy sets were introduced by Zadeh in [23], which is a tool that makes pos-
sible the description of vague notions and manipulations with them. Since then,
there has been a increasing in study theoretical fuzzy sets as well as its applica-
tions, dramaticaly. Today, fuzzy set theory has become a fashionable theory used in
many branches of real life such as dynamics systems, biological phenomena, financial
forecasting, geo demographic information systems, etc (see in [2, 21, 22] for exam-
ple). The concepts of fuzzy numbers, arithmetic operations and necessary calculus
of fuzzy functions for developing of fuzzy analysis were first introduced and investi-
gated by Zadeh, Chang, Dubois and Prade [11, 12, 23]. In view of the development
of calculus for fuzzy functions, the investigation of fuzzy differential equations (fuzzy
DEs) and fuzzy partial differential equations (fuzzy PDEs) have been initiated by
Kaleva, Seikkala, Buckley and Feuring [9, 15, 20]. A survey of diversified results on



H. V. Long et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 3, 491–504

the existence and uniqueness of solutions of fuzzy differential and integral equations
is shown in the monograph of Lakshmikantham and Mohapatra in [16] and some
references cited in this paper (see [4, 6, 7, 13, 15, 20]).

The concepts of fuzzy PDEs was first introduced by Buckley and Feuring in [9],
in which they gained the existence of BF solutions and Seikkala solutions for some
classes of elementary PDEs by fuzzifying crisp solutions [9]. After that, some other
efforts have been done to deal with this kind of equations. And the achievements
are included in some researches of Allahviranloo et al. [3], Arara et al. [5], Bertone
et al. [8], Narayanamoorthy and Murugan [18]. Especially in [3] Allahviranloo et
al. succeeded in applying the same strategy as Buckley and Feuring to find the
exact solutions for fuzzy wave-like equations with variable coefficients. However, the
theory of fuzzy PDEs is still in the initial stages and many aspects of this theory
need to be explored.

In this paper, we investigate some results on the existence and uniqueness of
fuzzy solutions for some class of fuzzy partial hyperbolic differential equations with
integral boundary conditions. As we know, integral boundary conditions have vari-
ous applications in applied fields such as blood flow problems, chemical engineering,
thermoelasticity, underground water flow, population dynamics, and so forth. For a
detailed description of the integral boundary conditions, we refer the reader to the
papers [2, 6]. These type of boundary conditions include two, three, multi-points
and nonlocal boundary value problems as special cases (see [4, 7]). Concretely, We
consider fuzzy PDEs with integral boundary conditions, which have the form

u(x, 0) +
∫ b

0

k1(x)u(x, y)dy = g1(x), x ∈ Ja,(1.1)

u(0, y) +
∫ a

0

k2(y)u(x, y)dx = g2(y), y ∈ Jb,(1.2)

where k1 ∈ C(Ja, R), k2 ∈ C(Jb, R), g1 ∈ C(Ja, En), g2 ∈ C(Jb, E
n) are given

functions. By using the Banach fixed point theorem, we will prove that the fuzzy
solution of the problem for partial hyperbolic differential equations exists with some
conditions on databases.

The structure of the paper is organized as follows. In Section 2, we give some
basic definitions and notations. In Section 3, we gain the existence and uniqueness of
fuzzy solution for the partial hyperbolic differential equations with integral boundary
conditions. Section 4 expands naturally the results in Section 3 for partial hyperbolic
functional differential equations with integral boundary conditions. Finally, some
conclusions are discussed in Section 5.

2. Preliminaries

In this section, we recall some concepts of fuzzy metric space that will be used
throughout the paper. For a more thorough treatise on fuzzy analysis, we refer to
monograph of Lakshmikantham and Mohapatra [16] and paper [19]. Let En be the
space of functions u: Rn → [0, 1] satisfying:

i) there exists a x0 ∈ Rn such that u(x0) = 1;
492
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ii) u is fuzzy convex, that is for x, z ∈ Rn and 0 < λ ≤ 1,

u(λx + (1− λ)z) ≥ min[u(x), u(z)];

iii) u is semi-continuous;
iv) [u]0 = {x ∈ Rn : u(x) > 0} is a compact set in Rn.

Denote [u]α = {x ∈ Rn : u(x) ≥ α} for 0 < α ≤ 1. Then from (i) to (iv), it follows
that [u]α is a nonempty compact, convex subset of Rn.

