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1. Introduction

Rational choice theory is a mathematical approach used by social scientists to
study the human behaviour. To study the rationality of a consumers Samuelson
[24] introduced the theory of the revealed preferences through a preference relation
associated with a demand function. Uzawa [30] and Arrow [1] have developed the
revealed preference theory in an abstract setting of a choice function. They assumed
that the domain of the choice functions contains all non-empty finite sets of the al-
ternatives. Sen [25, 26, 27] continued their approach and noticed that it is sufficient
that the domain of the choice function contains all two-element and three-element
sets. Richter [23], Hansson [19] and Suzumura [28, 29] studied the rationality of
choice function without any restriction on the domain of choice function. In their
approach, the domain of choice function is an arbitrary family of non-empty subsets
of the universal set of alternatives. They studied the rationality of choice func-
tions by introducing the revealed preference axioms, the congruence axioms and the
consistency conditions etc.
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Richter-Hansson-Suzumura theory has not characterized the rationality of the
choice functions whose rationalization is not fully transitive but it possesses some
weaker properties such as quasi-transitivity or acyclicity. So, there remains a gap
between Arrow-Sen theory and Richter-Hansson-Suzumura theory. Bossert et al.
[7] narrowed down this gap in two ways. In the first place, they defined choice
functions on the domain that contains all the singletons and the two-element subsets
of the universal set and characterized rational choice functions whose underlying
preference relation is transitive, quasi-transitive and acyclic. In the second place,
they developed necessary conditions for the choice functions defined on arbitrary
domain to be full, quasi-transitive and acyclic rational.

Orlovsky [22] was the first who introduced the concept of the fuzzy preference re-
lations and his work was continued by many researchers [3, 4, 5, 12, 13, 21]. Banerjee
[2] introduced the concept of fuzzy choice functions whose domain is crisp and range
is fuzzy and studied the fuzzy revealed preference theory with the help of three ax-
ioms. Later Wang [31] has proved that these axioms are dependent. Georgescu [14]
generalized the fuzzy choice function by fuzzifying both of its domain and codomain.
In the subsequent papers [14, 15, 16] and the monograph [17], Georgescu has further
developed the fuzzy choice theory by introducing the revealed preference axioms, the
fuzzy congruence axioms and the consistent axioms. Recently, Wu et al. [32] studied
rationality conditions on fuzzy choice functions in the framework of Banerjee’s fuzzy
choice function and obtained more satisfactory results than Georgescu. In [8, 9, 10]
we have defined the fuzzy choice functions on the domain consisting of all character-
istic functions of all single and two-elements subsets of the universal set (i.e. base
domain) and studied the rationality by introducing various congruence and revealed
preference axioms. In [9, 10] we introduced four new congruence axioms namely the
fuzzy direct revelation axiom (FDRA), the fuzzy transitive closure coherence axiom
(FTCCA), the fuzzy consistent closure coherence axiom (FCCCA) and the fuzzy in-
termediate congruence axiom (FICA) to study rationality of fuzzy choice functions.
However, in this paper we have introduced the indicators of various axioms defined
in [9, 10]. We have also set an aim to study interrelations between FDRA, FTCCA,
FCCCA, FICA, WFCA, SFCA and WAFRP.

This paper consists of 5 sections. Section 1 is introductory in nature and in the
section 2 we have recalled preliminaries related to fuzzy preference relation, proper-
ties of fuzzy implications, fuzzy choice function and indicators of fuzzy congruence
and revealed preference axioms. In the section 3 we have introduced indicators of
FDRA, FTCCA, FCCCA and FICA and studied their interrelations and their rela-
tion with indicators of WFCA, SFCA and WAFRP. A condition for the equivalence
of indicator of Fuzzy Arrow Axiom and WFCA is given in section 4.

2. Preliminaries

In this section we have recalled some properties of t-norms and its residuum as
well as some basic definitions on fuzzy sets and fuzzy preference relations. The
background is given by Bĕlohlávek [6] and Klir and Yuan [20]. Also, few basic
definitions and axioms related to fuzzy choice functions theory are recalled from
Chaudhari and Desai [10, 11] and Georgescu [17].
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Let [0,1] be the unit interval. For any a, ai, b, bi ∈ [0, 1] we denote a∨b = max(a, b)
and a ∧ b = min(a, b).

∨
i∈I

ai = sup{ai : i ∈ I} and
∧
i∈I

ai = inf{ai : i ∈ I}. Clearly
∨
i∈I

ai ≥ ai for all i ∈ I and
∧
i∈I

ai ≤ ai for all i ∈ I.

