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1. Introduction

Recently fuzzy automata are studied by many researchers in varied directions [5,
6, 11, 13, 14, 15, 16, 17]. Different types of fuzzy groups are discussed in [10, 12]. One
way of studying fuzzy automaton is to generalize the results of classical automaton.
Characteristic semigroup of classical automaton was introduced by Fleck in [8] and
he discussed its properties over perfect automaton. Many researchers then discussed
characteristic semigroups of various classes of classical automaton along with their
properties [1, 2, 9, 19, 20].

In this paper we extend these concepts and results for fuzzy automaton. Precisely,
input independent fuzzy automaton is newly introduced and its relation with state
independent fuzzy automaton is discussed. Also, characteristic semigroups of right
simple (right group, group) type fuzzy automaton are discussed and their various
properties are established. In [7], we have discussed the cardinality of the group
of weak fuzzy automaton isomorphisms. Since the group of weak fuzzy automaton
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isomorphisms determines the structure of fuzzy automaton, we have also investigated
the relationships between them in the context of state independent fuzzy automaton.

In this paper we introduced the concept of input independent fuzzy automaton
and obtained that every input independent fuzzy automaton is connected. Fur-
ther, it is established that the characteristic semigroup of input independent fuzzy
automaton is a right zero semigroup. Condition for input independent fuzzy au-
tomaton to be strongly connected is also derived. We have proved that the input
independent fuzzy automaton is a sink if and only if it is weakly abelian. We have
also characterized strict quasi-cyclic input independent fuzzy automaton.After in-
troducing state independent fuzzy automaton, we have established its relation with
input independent fuzzy automaton. Characteristic semigroups of state independent
fuzzy automaton, right simple type, right group type, group type and quasi-perfect
fuzzy automaton are discussed and their characterizations are established. We have
established that a strongly connected fuzzy automaton is quasi-perfect if and only
if it is state independent. Further, in quasi-perfect fuzzy automaton it is observed
that the characteristic group, the group of its states and the group of its weak fuzzy
automaton automorphisms are isomorphic. Index and period of a component of a
fuzzy automaton with single input are discussed to find their various properties. It is
also established that the component of state independent fuzzy automaton contains
exactly one strongly connected subautomaton. Existence of weak fuzzy automaton
isomorphism between any two strongly connected fuzzy subautomata of state in-
dependent fuzzy automaton is also established. Finally, it is established that the
number of states of the strongly connected subautomaton of a state independent
fuzzy automaton gives the cardinality of its characteristic semigroup.

2. Preliminaries

In this section, we recall preliminary concepts and notations of fuzzy automata
that are needed for the rest of the paper.

Definition 2.1. Let A and B be sets. A fuzzy relation from A to B is a fuzzy set
R of A×B i.e.R : A×B → [0, 1]. The number R(a, b) denotes the degree to which
a is related to b.

Definition 2.2. [11] A fuzzy relation R from A to B is said to be complete, if for
each a ∈ A, there exists b ∈ B such that R(a, b) > 0. A fuzzy relation R is said to
be fuzzy function, if for each a ∈ A, there is unique b ∈ B such that R(a, b) > 0.

Since Supp(R) is actually a (crisp) function, the above definition resembles to
that of the definition of the (crisp) function, in the sense of unique image for each
element of the domain.

Definition 2.3. A fuzzy automaton is a triplet A = (Q,Σ, µ), where Q is a nonempty
finite set called set of states, Σ is a nonempty finite set called set of inputs and µ is
a fuzzy function from Q× Σ to Q.

If A = (Q,Σ, µ) is a fuzzy automaton, then Σ∗ denotes the set of all strings of
symbols in Σ including the empty string ε and the fuzzy function µ is extended to
a fuzzy function µ∗ from Q×Σ∗ to Q as follows : for all p, q ∈ Q, a ∈ Σ and x ∈ Σ∗

we have µ∗(p, ax, q) = µ(p, a, r)∧µ∗(r, x, q) , where r ∈ Q is such that µ(p, a, r) > 0
394
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and

µ∗(p, ε, q) =
{

1, if p = q;
0, otherwise.

Here onward, in this paper, we write µ for both µ and µ∗ without any ambiguity.