In the following CC(Rn) denotes the set of all nonempty compact, convex subsets
of Rn. Let A and B be in CC(Rn). The distance between A and B is defined by
the Hausdorff metric

dH(A,B) = max
{

sup
a∈A

inf
b∈B

||a− b|| , sup
b∈B

inf
a∈A

||a− b||
}

,

here ||.|| is usual Euclidean norm in Rn. It is easy to see that the Hausdorff metric
has some following properties

i) Hd(tA, tB) = |t|Hd(A,B),
ii) Hd(A + A′, B + B′) ≤ Hd(A,B) + Hd(A′, B′);
iii) Hd(A + C,B + C) = Hd(A,B),

where A,B, C, A′, B′ ∈ CC(Rn) and t ∈ R. Moreover, (CC(Rn),Hd) is a complete
metric space.

The supremum metric d∞ on En is defined by

d∞(u, v) = sup
0<α≤1

Hd ([u]α , [v]α)

for all u, v ∈ En. It is obviously that (En, d∞) is a complete metric space.
If g is a function from Rn×Rn to Rn, then according to Zadeh’s extension principle

we can extend g to En × En → En by the function defined by

g(u, v)(z) = sup
z=g(x,z)

min{u(x), v(z)}.

If g is continuous then
[g (u, v)]α = g ([u]α , [v]α)

for all u, v ∈ En, 0 ≤ α ≤ 1.
Let J is a rectangular of R2. A map f : J → En is called continuous at (t0, s0) ∈

J ⊂ R2 if the multi-valued map fα (t, s) = [f (t, s)]α is continuous at (t, s) = (t0, s0)
with respect to the Hausdorff metric Hd for all α ∈ [0, 1]. C(J,En) is denoted a
space of all continuous functions f : J → En with the supremum metric H1 defined
by

H1(f, g) = sup
(s,t)∈J

d∞(f (s, t) , g (s, t)).

It can be shown that (C(J,En),H1) is also a complete metric space.
A map f : J × En → En is called continuous at point (t0, s0, u0) ∈ J × En

provided, for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists δ(ε, α) > 0 such
that

Hd ([f (t, s, u)]α , [f (t0, s0, u0)]
α) < ε

whenever max{|t− t0| , |s− s0|} < δ(ε, α) and Hd ([u]α , [u0]
α) < δ(ε, α) for all

(t, s, u) ∈ J × En.
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Let f : J = [x1, y1] × [x2, y2] → En. The integral of f over J , denoted by∫ y1

x1

∫ y2

x2
f (t, s) dsdt is defined by[∫ y1

x1

∫ y2

x2

f (t, s) dsdt

]α

=
∫ y1

x1

∫ y2

x2

fα (t, s) dsdt

= {
∫ y1

x1

∫ y2

x2

v (t, s) dsdt|v : J → Rnis a measurable

selection for fα}

for all α ∈ (0, 1]. A function f : J → En is integrable on J if
∫ y1

x1

∫ y2

x2
f (t, s) dsdt is

in En.

Definition 2.1. Given u, v ∈ En, if there exists w ∈ En such that u = v + w, we
call w = u− v the Hukuhara difference of u and v.

Definition 2.2. Given mapping f : J → En, we say that f is Hukuhara partial
differentiable with respect to x at (x0, y0) ∈ J if for each h > 0 the Hukuhara-
difference f(x0 +∆t, y)−f(x0, y) and f(x0, y)−f(x0−∆t, y0) exists in En for every

0 < ∆t < h and if it exists
∂f (x0, y0)

∂x
∈ En such that

lim
h→0+

d∞

(
f (x0 + ∆t, y0)− f (x0, y0)

h
,
∂f (x0, y0)

∂x

)
= 0

and

lim
h→0+

d∞

(
f (x0, y0)− f (x0 −∆t, y0)

h
,
∂f (x0, y0)

∂x

)
= 0.

In this case,
∂f (x0, y0)

∂x
∈ En is called the Hukuhara partial derivative of f at

(x0, y0).

The fuzzy partial derivative of f with respect to y and higher order of fuzzy
partial derivative of f at the point (x0, y0) ∈ J are defined similarly.