A triangular norm (or t-norm) is a binary relation ∗ on [0, 1] such that (i) a ∗ b =
b ∗ a; (ii) a ∗ (b ∗ c) = (a ∗ b) ∗ c; (iii) a ∗ b ≤ a ∗ c, when b ≤ c and (iv) a ∗ 1 = a
for all a, b, c ∈ [0, 1]. If ∗ satisfies (i) - (iii) and a ∗ 0 = a, for all a ∈ [0, 1] then it is
called triangular co-norm (or s-norm). We say that a t-norm ∗ is continuous, if it is
continuous as a function on [0, 1]. For any continuous t-norm ∗ , a binary operation
−→ on [0,1] defined as

a −→ b = sup{c ∈ [0, 1] : a ∗ c ≤ b}
is called the residuum or the fuzzy implication associated with ∗. The biresiduum
operation ←→ on [0,1] is defined by

a ←→ b = (a −→ b) ∗ (b −→ a)

If a ∗ b = max(0, a + b − 1), then ∗ is t-norm (called Lukasiewicz t-norm) and
a −→ b = min(1, 1−a+b) is the associated fuzzy implication, known as Lukasiewicz
fuzzy implication. Similarly If a ∗ b = min(a, b), then ∗ is called Gödel t-norm and

a −→ b =

{
1 if a ≤ b

b if a > b
is the associated fuzzy implication. If a ∗ b = ab, then

∗ is called product t-norm and a −→ b =

{
1 if a ≤ b

b/a if a > b
is the associated fuzzy

implication. For other t-norms and their associated fuzzy implications we refer to
[20].

Lemma 2.1 ([6, 20]). If −→ is a fuzzy implication associated with a continuous
t-norm ∗ on [0, 1], then

(i) a ∗ (a −→ b) ≤ a ∧ b
(ii) a ∗ b ≤ c =⇒ a ≤ b −→ c
(iii) a ≤ b ⇐⇒ a −→ b = 1
(iv) 1 −→ a = a
(v) a ≤ b =⇒ b −→ c ≤ a −→ c and c −→ a ≤ c −→ b
(vi) (a −→ b) ∧ (b −→ c) ≤ a −→ c

If ∗ is a continuous t-norm, then a unary operation ¬ on [0, 1] defined as ¬a =
a −→ 0 = sup{c ∈ [0, 1] : a ∗ c = 0} is called the negation associated with a t-norm

∗ on [0, 1]. Note that ¬a = 1 − a and ¬a =

{
1 if a = 0
0 if a > 0

are negations associated

with Lukasiewicz and Gödel t-norms respectively.

Lemma 2.2 ([6, 20]). If ¬ is a negation associated with a continuous t-norm ∗,
then

(i) a ≤ ¬b ⇐⇒ a ∗ b = 0
(ii) a ∗ ¬a = 0
(iii) a −→ b ≤ ¬b −→ ¬a
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(iv) a ≤ b =⇒ ¬b ≤ ¬a
(v) ¬(a ∨ b) = ¬a ∧ ¬b and ¬(a ∧ b) = ¬a ∨ ¬b

Let X be a non-empty set. Let us denote by P(X) the set of subsets of X. A
fuzzy subset of X is a function A : X −→ [0, 1]. For x ∈ X, A(x) denotes the
membership degree of x in A. We denote by F(X) the family of fuzzy subsets of X.
Thus, P(X) ⊆ F(X). A fuzzy subset A of X is called normal, if A(x) = 1, for some
x ∈ X and is called non-zero if A(x) > 0, for some x ∈ X.

For any x1, x2, ..., xn ∈ X we denote the characteristic function of {x1, x2, ..., xn}
by [x1, x2, ..., xn]. Thus,

[x1, x2, ..., xn](y) =

{
1 if y ∈ {x1, x2, ..., xn}
0 otherwise

For A, B ∈ F(X ), let us denote I(A,B) =
∧

z∈X

[A(z) −→ B(z)] and E(A,B) =
∧

z∈X

[A(z) ←→ B(z)]. I(A, B) is called the subsethood degree of A in B and E(A,B)

is called the degree of equality of A and B. We note that I(A,B) = 1 if and only if
A ⊆ B and E(A, B) = 1 if and only if A = B. I(A,B) gives the truth value of the
statement “A is included in B” and E(A,B) gives the truth value of the statement
“A and B contain the same elements”.

A fuzzy subset Q of X×X is called fuzzy binary relation from X to Y . If X = Y ,
then Q is called fuzzy binary relation on X. Q(x, y) denotes the degree to which x is
preferred to y. Therefore, a fuzzy binary relation on X is also called fuzzy preference
relation on X. We shall denote the strict fuzzy preference relation by P (Q) and
define it by P (Q)(x, y) = Q(x, y) ∗ ¬Q(y, x). The transitive closure Q of Q is given
by

Q(x, y) = Q(x, y) ∨




∨

k∈N

∨

z1,z2,...zk∈X

[Q(x, z1) ∗Q(z1, z2) ∗ ... ∗Q(zk, y)]





Definition 2.3 ([10]). Let Q be a fuzzy preference relation X. The fuzzy consistent
closure of Q is denoted by Q̂ and is defined by

Q̂(x, y) = Q(x, y) ∨ (
Q(x, y) ∗Q(y, x)

)

Lemma 2.4 ([10]). Let Q, Q1 and Q2 be fuzzy preference relations on X, then
(i) Q̂ ⊇ Q

(ii) Q1 ⊇ Q2 =⇒ Q̂1 ⊇ Q̂2

(iii) Q̂ ⊆ Q

Remark 2.5. If the fuzzy preference relation Q is transitive, then the fuzzy consis-
tent closure Q̂ and the fuzzy preference relation Q coincide.

The following are the few basic definitions, lemmas and theorems related to fuzzy
choice functions that form the foundation for the rest of the paper.