Definition 2.4. Let A1 = (Q1,Σ1, µ1) and A2 = (Q2,Σ2, µ2) be two fuzzy au-
tomata. A pair (h, k) of maps, where h : Q1 → Q2 , k : Σ1 → Σ2, is called fuzzy
automaton homomorphism from A1 to A2, symbolically (h, k) : A1 → A2 , if for
p, q ∈ Q1 and x ∈ Σ∗

1,µ2(h(p), k(x), h(q)) = µ1(p, x, q).
A pair of maps (h, k) : A1 → A2 is said to be weak fuzzy automaton homomorphism,
if for p, q ∈ Q1 and x ∈ Σ∗

1,µ1(p, x, q) > 0 ⇒ µ2(h(p), k(x), h(q)) > 0

In case, if Σ1 = Σ2 = Σ and k is the identity function on Σ ,then we shall denote
the homomorphism simply by h : A1 → A2.

Remark 2.5. Every fuzzy automaton homomorphism is a weak fuzzy automaton
homomorphism, but not conversely.

A (weak) fuzzy automaton homomorphism (h, k) from A1 to A2 is said to be
(weak) fuzzy automaton isomorphism, if both h and k are bijective functions.

We shall adopt the following notations throughout this paper
HF (A → B) : The set of all fuzzy automaton homomorphisms from A to B.
WHF (A → B) : The set of all weak fuzzy automaton homomorphisms from A to
B.
IF (A → B) : The set of all fuzzy automaton isomorphisms from A to B.
WIF (A → B) : The set of all weak fuzzy automaton isomorphisms from A to B.
EF (A) : The set of all fuzzy automaton endomorphisms on A.
WEF (A) : The set of all weak fuzzy automaton endomorphisms on A.
GF (A) : The set of all fuzzy automaton automorphisms on A.
WGF (A) : The set of all weak fuzzy automaton automorphisms on A.

Let A = (Q,Σ, µ) be a fuzzy automaton and M ⊆ Q.Then the successor of M is
the set S(M) = {p ∈ Q|µ(q, x, p) > 0, for some (q, x) ∈ M × Σ∗} and x-successor
of M is the set Sx(M) = {p ∈ Q|µ(q, xk, p) > 0, for some q ∈ M and k ∈ N ∪ {0}},
where x0 = ε. We denote the successor of {q} by S(q) and the x-successor of {q} by
Sx(q).

Definition 2.6 ([18]). A fuzzy automaton B = (R,Σ, λ) is called a subautoma-
ton of automaton A = (Q, Σ, µ), if R ⊆ Q, S(R) = R and µ|R×Σ×R = λ. This
subautomaton is called seperated, if S(Q−R) ∩R = ∅

Definition 2.7 ([13]). A fuzzy automaton A = (Q, Σ, µ) is said to be
(i) connected, if A has no proper seperated subautmaton.
(ii) strongly connected, if ∀p, q ∈ Q,we have q ∈ S(p).
(iii) abelian, if µ(p, xy, q) = µ(p, yx, q),∀x, y ∈ Σ∗ and p, q ∈ Q.
(iv) weakly abelian, if µ(p, xy, q) > 0 ⇔ µ(p, yx, q) > 0, for x, y ∈ Σ∗ and p, q ∈ Q.

Definition 2.8. For a fuzzy automaton A = (Q,Σ, µ) , the center of A, denoted
by Z(A) , is the set {x ∈ Σ∗| for q, s ∈ Q, we have µ(q, xy, s) > 0 ⇔ µ(q, yx, s) >
0},∀y ∈ Σ∗.
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Clearly, Z(A) = Σ∗ if and only if A is weakly abelian.
Let A = (Q,Σ, µ) be a fuzzy automaton and q ∈ Q. Then the fuzzy automaton
generated by q is, denoted by A(q), A(q) = (S(q),Σ, µ′) , where µ′ is a restriction of
µ to S(q)× Σ× S(q).

Definition 2.9. [18] A fuzzy automaton A is said to be singly generated, if there
exists q ∈ Q such that A = A(q).

The set of generators of A(q) is the set genA(q) = {r ∈ SA(q)|A(r) = A(q)}.

Definition 2.10. Let A = (Q,Σ, µ) be a fuzzy automaton. If A(q) is strongly
connected for each q ∈ Q, then A is called quasi-strongly connected .

Definition 2.11 ([7]). Let A = (Q,Σ, µ) be a fuzzy automaton, q ∈ Q and y, z ∈ Σ∗.
Then y is q-fuzzy equivalent to z , if µ(q, y, p) > 0 and µ(q, z, p) > 0, for some p ∈ Q.
We shall denote it by y ≡F

q z.