3. The fuzzy solutions of the partial hyperbolic differential
equations

Denote Ja = [0, a]; Jb = [0, b], a, b ∈ (0, 1]. We consider the hyperbolic partial
differential equation

(3.1)
∂2u(x, y)

∂x∂y
= f(x, y, u(x, y)), (x, y) ∈ Ja × Jb,

where f : Ja × Jb × En → En is a given function.
In this paper, we are concerned with the existence of fuzzy solutions for partial

hyperbolic differential equations with integral boundary conditions having the form
1.1 and 1.2

Definition 3.1. A function u ∈ C(Ja × Jb, E
n) is called a solution of the problem

(3.1) with integral boundary conditions 1.1 and 1.2 if u satisfies the following integral
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equation

u(x, y) =q(x, y)−
∫ b

0

k1(x)u(x, y)dy −
∫ a

0

k2(y)u(x, y)dx

− k1(0)
∫ b

0

∫ a

0

k2(y)u(x, y)dxdy +
∫ x

0

∫ y

0

f (t, s, u(t, s)) dsdt,

where

q(x, y) = g1(x) + g2(y)− g1(0) + k1(0)
∫ b

0

g2(s)ds

for all (x, y) ∈ Ja × Jb.

Set k1 = supt∈Ja
|k1(t)|, k2 = sups∈Jb

|k2(s)|. By applying the fixed point theo-
rem, we prove the following result.

Theorem 3.2. Suppose that there exists a positive number K such that

(1) Hd([f(t, s, u)]α, [f(t, s, v)]α) ≤ KHd([u]α, [v]α) holds for all (t, s) ∈ Ja × Jb

and u, v ∈ En

(2) and k1 + k2 + k1k2 + K < 1.

Then the fuzzy PDEs (3.1) with integral conditions (1.1) and (1.2) have a unique
fuzzy solution in C(Ja × Jb, E

n).

Proof. Integrating both sides of the equation (3.1) on [0, x]× [0, y] and substituting
the boundary conditions (1.1) and (1.2) leads to integral equation

u(x, y) =q(x, y)−
∫ b

0

k1(t)u(x, s)ds−
∫ a

0

k2(s)u(t, y)dt

− k1(0)
∫ b

0

∫ a

0

k2(s)u(t, s)dtds +
∫ x

0

∫ y

0

f (t, s, u(t, s)) dsdt

where q(x, y) = g1(x) + g2(y) − g1(0) + k1(0)
∫ b

0
g2(s)ds. The fuzzy solution of the

problem (3.1), (1.1), (1.2) (if it exists) is a fixed point of the operator N : C(Ja ×
Jb, E

n) → C(Ja × Jb, E
n) defined as follows

N(u(x, y)) =q(x, y)−
∫ b

0

k1(t)u(x, s)ds−
∫ a

0

k2(s)u(t, y)dt

− k1(0)
∫ b

0

∫ a

0

k2(s)u(t, s)dtds +
∫ x

0

∫ y

0

f (t, s, u(t, s)) dsdt.

For all u, v ∈ C(Ja × Jb, E
n) and α ∈ (0, 1], one gets

N(u(x, y)) =q(x, y)−
∫ b

0

k1(t)u(x, s)ds−
∫ a

0

k2(s)u(t, y)dt

− k1(0)
∫ b

0

∫ a

0

k2(s)u(t, s)dtds +
∫ x

0

∫ y

0

f (t, s, u(t, s)) dsdt
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and

N(v(x, y)) =q(x, y)−
∫ b

0

k1(t)v(x, s)ds−
∫ a

0

k2(s)v(t, y)dt

− k1(0)
∫ b

0

∫ a

0

k2(s)v(t, s)dtds +
∫ x

0

∫ y

0

f (t, s, v(t, s)) dsdt.