Definition 2.6. Let X be a non-empty set and B is a non-empty family of non-zero
fuzzy subsets of X. A fuzzy choice function (or fuzzy consumer) on (X,B) is a
function C : B −→ F(X) such that for each S ∈ B, C(S) is non-zero and C(S) ⊆ S.
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In view of terminology we shall call the elements of X alternatives and the ele-
ments of B fuzzy choice sets. The number C(S)(x) denotes the degree of choice of
an alternative x from the fuzzy choice set S and S(x) the availability degree of an
alternative x in the fuzzy choice set S.

In classical choice theory it is always assumed that every available set S must have
at least one choice i.e C(S) is non-empty, for every S. To meet this requirement,
throughout this paper, we assume that every fuzzy choice set of C must be normal,
i.e. for every S ∈ B, C(S)(x) = 1, for some x ∈ X.

Definition 2.7 ([8, 9, 10]). Let C : B −→ F(X) be a fuzzy choice function on
(X,B). Then define the fuzzy revealed preference relations on X as

R(x, y) =
∨

S∈B
[C(S)(x) ∗ S(y)];

I(x, y) = R(x, y) ∗R(y, x);

P (x, y) = R(x, y) ∗ ¬R(y, x) and

P̃ (x, y) =
∨

S∈B
[C(S)(x) ∗ S(y) ∗ ¬C(S)(y)]

We call R the fuzzy revealed preference relation generated by C; I the indifference
fuzzy revealed preference relation generated by C; P the strict fuzzy revealed pref-
erence relation generated by C and P̃ the strong fuzzy revealed preference relation
generated by C.

Recall that a choice function C satisfies
i) Direct-revelation coherence: For all S ∈ B and x ∈ X, if (x, y) ∈ R for all y ∈ S

then x ∈ C(S)
ii) Transitive-closure coherence: For all S ∈ B and x ∈ X, if (x, y) ∈ R̄ for all

y ∈ S then x ∈ C(S)
iii) Consistent-closure coherence: For all S ∈ B and x ∈ X, if (x, y) ∈ R̂ for all

y ∈ S then x ∈ C(S)
iv) Intermediate congruence: For all S ∈ B and x, y ∈ X, if (x, y) ∈ R̂, y ∈ C(S)

and x ∈ S then x ∈ C(S).
We have fuzzified them and characterized rationality of fuzzy choice functions in
different ways in [9, 10] and established interrelations between them in [11]. Here,
we recall few results.

Definition 2.8 ([10, 11]). A fuzzy choice function C is said to satisfy
i) Fuzzy Direct Revelation Axiom (FDRA), if for any S ∈ B and x ∈ X we have

S(x) ∗ ∧
z∈X

[S(z) → R(x, z)] ≤ C(S)(x)

ii) Fuzzy Fuzzy Transitive-closure coherence Axiom (FTCCA) if for any S ∈ B
and x ∈ X, we have S(x) ∗ ∧

z∈X

[S(z) → R(x, z)] ≤ C(S)(x)

iii) Fuzzy Consistent-closure coherence Axiom (FCCCA) if for any S ∈ B and
x ∈ X, we have S(x) ∗ ∧

z∈X

[S(z) → R̂(x, z)] ≤ C(S)(x)

iv) Fuzzy Intermediate Congruence Axiom (FICA)if for any S ∈ B and x, y ∈ X,
we have R̂(x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x)
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In the following theorems we have established the interrelations between the above
axioms and their relations with WFCA, SFCA and WAFRP.

Theorem 2.9 ([11]). Let C : B −→ F (X) be a fuzzy choice function with an
arbitrary non-empty domain B. Then

(a) FTCCA implies FICA
(b) FICA implies FCCCA
(c) FCCCA implies FDRA

Theorem 2.10 ([11]). Let C : B −→ F (X) be a fuzzy choice function with an
arbitrary non-empty domain B. Then

(a) FTCCA and SFCA are equivalent
(b) FICA implies WFCA
(c) WFCA implies FDRA
(d) FICA implies WAFRP
(e) SFCA implies FICA

Recall that the indicators of weak fuzzy congruence axiom (WFCA), strong fuzzy
congruence axiom (SFCA), weak axiom of fuzzy revealed preference (WAFRP) are
defined by Georgescu in [17] as follows:

Definition 2.11 ([17]). For a fuzzy choice function C on (X,B), the indicators of
the axioms WFCA, SFCA and WAFRP are respectively given as:

WFCA(C) =
∧

x,y∈X

∧
S∈B

[R(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)],

SFCA(C) =
∧

x,y∈X

∧
S∈B

[
R(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)

]
and

WAFRP (C) =
∧

x,y∈X

[
P̃ (x, y) −→ ¬R(y, x)

]

Intuitively, WFCA(C) gives the extent to which the statement “C satisfies the
weak fuzzy congruence axiom” is true. Similar interpretation are given to SFCA(C)
and WAFRP (C).

Remark 2.12 ([17]). For a fuzzy choice function C the following hold
(i) WFCA(C) = 1 if and only if C satisfies WFCA
(ii) SFCA(C) = 1 if and only if C satisfies SFCA
(iii) WAFRP (C) = 1 if and only if C satisfies WAFRP

3. Indicators of fuzzy congruence axioms

In [9, 10] we have studied the rationality of fuzzy choice function by introducing
various fuzzy axioms namely fuzzy direct revelation axiom (FDRA), fuzzy transi-
tive closure coherence axiom (FTCCA), fuzzy consistent closure coherence axiom
(FCCCA) and fuzzy intermediate congruence axiom (FICA).