Remark 2.12. The relation ≡F
q is an equivalence relation of finite index on Q(i.e.

on A). We shall denote the equivalence class of x ∈ Σ∗ with respect to this relation
by [x]q.

In following example, we discuss application of fuzzy automata for approximate
minimization. By an approximate minimization of fuzzy automaton, we mean small-
est fuzzy automaton (in the sense of number of states) having approximate lan-
guages. Two fuzzy languages L1 and L2 are approximate with threshold α ∈ [0, 1],
if E(L1, L2) =

∧
x
(L1(x) ↔ L2(x)) ≥ α, where a ↔ b = (a → b) ∧ (b → a) and

a → b = ∨{x ∈ [0, 1]|a ∧ x ≤ b} [3].

Example 2.13. Consider a fuzzy automaton A with Q = {q0, . . . , q5},Σ = {a},
QF (qi) = 1

i+1 , when i < 5, QF (q5) = 0 and µ(qi, a, q)i+1 = 1
i+2 , for i < 5,

µ(q5, a, q5) = 1
7 , µ(p, x, q) = 0 otherwise.

Then LA(ai) =
{

1
i+1 , if i < 5 ;
1
7 , if i ≥ 5.

In classical sense (i.e. having equal languages), there does not exist a deterministic
fuzzy automaton A′ with less than 6 states having the same language that of A.
But if we consider fuzzy automaton A′ given by following diagram

(Q = {p0, p1},Σ = {a}, QF (p0) = 3
4 , QF (p1) = 1

2 )

and µ as shown in the figure :
396
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Then LA′(ai) =


3
4 , if i = 0 ;
1
2 , if i = 1 ;
1
4 , if i ≥ 2.

Then, E(LA, LA′) ≥ 1
7 . Therefore, A′ is an approximate minimization with threshold

1
7 of A.

For more details on approximate minimization of fuzzy automaton, we refer to
[4].

3. Input independent fuzzy automaton

This section is devoted to input independent fuzzy automaton which, we have
defined first time, forms a subclass of state independent fuzzy automaton, that we
are going to discuss in the next section. The characteristic semigroup of this input
independent fuzzy automaton is a right zero semigroup. Let A = (Q,Σ, µ) be any
fuzzy automaton. Then for any x ∈ Σ+, where Σ+ = Σ∗−{ε}, we define the relation
∼x on Q as: q1 ∼x q2 if and only if µ(q1, x, p) ∧ µ(q2, x, p) > 0, for some p ∈ Q.
Clearly ”∼x” is an equivalence relation on Q and [q]x denote the equivalence class
q with respect to ∼x.
Note that the notation µ(q1, x, p)∧µ(q2, x, p) > 0 is used here for µ(q1, x, p) > 0 and
µ(q2, x, p) > 0. This notation should not be confused with extension of µ to µ∗.

Definition 3.1. A fuzzy automaton A is said to be input independent, if [q]x = Q,
for all x ∈ Σ+ and for some q ∈ Q.

A fuzzy automaton A′, given in Figure 2 is actually an input independent fuzzy
automaton. From this example we conclude that for each fuzzy automaton which is
not input independent, there exists an input independent α-approximate minimiza-
tion. Hence, the theory developed in this paper can be applied.

Lemma 3.2. If A = (Q,Σ, µ) is an input independent fuzzy automaton, then for
any x ∈ Σ+, we have [x]q = [x]s for all q, s ∈ Q.

Therefore, for input independent fuzzy automaton, here onward we shall write
the equivalence class [x]q by [x] without any ambiguity and the collection of all such
classes by [Σ+].

Remark 3.3. For input independent fuzzy automaton A = (Q,Σ, µ), we have
(i) [z] = {xz|x ∈ Σ+}, for any z ∈ Σ+

(ii) The operation [x][y] = [y] is well defined on [Σ+] and [Σ+] is semigroup under
this operation.
(iii) S(p) = S(q), for all p, q ∈ Q.
(iv) |S(q)| = |[Σ+]|, for all q ∈ Q.
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The semigroup [Σ+] is called the characteristic semigroup of A.

Lemma 3.4. If A is an input independent fuzzy automaton, then its characteristic
semigroup [Σ+], with operation [x][y] = [y] is a right zero semigroup.

Theorem 3.5. Every input independent fuzzy automaton is connected.