We have

Hd([N(u(x, y))]α, [N(v(x, y))]α)

≤ Hd([
∫ b

0

k1(t)u(x, s)ds]α, [
∫ b

0

k1(t)v(x, s)ds]α)

+ Hd([
∫ a

0

k2(s)u(t, y)dt]α, [
∫ a

0

k2(s)v(t, y)dt]α)

+ Hd([k1(0)
∫ b

0

∫ a

0

k2(s)u(t, s)dtds]α, [k1(0)
∫ b

0

∫ a

0

k2(s)v(t, s)dtds]α)

+ Hd([
∫ x

0

∫ y

0

f (t, s, u(t, s)) dsdt]α, [
∫ x

0

∫ y

0

f (t, s, v(t, s)) dsdt]α)

≤ k1

∫ b

0

Hd([u(x, s)]α, [v(x, s)]α)ds + k2

∫ a

0

Hd([u(t, y)]α, [v(t, y)]α)dt

+ |k1(0)| sup
s∈Jb

|k2(s)|
∫ b

0

∫ a

0

Hd([u(t, s)]α, [v(t, s)]α)dtds

+
∫ x

0

∫ y

0

Hd([f (t, s, u(t, s))]α, [f (t, s, v(t, s))]α)dsdt

≤ (k1b + k2a + k1k2ab)d∞(u(t, s), v(t, s)) +
∫ x

0

∫ y

0

KHd([u(t, s)]α, [v(t, s)]α)dsdt

≤ (k1b + k2a + k1k2ab)H1(u, v) + K

∫ a

0

∫ b

0

d∞(u(t, s), v(t, s))dsdt

≤ (k1 + k2 + k1k2 + K)H1(u, v).

Hence

H1(N(u), N(v)) = sup
(x,y)∈Ja×Jb

d∞(N(u (x, y)), N(v (x, y)))

= sup
(x,y)∈Ja×Jb

( sup
0<α≤1

Hd ([N(u(x, y))]α , [N(v(x, y))]α))

≤ (k1 + k2 + k1k2 + K)H1(u, v).

Because k1 + k2 + k1k2 + K < 1, we imply that N is a contraction operator on
complete metric space C(Ja × Jb, E

n). So N has a unique fixed point (see [16]).
That is the fuzzy solution of the problem (3.1), (1.1), (1.2). The theorem is proved
completely. �

The following example will demonstrate the existence of fuzzy solution for fuzzy
hyperbolic PDEs, we will use the same strategy as Buckley-Feuring to build fuzzy
solution from fuzzifying the deterministic solution (see [9, 10]).
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Example 3.3. Consider the following fuzzy hyperbolic equation

(3.2)
U(x, y)
∂x∂y

= Cex+y = F (x, y, C)

where C > 0 is a triangular fuzzy number in I = [0,M ], M > 0, (x, y) ∈ [0, 1]×[0, 1].
And the integral boundary conditions are

(3.3) U(x, 0) +
∫ 1

0

U(x, y)dy = Cex+1,

(3.4) U(0, y) +
∫ 1

0

u(x, y)dx = Cey+1.

It is clear that the hypothesis (H1) is satisfied with an positive number K = 1
8

and k1 = k2 = 1, a = b = 1. That follows all the conditions in the Theorem 3.1
hold. Therefore there exists a unique fuzzy solution of this problem. We will find
a fuzzy solution of this problem by using Buckley-Feuring’s method in [9, 10]. The
deterministic solution of the crisp hyperbolic equation

(3.5) uxy = cex+y = f(x, y, c)

corresponding to (3.2)-(3.4) is

u(x, y) = g(x, y, c) = cex+y.

We now fuzzify this crisp solution to find fuzzy solution of fuzzy equations (3.2)-
(3.4). We apply the fuzzification in c, and supposed that the parametric form of
corresponding fuzzy number C is

[C]α = [C1(α), C2(α)]

where the sufficient conditions are
(a) C1(α) is a bounded left continuous non-decreasing function with respect to α.
(b) C2(α) is a bounded left continuous non-increasing function with respect to α.
(c) C1(α) ≤ C2(α), for all α ∈ [0, 1].

By using the Zadeh’s extension principle we compute F (x, y, C) from f(x, y, c)

[F ]α =[F1(x, y, α), F2(x, y, α)]

=[min{f(x, y, c)|c ∈ C[α]},max{f(x, y, c)|c ∈ C[α]}]
=[C1(α)ex+y, C2(α)ex+y] = ex+y[C1(α), C2(α)],

satisfied conditions (a)− (c), so [F ]α are the α−cuts of fuzzy number Cex+y. Simi-
larly, we compute Y (x, y) from g(x, y, c), we have

[Y ]α = [Y1(x, y, α), Y2(x, y, α)] = [C1(α)ex+y, C2(α)ex+y].