We believe that the further study of fuzzy choice functions will be influenced, if one
discusses the interrelation between the fuzzy axioms introduced so far. Therefore, in
this section we will introduce the indicators of FDRA, FTCCA, FCCCA and FICA
and their interrelations will be studied. Also, their positions towards the degree of
WFCA, SFCA and WAFRP will be determined.

466



S. S. Desai et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 3, 461–477

Definition 3.1. For a fuzzy choice function C on (X,B), we define the indicators of
the congruence axioms FDRA, FCCCA, FTCCA and FICA respectively as follows

i) FDRA(C) =
∧

S∈B

∧
x∈X

[
S(x) ∗ ∧

z∈X

[S(z) −→ R(x, z)] −→ C(S)(x)
]

ii) FCCCA(C) =
∧

S∈B

∧
x∈X

[
S(x) ∗ ∧

z∈X

[
S(z) −→ R̂(x, z)

]
−→ C(S)(x)

]

iii) FTCCA(C) =
∧

S∈B

∧
x∈X

[
S(x) ∗ ∧

z∈X

[
S(z) −→ R(x, z)

] −→ C(S)(x)
]

iv) FICA(C) =
∧

S∈B

∧
x,y∈X

[
R̂(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)

]

The notion FDRA(C) is called the indicator of the fuzzy direct revelation axiom
and it gives the extent to which the fuzzy choice function C satisfies the fuzzy direct
revelation axiom. Similar interpretation are given to FCCCA(C), FTCCA(C) and
FICA(C).

Remark 3.2. For a fuzzy choice function C the following hold

i) FDRA(C) = 1 if and only if C satisfies FDRA
ii) FCCCA(C) = 1 if and only if C satisfies FCCCA
iii) FTCCA(C) = 1 if and only if C satisfies FTCCA
iv) FICA(C) = 1 if and only if C satisfies FICA

The following theorem establishes the positions of the above defined indicators
towards the degree of other indicators.

Theorem 3.3. If C : B −→ F(X) is a fuzzy choice function defined on domain B,
then

(i) FTCCA(C) ≤ FICA(C)
(ii) FICA(C) ≤ FCCCA(C)
(iii) FCCCA(C) ≤ FDRA(C)

Proof. (i) Let S ∈ B and x, y ∈ X. Then for any z ∈ X, by Lemma 2.4-(iii), we
have

R̂(x, y) ∗ C(S)(y) ∗ S(z) ≤ R(x, y) ∗ C(S)(y) ∗ S(z)

≤ R(x, y) ∗R(y, z)

≤ R(x, y) ∗R(y, z)

≤ R(x, z)

By Lemma 2.1-(ii), we get

R̂(x, y) ∗ C(S)(y) ≤ S(z) −→ R(x, z)

This last inequality holds for any z ∈ X, therefore

R̂(x, y) ∗ C(S)(y) ∗ S(x) ≤ S(x) ∗
∧

z∈X

[
S(z) −→ R(x, z)

]
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Applying Lemma 2.1-(v) to the above inequality we get

S(x) ∗
∧

z∈X

[
S(z) −→ R(x, z)

] −→ C(S)(x) ≤ R̂(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)

The above inequality is true for all S ∈ B and x, y ∈ X. Therefore FTCCA(C) ≤
FICA(C).

(ii). Let S ∈ B and x, y ∈ X. Since the fuzzy choice function C is normal, for
every S ∈ B there exists t ∈ X such that C(S)(t) = 1. Hence S(t) = 1.
Then, for any S ∈ B and x ∈ X by Lemma 2.1-(iv) if follows that

S(x) ∗
∧

z∈X

[
S(z) −→ R̂(x, z)

]
≤ S(x) ∗

[
S(t) −→ R̂(x, t)

]

= S(x) ∗ R̂(x, t)

= R̂(x, t) ∗ C(S)(t) ∗ S(x)(3.1)

By Lemma 2.1-(v) it follows that

R̂(x, t) ∗ C(S)(t) ∗ S(x) −→ C(S)(x) ≤ S(x) ∗
∧

z∈X

[
S(z) −→ R̂(x, z)

]
−→ C(S)(x)

The above inequality holds for all S ∈ B, x ∈ X and a particular t ∈ X. Therefore
FICA(C) ≤ FCCCA(C)
(iii). Since R ⊆ R̂, by Lemma 2.1-(v), we have

S(y) −→ R(x, y) ≤ S(y) −→ R̂(x, y), for all S ∈ B and x, y ∈ X

Therefore,

S(x) ∗
∧

y∈X

[S(y) −→ R(x, y)] ≤ S(x) ∗
∧

y∈X

[
S(y) −→ R̂(x, y)

]

Now, for any S ∈ B and x ∈ X, we have

FCCCA(C) ∗ S(x) ∗
∧

y∈X

[S(y) −→ R(x, y)]