Proof. Let C1 and C2 be two components of A and q1 ∈ C1, q2 ∈ C2. Choose
a ∈ Σ be such that µ(q1, a, p) > 0, for some p ∈ C1. Since A is input independent
fuzzy automaton, we have µ(q2, a, p) > 0. This leads to p ∈ C1 ∩ C2, which is a
contradiction. �

Theorem 3.6. Let A be an input independent fuzzy automaton. If A is strongly
connected, then |Q| ≤ |Σ|.

Proof. Since A is strongly connected, for each q ∈ Q, there exists xq ∈ Σ such
that µ(p, xq, q) > 0, for some p ∈ Q. Again since A is input independent fuzzy
automaton, for q1 6= q2, we have xq1 6= xq2 . this proves that |Q| ≤ |Σ|. �

The converse of the above theorem is not true in general. This can be seen in the
following example.

Example 3.7. Let Q = {q1, q2, q3} and I = {a, b, c}. Let µ be defined by the
following diagram.

Definition 3.8. An input independent fuzzy automaton with trivial characteristic
semigroup, i.e.|[Σ+]| = 1, is called as sink.

Theorem 3.9. An input independent fuzzy automaton is a sink if and only if it is
weakly abelian.

Proof. Let A = (Q,Σ, µ) be an input independent fuzzy automaton. Suppose x, y ∈
Σ+ such that µ(q1, xy, q2) > 0. Since A is input independent fuzzy automaton, we
have [x][y] = [y] and [y][x] = [x]. Also, A is sink implies that [x] = [y]. Therefore
[x][y] = [y][x]. Hence, µ(q1, yx, q2) > 0. Conversely, suppose that A is a not sink.
Let [x], [y] ∈ [Σ+] with [x] 6= [y]. Then [x][y] = [y] 6= [x] = [y][x]. Hence, A is not
weakly abelian. �

398



S. S. Dhure et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 3, 393–408

Theorem 3.10. Every singly generated input independent fuzzy automaton is strongly
connected.

Proof. Consider A = A(q). Let q1, q2 ∈ Q. Then there exist x, y ∈ Σ+ such that
µ(q, x, q1) > 0 and µ(q, y, q2) > 0. Since A is an input independent fuzzy automaton,
we have µ(q1, y, q2) > 0. �

Corollary 3.11. Every input independent fuzzy automaton is quasi-strongly con-
nected.

Theorem 3.12. An input independent fuzzy automaton A is strongly connected if
and only if for every q ∈ Q, there exists a ∈ Σ such that µ(q, a, q) > 0.

Proof. Suppose A is strongly connected. Let q ∈ Q. Then there exists x ∈ Σ∗ such
that µ(q, x, q) > 0. Thus, there is a ∈ Σ and p ∈ Q such that µ(p, a, q) > 0. Since A
is input independent fuzzy automaton, µ(q, a, q) > 0. Conversely, let q1, q2 ∈ Q. By
hypothesis there exist a, b ∈ Σ such that µ(q1, a, q1) > 0 and µ(q2, b, q2) > 0. Then
µ(q1, b, q2) > 0. This proves that A is strongly connected. �

Definition 3.13. A fuzzy automaton A is said to be quasi-cyclic, if there exists
q ∈ Q such that p ∈ S(q), for all p ∈ Q − {q}. In this case q is called a quasi-
generator of A.

A fuzzy automaton A is strict quasi-cyclic, if there exists q ∈ Q such that p ∈ S(q)
if and only if p ∈ Q− {q}.
In a fuzzy automaton A = (Q,Σ, µ) a state q is said to have a self-loop if µ(q, a, q) >
0, for some a ∈ Σ.

Theorem 3.14. If A is a strict quasi-cyclic input independent fuzzy automaton,
then it has unique quasi-generator. Further, any state which does not have a self-
loop is the quasi-generator of A.

Proof. Suppose q1 and q2 are quasi-generator of A. There exist a, b ∈ Σ such that
µ(q1, a, q2) > 0 and µ(q2, b, q1) > 0. Since A is input independent fuzzy automaton,
we have µ(q2, a, q2) > 0. This is impossible, as A is strict quasi-cyclic and q2 is quasi-
generator. Now suppose that for some q ∈ Q, we have µ(q, a, q) = 0, for all a ∈ Σ+.
If p(6= q) is a quasi-generator of A, then there exists b ∈ Σ such that µ(p, b, q) > 0.
Then µ(q, b, q) > 0, which is a contradiction. Therefore, quasi-cyclicity of A proves
that q is the quasi-generator of A. �

Theorem 3.15. Let A be an input independent fuzzy automaton. Then A is strict
quasi-cyclic if and only if there are exactly |Q|− 1 elements in Q with µ(q, a, q) > 0,
for some a ∈ Σ.