In order to see if Y (x, y) is differentiable, we consider fuzzy differential operator

ϕ(Dx, Dy)U(x, y) =
U(x, y)
∂x∂y

and compute

S(x, y, α) = [ϕ(Dx, Dy)Y1(x, y, α), ϕ(Dx, Dy)Y2(x, y, α)]
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which equals to
[C1(α)ex+y, C2(α)ex+y]

which are the α−cuts of fuzzy number Cex+y. Hence, Y (x, y) is differentiable in the
sense of Buckley and Feuring (see [9]). Because all partials of F and G with respect
to C are all positive, Y (x, y) is a fuzzy solution (see [10]). The integral boundary
conditions are

Y1(x, 0, α) +
∫ 1

0

Y1(x, y, α)dy = C1(α)ex+1,

Y2(x, 0, α) +
∫ 1

0

Y1(x, y, α)dy = C2(α)ex+1,

Y1(0, y, α) +
∫ 1

0

Y1(x, y, α)dx = C1(α)ey+1

Y2(0, y, α) +
∫ 1

0

Y2(x, y, α)dx = C2(α)ex+1,

which are all true. Therefore, Y (x, y) is a fuzzy solution which also satisfies the
boundary conditions (3.3), (3.4). This solution may be written

Y (x, y) = Cex+y.

4. The fuzzy solutions of partial hyperbolic functional differential
equations

Functional DEs with state-dependent delay appear frequently in applications as
model of equations and for this reason the study of this type of equations has received
great attention in the last year; see for instance [14] and the references therein. How-
ever, the literatures related to functional PDEs with state-dependent delay are lim-
ited; see for instance [1]. Motivated by these mentions, in this paper we investigate
the existence of fuzzy solutions of hyperbolic functional PDEs with state-dependent
delay. Our results may be interpreted as extensions of previous results of Arara et al.
[6] for fuzzy hyperbolic PDEs with local and nonlocal initial conditions and Bertone
et al. [8] with linear type of hyperbolic equations.

For any positive real number r > 0, we denote Jr = [−r, a]× [−r, b], a, b ∈ (0, 1],
J̃r = Jr\(0, a] × (0, b] and J0 = [−r, 0] × [−r, 0]. For each (x, y) ∈ Ja × Jb, the
state-dependent delays u(x,y)(t, s) is defined by

u(x,y)(t, s) = u(x + t, y + s), (t, s) ∈ J̃r,

here u(x,y)(., .) represents the history of the state from time (x− r, y − r) up to the
present time (x, y).

In this part of the paper we give an existence and uniqueness result for the
hyperbolic problem in the following form

(4.1)
∂2u(x, y)

∂x∂y
=

∂(p(x, y)u(x, y))
∂y

+ f(x, y, u(x,y), (x, y) ∈ Ja × Jb,

with integral boundary conditions

(4.2) u(x, 0) +
∫ b

0

k1(x)u(x, y)dy = g1(x), x ∈ Ja,
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(4.3) u(0, y) +
∫ a

0

k2(y)u(x, y)dx = g2(y), y ∈ Jb

and initial condition

(4.4) u(x, y) = ϕ(x, y), (x, y) ∈ J̃r,

where f : Jab×C(J0, E
n) → En, p ∈ C(Ja×Jb, R), g1 ∈ C(Ja, En), g2 ∈ C(Jb, E

n),
k1 ∈ C([0, a], R), k2 ∈ C([0, b], R) are given functions and ϕ ∈ C(J̃r, E

n).

Definition 4.1. A function u ∈ C(Jr, E
n) is called a fuzzy solution of the problem

(4.1)-(4.4) if u satisfies the following integral equation

u(x, y) = q(x, y)−
∫ b

0

k1(x)u(x, y)dy −
∫ a

0

k2(y)u(x, y)dx +
∫ x

0

p(t, y)u(t, y)dt

− k1(0)
∫ b

0

∫ a

0

k2(y)u(x, y)dxdy +
∫ x

0

∫ b

0

p(t, 0)k1(t)u(t, y)dydt

+
∫ x

0

∫ y

0

f
(
t, s, u(t,s)

)
dsdt

if (x, y) ∈ Ja × Jb and u(x, y) = ϕ(x, y) if (x, y) ∈ J̃r, where

q(x, y) = g1(x) + g2(y)− g1(0) + k1(0)
∫ b

0

g2(y)dy −
∫ x

0

p(t, 0)g1(t)dt.