≤ FCCCA(C) ∗ S(x) ∗
∧

y∈X

[
S(y) −→ R̂(x, y)

]

≤ S(x) ∗
∧

y∈X

[
S(y) → R̂(x, y)

]
∗





S(x) ∗

∧

y∈X

[
S(y) → R̂(x, y)

]

 → C(S)(x)




≤

S(x) ∗

∧

y∈X

[
S(y) −→ R̂(x, y)

]

 ∧ C(S)(x)

≤ C(S)(x)

By Lemma 2.1-(ii) we have

FCCCA(C) ≤




S(x) ∗

∧

y∈X

[S(y) −→ R(x, y)]


 −→ C(S)(x)
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The above inequality is true for all S ∈ B and x ∈ X, therefore

FCCCA(C) ≤
∧

S∈B

∧

x∈X





S(x) ∗

∧

y∈X

[S(y) −→ R(x, y)]


 −→ C(S)(x)




i.e. FCCCA(C) ≤ FDRA(C) ¤

The following theorem shows that the degree to which the fuzzy choice function
satisfies the FTCCA is equal to the degree to which it satisfies the SFCA.

Theorem 3.4. Let C be a fuzzy choice function with arbitrary domain B. Then
FTCCA(C) = SFCA(C).

Proof. First we shall prove FTCCA(C) ≤ SFCA(C).
For this, let S ∈ B and x, y ∈ X. Then for any z ∈ X, we have

R(x, y) ∗ C(S)(y) ∗ S(z) ≤ R(x, y) ∗R(y, z)

≤ R(x, y) ∗R(y, z)

≤ R(x, z)

By Lemma 2.1-(ii) we have

R(x, y) ∗ C(S)(y) ≤ S(z) −→ R(x, z)

The above inequality is true for z ∈ X, therefore

R(x, y) ∗ C(S)(y) ∗ S(x) ≤ S(x) ∗
∧

z∈X

[
S(z) −→ R(x, z)

]

By Lemma (2.1)-(v) it follows that

S(x) ∗
∧

z∈X

[
S(z) −→ R(x, z)

] −→ C(S)(x) ≤ R(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)

The above inequality is true for all S ∈ B and x, y ∈ X. Thus FTCCA(C) ≤
SFCA(C).

Next, we will prove that SFCA(C) ≤ FTCCA(C).
Since the fuzzy choice function C is normal, for every S ∈ B there exists t ∈ X such
that C(S)(t) = 1 and hence S(t) = 1.
Then, for any x, y ∈ X by Lemma 2.1-(i) it follows that

SFCA(C) ∗ S(x) ∗
∧

z∈X

[
S(z) −→ R(x, z)

]

≤ SFCA(C) ∗ S(x) ∗ [
S(t) −→ R(x, t)

]

= SFCA(C) ∗ S(x) ∗R(x, t)

≤ R(x, t) ∗ S(x) ∗ [
R(x, t) ∗ S(x) ∗ C(S)(t) −→ C(S)(x)

]

= R(x, t) ∗ S(x) ∗ [
R(x, t) ∗ S(x) −→ C(S)(x)

]

≤ (R(x, t) ∗ S(x)) ∧ C(S)(x)

≤ C(S)(x)

469



S. S. Desai et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 3, 461–477

Thus,

SFCA(C) ∗ S(x) ∗
∧

z∈X

[
S(z) −→ R(x, z)

] −→ C(S)(x)

The last inequality is true for all S ∈ B and x ∈ X, therefore

SFCA(C) ≤
∧

S∈B

∧

x∈X

[
S(x) ∗

∧

z∈X

[
S(z) −→ R(x, z)

] −→ C(S)(x)

]

i.e. SFCA(C) ≤ FTCCA(C). ¤

The following theorem gives the position of the degrees of FICA and FDRA
towards the degree of WFCA, SFCA and WAFRP.

Theorem 3.5. Let C be a fuzzy choice function with arbitrary domain B. Then

(i) FICA(C) ≤ WFCA(C)
(ii) WFCA(C) ≤ FDRA(C)
(iii) FICA(C) ≤ WAFRP (C)
(iv) SFCA(C) ≤ FICA(C)

Proof. (i) Let S ∈ B and x, y ∈ X. Then, by Lemmas 2.4-(iii) and 2.1-(i)

FICA(C)∗R(x, y) ∗ C(S)(y) ∗ S(x) = R(x, y) ∗ C(S)(y) ∗ S(x) ∗ FICA(C)

≤ R(x, y) ∗ C(S)(y) ∗ S(x) ∗
(
R̂(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)

)

≤ R̂(x, y) ∗ C(S)(y) ∗ S(x) ∗
(
R̂(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)

)

≤ (R̂(x, y) ∗ C(S)(y) ∗ S(x)) ∧ C(S)(x)

≤ C(S)(x)

By Lemma 2.1-(ii), we have

FICA(C) ≤ R(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)

The last inequality holds for all S ∈ B and x, y ∈ X, therefore

FICA(C) ≤
∧

x,y∈X

∧

S∈B
[R(x, y) ∗ C(S)(y) ∗ S(x) −→ C(S)(x)]

i.e. FICA(C) ≤ WFCA(C)