Let k1 = supt∈Ja
|k1(t)|, k2 = sups∈Jb

|k2(s)| and sup(t,s)∈Jr
|p(t, s)| = p.

Theorem 4.2. Suppose that there exists a positive number K satisfied
(1) d∞(f(x, y, u(x,y)), f(x, y, v(x,y))) ≤ Kd∞(u(x+w, y+θ), v(x+w, y+θ)) hold

for all (w, θ) ∈ J0, u, v ∈ C(Jr, E
n) and

(2) (k1 + 1)(k2 + p + 1) + K < 2.
Then the problem (4.1)-(4.4) has a unique fuzzy solution in C(Jr, E

n).

Proof. The fuzzy solution of the problem (4.1)-(4.4) (if it exists) is a fixed point of
the operator N : C(Jr, E

n) → C(Jr, E
n) defined as follows

N(u(x, y)) =

{
Φ(x, y, u) if (x, y) ∈ Ja × Jb,

ϕ(x, y) if (x, y) ∈ J̃r

where

Φ(x, y, u) = q(x, y)−
∫ b

0

k1(x)u(x, y)dy −
∫ a

0

k2(y)u(x, y)dx

+
∫ x

0

p(t, y)u(t, y)dt− k1(0)
∫ b

0

∫ a

0

k2(y)u(x, y)dxdy

+
∫ x

0

∫ b

0

p(t, 0)k1(t)u(t, y)dydt +
∫ x

0

∫ y

0

f
(
t, s, u(t,s)

)
dsdt

We can see that
d∞(N(u(x, y)), N(v(x, y))) = 0
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if (x, y) ∈ J̃r. On the other way, we have on Ja × Jb

d∞(N(u(x, y)), N(v(x, y))) ≤ d∞(
∫ b

0

k1(x)u(x, y)dy,

∫ b

0

k1(x)v(x, y)dy)

+ d∞(k1(0)
∫ b

0

∫ a

0

k2(y)u(x, y)dxdy, k1(0)
∫ b

0

∫ a

0

k2(y)v(x, y)dxdy)

+ d∞(
∫ a

0

k2(y)u(x, y)dx,

∫ a

0

k2(y)v(x, y)dx)

+ d∞(
∫ x

0

p(t, y)u(t, y)dt,

∫ x

0

p(t, y)v(t, y)dt)

+ d∞(
∫ x

0

∫ b

0

p(t, 0)k1(t)u(t, y)dydt,

∫ x

0

∫ b

0

p(t, 0)k1(t)v(t, y)dydt)

+ d∞(
∫ x

0

∫ y

0

f
(
t, s, u(t,s)

)
dsdt,

∫ x

0

∫ y

0

f
(
t, s, v(t,s)

)
dsdt

≤ sup
x∈Ja

|k1(x)|
∫ b

0

d∞(u(x, y), v(x, y))dy

+ |k1(0)| sup
y∈Jb

|k2(y)|
∫ b

0

∫ a

0

d∞(u(x, y), v(x, y))dxdy

+ sup
y∈Jb

|k2(y)|
∫ a

0

d∞(u(x, y), v(x, y))dx

+ sup
(t,s)∈Jr

|p(t, s)|
∫ x

0

d∞(u(t, y), v(t, y))dt

+ sup
x∈Ja

|k1(x)| sup
(t,s)∈Jr

|p(t, s)|
∫ x

0

∫ b

0

d∞(u(t, y), v(t, y))dydt

+
∫ x

0

∫ y

0

d∞(f
(
t, s, u(t,s)

)
, f

(
t, s, v(t,s)

)
)dsdt

≤ (k1b + k2a + ap + k1k2ab + k1pab)d∞(u(x, y), v(x, y))

+
∫ x

0

∫ y

0

Kd∞(u(t + w, s + θ), v(t + w, s + θ))dsdt

= (k1b + k2a + pa + k1k2ab + k1pab + Kab)d∞(u(x, y), v(x, y))

≤ (k1 + k2 + p + k1k2 + k1p + K)H1(u, v).

Hence we have on Jr

H1(N(u), N(v)) = sup
(x,y)∈Jr

d∞(N(u (x, y)), N(v((x, y)))

≤ [(k1 + 1)(k2 + p + 1) + K − 1]H1(u, v).

Since (k1 + 1)(k2 + p + 1) + K < 2 then [(k1 + 1)(k2 + p + 1) + K − 1] < 1. It implies
that N is a contraction operator. By applying the Banach fixed point theorem, N
has a unique fixed point, that is the fuzzy solution of the problem (4.1)− (4.4). The
theorem is proved completely. �
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In this example, we use the continuity of Zadeh’s extension principle and numer-
ical simulation to show some graphical representations of the fuzzy solutions.

Example 4.3. We consider a fuzzy hyperbolic functional PDEs as follows

∂2U(x, y)
∂x∂y

=
∂(2U(x, y))

∂y
− e−(h+r)U(x,y)(h, r) + C2e

x−r + C3(1− 2eh)ey−h,

where (x, y) ∈ Jab = [0, 1
9 ]× [0, 1

9 ], (h, r) ∈ J0 = [− 1
10 , 0]× [− 1

10 , 0].
The boundary conditions

U(x, 0) +
∫ 1

9

0

U(x, y)dy = C1e
1
9+x +

10C2

9
ex + C3e

1
9 ,

U(0, y) +
∫ 1

9

0

U(x, y)dx = C1e
1
9+y +

10C3

9
ey + C2e

1
9 ,

and initial condition

U(x, y) = C1 + C2 + C3, (x, y) ∈ [− 1
10

,
1
9
]2\(0,

1
9
]2,

where Ci = (ai, ci, bi)(i = 1, 2, 3) are three triangular fuzzy numbers in Ji =
[0, ki], ki > 0 (see in [17]).

Since fuzzy function

F (x, y, U(x,y)) = −e−(h+r)U(x,y)(h, r) + C2e
x−r + C3(1− 2eh)ey−h

satisfies

d∞(F (x, y, U(x,y)), F (x, y, U (x,y))) ≤
1

e(h+r)
d∞(U(x + h, y + r), U(x + h, y + r)).

We recognize that the hypothesis of Theorem 4.1 is satisfied with K = 20
√

e and
p = 2, k1 = k2 = 1. Therefore, there exists a unique fuzzy solution of this problem.
Conduct similar to example above we find a fuzzy solution of this problem in the
following form

U(x, y, C) = C1e
x+y + C2e

x + C3e
y.

The membership functions of fuzzy numbers Ci = (ai, ci, bi) are

Ci(t) =


t−ai

ci−ai
if ai ≤ t ≤ ci

bi−t
bi−ci

if ci ≤ t ≤ bi

0 otherwise.

This functions can be represented in the form of order pair, as follows

[ai + (ci − ai)α, bi − (bi − ci)α].

The continuity of Zadeh’s extension principle states that the α−cuts of fuzzy
solution U(x, y, C) are[

ex+y[a1 + (c1 − a1)α] + ex[a2 + (c2 − a2)α] + ey[a3 + (c3 − a3)α],

ex+y[b1 − (b1 − c1)α] + ex[b2 − (b2 − c2)α] + ey[b3 − (b3 − c3)α]
]
.
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If we convert this interval valued function into single valued function, we receive the
membership function of U(x, y) that is

U(x, y, C)(t) =
(
a1e

x+y + a2e
x + a3e

y, c1e
x+y + c2e

x + c3e
y, b1e

x+y + b2e
x + b3e

y
)
.

Figure 1 shows the membership functions of C1 = (0, 0.5, 1), C2 = (0.5, 1, 2), C3 =
(0.7, 1.5, 2) and the membership function of fuzzy solution U(x, y, C) at point (0, 0).

Figure 1. The membership functions of triangular fuzzy numbers

Figure 2. The surface of fuzzy solution U(x, y, C)

By using numerical simulations by Matlab 7.9.0, we present the surface of fuzzy
solution in Figure 2 with there triangular fuzzy numbers C1 = (0.1, 0.15, 2), C2 =
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(0.5, 0.55, 6) and C3 = (1, 1.05, 1.1). Obviously, the deterministic solution is the
preferred solution [U(x, y)]1, which means that it has membership degree 1.

5. Conclusions

This article investigates the existence and uniqueness of the fuzzy solution of some
class of partial hyperbolic differential equations with integral boundary conditions.
We have achieved these goals by using Banach fixed point theorem. These results
are illustrated by some computational examples.
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