(ii) Let S ∈ B and x ∈ X. Since the fuzzy choice function C is normal, for ev-
ery S ∈ B there exists t ∈ X such that C(S)(t) = 1 and hence S(t) = 1. Then

S(x) ∗
∧

z∈X

[S(z) −→ R(x, z)] ≤ S(x) ∗ [S(t) −→ R(x, t)]

= S(x) ∗R(x, t)

Thus,

S(x) ∗
∧

z∈X

[S(z) −→ R(x, z)] ≤ R(x, t) ∗ C(S)(t) ∗ S(x)
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Now by Lemma 2.1-(v) one can write

R(x, t) ∗ C(S)(t) ∗ S(x) −→ C(S)(x) ≤ S(x) ∗
∧

z∈X

[S(z) −→ R(x, z)] −→ C(S)(x)

The above inequality is true for all S ∈ B, x ∈ X and a particular t ∈ X. Therefore
WFCA(C) ≤ FDRA(C).
(iii) For any x, y ∈ X, we have

(3.2)

FICA(C) ∗ P̃ (x, y) ∗R(y, x) ≤ FICA(C) ∗ P̃ (x, y) ∗ R̂(y, x)

= FICA(C) ∗
∨

S∈B
[C(S)(x) ∗ S(y) ∗ ¬C(S)(y)] ∗ R̂(y, x)

=
∨

S∈B

[
FICA(C) ∗ C(S)(x) ∗ S(y) ∗ ¬C(S)(y) ∗ R̂(y, x)

]

Now, for any S ∈ B, we have

FICA(C) ∗ C(S)(x) ∗ S(y) ∗ ¬C(S)(y) ∗ R̂(y, x)

= R̂(y, x) ∗ C(S)(x) ∗ S(y) ∗ FICA(C) ∗ ¬C(S)(y)

≤ R̂(y, x) ∗ C(S)(x) ∗ S(y) ∗
[
R̂(y, x) ∗ C(S)(x) ∗ S(y) −→ C(S)(y)

]
∗ ¬C(S)(y)

≤ [R̂(y, x) ∗ C(S)(x) ∗ S(y) ∧ C(S)(y)] ∗ ¬C(S)(y)

≤ C(S)(y) ∗ ¬C(S)(y)
= 0

Therefore, equation (3.2) reduces to

FICA(C) ∗ P̃ (x, y) ∗R(y, x) = 0

Thus by Lemma 2.2-(i), we have

FICA(C) ∗ P̃ (x, y) ≤ ¬R(y, x)

Then, by Lemma 2.1-(ii) we have

FICA(C) ≤ P̃ (x, y) −→ ¬R(y, x)

The above inequality is true for all x, y ∈ X, therefore

FICA(C) ≤
∧

x,y∈X

[
P̃ (x, y) −→ ¬R(y, x)

]

(iv). It follows from Theorems 3.4 and 3.3-(i) ¤

4. Equivalence between FAA(C) and WFCA(C)

In [17] Georgescu argued that the fuzzy Arrow axiom and weak fuzzy congruence
axioms are equivalent in the presence of the following hypotheses (H1) and (H2)

(H1) Every S ∈ B and C(S) are normal fuzzy subsets of X.
(H2) B includes all fuzzy sets [x1, x2, . . . , xn], n ≥ 1 and x1, x2, . . . , xn ∈ X.
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In the following theorem we will prove an equivalence between the fuzzy Arrow
axiom and the weak fuzzy congruence axiom on arbitrary domain in the presence of
(H1) only. Here we note that the results of this section are valid only for the Gödel
t-norm.

Definition 4.1 ([18]). Let C be a fuzzy choice functions on (X,B) satisfying (H1).
Then the indicator of the fuzzy Arrow axiom, FAA(C) , is given by

FAA(C) =
∧

S1,S2∈B

∧

x∈X

[I (S1, S2) ∧ S1(x) ∧ C(S2)(x) −→ E (S1 ∩ C(S2), C(S1))]

Note that FAA(C) = 1 if and only if C satisfies FAA. The number FAA(C) gives
the degree to which the fuzzy choice function C satisfies the fuzzy Arrow axiom.

In the following example first we show FAA(C) and WFCA(C) are distinct on
arbitrary domain. We note that WFCA(C) ≤ FAA(C) on any domain.

Example 4.2. Let X = {a, b, c, d}. Define a fuzzy choice function C on
B = {[a, b, c], [a, b, d], [a, c, b], [b, d]} as follows
C([a, b, c])(a) = 0.8, C([a, b, c])(b) = 1, C([a, b, c])(c) = 1, C([a, b, d])(a) = 1,
C([a, b, d])(b) = 0.7, C([a, b, d])(d) = 0.6, C([a, c, d])(a) = 1, C([a, c, d])(c) = 1,
C([a, c, d])(d) = 1, C([b, d])(b) = 0.9, C([b, d])(d) = 1
Then the fuzzy revealed preference relation R is given by

R =




a b c d

a 1 1 1 1
b 1 1 1 0.9
c 1 1 1 1
d 1 1 1 1




Here C satisfies the fuzzy Arrow axiom. Therefore, FAA(C) = 1. But WFCA(C) ≤
R(a, b)∧C([a, b, c])(b)∧[a, b, c](a) −→ C([a, b, c])(a) = 0.8. This shows that FAA(C)
and WFCA(C) are distinct on arbitrary domain.

The following theorem shows that the degree to which the fuzzy choice function
C satisfies the fuzzy Arrow axiom is equal to the degree to which it satisfies the
WFCA on an arbitrary domain.

Theorem 4.3. Let C be a fuzzy choice function with arbitrary domain B. If B is
closed under intersection, then FAA(C) = WFCA(C).

Proof. First we shall prove WFCA(C) ≤ FAA(C). To do this we establish

(a) WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ≤ C(S)(z) −→ S(z) ∧ C(T )(z)
(b) WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ≤ S(z) ∧ C(T )(z) −→ C(S)(z)

Let S, T ∈ B and x ∈ X. Then by the definition of I (S, T ) and Lemma 2.1-(i), we
have I (S, T ) ∧ S(z) ≤ T (z).
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(a) For any z ∈ X, we have

WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ∧ C(S)(z)

= WFCA(C) ∧ I (S, T ) ∧ S(z) ∧ S(x) ∧ C(T )(x) ∧ C(S)(z) ∧ S(z)

≤ WFCA(C) ∧ S(z) ∧ (S(z) −→ T (z)) ∧ S(x) ∧ C(T )(x) ∧ C(S)(z) ∧ S(z)

= WFCA(C) ∧ S(z) ∧ T (z) ∧ S(x) ∧ C(T )(x) ∧ C(S)(z) ∧ S(z)

≤ WFCA(C) ∧ T (z) ∧ S(x) ∧ C(T )(x) ∧ C(S)(z) ∧ S(z)

= C(S)(z) ∧ S(x) ∧ C(T )(x) ∧ T (z) ∧WFCA(C) ∧ S(z)

≤ R(z, x) ∧ C(T )(x) ∧ T (z) ∧WFCA(C) ∧ S(z)

≤ R(z, x) ∧ C(T )(x) ∧ T (z) ∧ (R(z, x) ∧ C(T )(x) ∧ T (z) −→ C(T )(z)) ∧ S(z)

= R(z, x) ∧ C(T )(x) ∧ T (z) ∧ C(T )(z) ∧ S(z)

≤ C(T )(z) ∧ S(z)

By Lemma 2.1-(ii) we have

(4.1) WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ≤ C(S)(z) −→ C(T )(z) ∧ S(z)

Next, the normality of C implies that for any S ∈ B there exists t ∈ X such that
C(S)(t) = 1 and hence S(t) = 1.
Then,

WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ∧ S(z) ∧ C(T )(z)

= C(T )(z) ∧ I (S, T ) ∧ S(t) ∧ S(x) ∧ C(T )(x) ∧ S(z) ∧WFCA(C)

≤ C(T )(z) ∧ S(t) ∧ (S(t) −→ T (t)) ∧ S(x) ∧ C(T )(x) ∧ S(z) ∧WFCA(C)

= C(T )(z) ∧ S(t) ∧ T (t) ∧ S(x) ∧ C(T )(x) ∧ S(z) ∧WFCA(C)

= C(T )(z) ∧ T (t) ∧ S(x) ∧ C(T )(x) ∧ S(z) ∧WFCA(C)

≤ R(z, t) ∧ S(x) ∧ C(T )(x) ∧ S(z) ∧WFCA(C)

≤ R(z, t) ∧ S(z) ∧WFCA(C)

≤ R(z, t) ∧ S(z) ∧ (R(z, t) ∧ C(S)(t) ∧ S(z) −→ C(S)(z))

= R(z, t) ∧ S(z) ∧ (R(z, t) ∧ S(z) −→ C(S)(z))

= R(z, t) ∧ S(z) ∧ C(S)(z)

≤ C(S)(z)

Again by Lemma 2.1-(ii) we have

(4.2) WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ≤ S(z) ∧ C(T )(z) −→ C(S)(z)

By the idempotency of the Gödel t-norm and equation (4.1), we have

WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ≤ S(z) ∧ C(T )(z) ←→ C(S)(z)

The above inequality is true for any z ∈ X, therefore

WFCA(C) ∧ I (S, T ) ∧ S(x) ∧ C(T )(x) ≤ E (S ∩ C(T ), C(S))

By Lemma 2.1-(ii), we have

WFCA(C) ≤ I (S, T ) ∧ S(x) ∧ C(T )(x) −→ E (S ∩ C(T ) ←→ C(S))
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Thus,

(4.3) WFCA(C) ≤ FAA(C)

Now, we prove that FAA(C) ≤ WFCA(C). For any S ∈ B and x ∈ X, we have

FAA(C) ∧R(x, y)∧C(S)(y) ∧ S(x)

= FAA(C) ∧
∨

T∈B
[C(T )(x) ∧ T (y)] ∧ C(S)(y) ∧ S(x)

=
∨

T∈B
[FAA(C) ∧ C(T )(x) ∧ T (y) ∧ C(S)(y) ∧ S(x)](4.4)

Since the domain B of the fuzzy choice function C is closed under intersection, we
have for S, T ∈ B, S ∩T ∈ B. Since S ∩T ⊆ S, S ∩T ⊆ T , we have, I (S ∩ T, S) = 1
and I (S ∩ T, T ) = 1.
Now, for any T ∈ B, we have

FAA(C) ∧ C(T )(x) ∧ T (y) ∧ C(S)(y) ∧ S(x)

= C(T )(x) ∧ T (y) ∧ C(S)(y) ∧ S(x) ∧ T (x) ∧ S(y) ∧ FAA(C)

= (S(y) ∧ T (y) ∧ C(S)(y) ∧ FAA(C)) ∧ (S(x) ∧ T (x) ∧ C(T )(x) ∧ FAA(C))

Thus,

FAA(C) ∧ C(T )(x) ∧ T (y) ∧ C(S)(y) ∧ S(x)(4.5)

= (S(y) ∧ T (y) ∧ C(S)(y) ∧ FAA(C))

∧ (S(x) ∧ T (x) ∧ C(T )(x) ∧ FAA(C))(4.6)

Next,

S(y) ∧ T (y) ∧ C(S)(y) ∧ FAA(C)

≤ S(y) ∧ T (y) ∧ C(S)(y) ∧ [I(S ∩ T, S) ∧ S(y) ∧ T (y) ∧ C(S)(y) −→
E(C(S ∩ T ), S ∩ T ∩ C(S))]

= S(y) ∧ T (y) ∧ C(S)(y) ∧ [S(y) ∧ T (y) ∧ C(S)(y) −→
E(C(S ∩ T ), S ∩ T ∩ C(S))]

= S(y) ∧ T (y) ∧ C(S)(y) ∧ E (C(S ∩ T ), S ∩ T ∩ C(S))

≤ E (C(S ∩ T ), S ∩ T ∩ C(S))

Thus,

S(y) ∧ T (y) ∧ C(S)(y) ∧ FAA(C) ≤ E (C(S ∩ T ), S ∩ T ∩ C(S))

Similarly, one has

S(x) ∧ T (x) ∧ C(T )(x) ∧ FAA(C) ≤ E (C(S ∩ T ), S ∩ T ∩ C(T ))
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Therefore,

FAA(C) ∧ C(T )(x)∧T (y) ∧ C(S)(y) ∧ S(x)

≤ E (C(S ∩ T ), S ∩ T ∩ C(S)) ∧ E (C(S ∩ T ), S ∩ T ∩ C(T ))

= E (C(S ∩ T ), T ∩ C(S)) ∧ E (C(S ∩ T ), S ∩ C(T ))

= E (S ∩ C(T ), C(S ∩ T )) ∧ E (C(S ∩ T ), T ∩ C(S))

≤ ((S ∩ C(T ))(x) −→ C(S ∩ T )(x)) ∧ (C(S ∩ T )(x)

−→ (T ∩ C(S))(x))

≤ S(x) ∧ C(T )(x) −→ T (x) ∧ C(S)(x), by Lemma 2.1-(vi)

Therefore, by Lemma 2.1-(i) and the idempotent property of the Gödel t-norm, we
have

FAA(C) ∧ C(T )(x) ∧ T (y) ∧ C(S)(y) ∧ S(x) ≤ T (x) ∧ C(S)(x)

≤ C(S)(x)

Thus,
FAA(C) ∧R(x, y) ∧ C(S)(y) ∧ S(x) ≤ C(S)(x)

By Lemma 2.1-(ii), the above inequality reduces to

FAA(C) ≤ R(x, y) ∧ C(S)(y) ∧ S(x) −→ C(S)(x)

Therefore FAA(C) ≤ WFCA(C). ¤

5. Conclusions

In classical choice theory the interrelations between the direct revelation axiom,
consistent-closure coherence axiom, transitive-closure coherence axiom and interme-
diate congruence axiom are established. Also, their relation with the weak fuzzy
congruence axiom, strong fuzzy congruence axiom and weak axiom of fuzzy revealed
preference relation is established. It is expected that such theorems correspond to
results that express relation between indicators. In this paper, we have introduced
the indicators of the fuzzy direct revelation axiom, fuzzy transitive-closure coherence
axiom, fuzzy consistent-closure coherence axiom and fuzzy intermediate congruence
axiom. These indicators express the degree to which the fuzzy choice function C
satisfies the direct revelation axiom, consistent-closure coherence axiom, transitive-
closure coherence axiom and intermediate congruence axiom. The Theorem 3.3 gen-
eralizes the theorem that establishes the interrelations between the direct revelation
axiom, consistent-closure coherence axiom, transitive-closure coherence axiom and
intermediate congruence axiom. The equality FTCCA(C) = SFCA(C) generalizes
the theorem that establishes the equivalence between the transitive-closure coher-
ence axiom and strong congruence axiom and the Theorem 3.5 gives the position of
the degrees of FICA and FDRA towards the degree of WFCA, SFCA and WAFRP.
Lastly, the equivalence between FAA and WFCA on arbitrary domain is given.

The idempotent property of the Gödel t-norm appears essentially in the proof of
Theorem 4.3. An open problem is to check whether this theorem still holds for other
continuous t-norms. Wu et al. [32] follow Banerjee’s approach and generalize some
results of Georgescu. However, in this paper we are concerned with a more general
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fuzzy choice function defined by Georgescu. As an open problem we propose to follow
Banerjee’s approach and prove the results Section 4 for an arbitrary continuous t-
norm.
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