Proof. Immediate by above theorem. �

Definition 3.16. A fuzzy automaton A = (Q,Σ, µ) is said to be a cycle of length
n if |Q| = n and there is q ∈ Q,x ∈ Σ∗ with |x| = n such that µ(q, x, q) > 0.

Theorem 3.17. If A is an input independent fuzzy automaton with |[Σ]| = n, then
there is a cycle of length n. In fact any state of this cycle is a self-loop state.
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Proof. Let q ∈ Q and [Σ] = {[a1], [a2], . . . , [an]}. Then we must have {q1, q2, . . . , qn}
such that µ(q, ai, qi) > 0, for i = 1, 2, . . . , n. Then µ(qi+1, ai, qi) > 0, for i =
1, 2, . . . , n − 1 and µ(q1, an, qn) > 0. Therefore, {q1, q2, . . . , qn} is cycle of length
n. Suppose {q′1, q′2, . . . , q′n} is another cycle of length n. Then µ(q, a1, qi) > 0 and
µ(q, a1, q

′
i) > 0. This implies that qi = q′i. �

Theorem 3.18. Let A1 = (Q1,Σ, µ1), A2 = (Q2,Σ, µ2) and h ∈ WHF (A1 → A2)
with h onto. If A1 is a sink, then A2 is also a sink.

Proof. Let qi ∈ Q2, for i = 1, 2, 3, 4 and x ∈ Σ+ be such that µ2(q1, x, q2) ∧
µ2(q3, x, q4) > 0. Since h is onto, there exist pi ∈ Q1 with h(pi) = qi, for i = 1, 2, 3, 4.
Then µ1(p1, x, p2) ∧ µ1(p3, x, p4) > 0. This implies that p2 = p4, as A1 is input in-
dependent fuzzy automaton. Therefore, q2 = q4. This prove that A2 is also input
independent. Let [x], [y] ∈ [Σ+] and q ∈ Q2. Then there exists p ∈ Q1 such that
h(p) = q. Since A1 is a sink, we have x ≡F

p y. Thus, µ1(p, x, p1) ∧ µ1(p, y, p1) > 0,
for some p1 ∈ Q1. Therefore, µ2(q, x, q1) ∧ µ2(q, y, q1) > 0, where h(p1) = q1. This
implies that, [x]q = [y]q. Hence, A2 is also a sink. �

4. State independent fuzzy automaton

In this section we introduce state independent fuzzy automaton and its types
namely right simple, right group and group type fuzzy automaton. Apart from
various properties of these types of state independent fuzzy automaton, we will
establish that the characteristic semigroup of state independent fuzzy automaton is
the semigroup of successor of any state with a suitable binary operation. We begin
this section with the definition of state independent fuzzy automaton.

Definition 4.1. A is said to be a state independent fuzzy automaton, if for all
q, s ∈ Q and x ∈ Σ∗, [x]q = [x]s. i.e.∀q, s ∈ Q and x, y ∈ Σ∗ , one has µ(q, x, p) > 0
and µ(q, y, p) > 0, for some p ∈ Q if and only if µ(s, x, t) > 0 and µ(s, y, t) > 0 , for
some t ∈ Q.

Therefore, for state independent fuzzy automaton, here onward we shall write
the equivalence class [x]q by [x] without any ambiguity and the collection of all such
classes by [Σ∗]. Under the natural operation, [Σ∗] is the characteristic semigroup of
A. In fact

Lemma 4.2. For state independent fuzzy automaton A = (Q,Σ, µ) ,the [Σ∗] forms
a monoid with respect to the operation [x][y] = [xy].

The equivalence class of the empty string is the identity of this monoid.

Lemma 4.3. If A = (Q,Σ, µ) is a state independent fuzzy automaton, then for
x, y ∈ Σ∗, we have [x] = [y] ⇒ [xk] = [yk], for all k ∈ N.

Lemma 4.4. If A = (Q,Σ, µ) is a state independent fuzzy automaton, then the map
x → [x] is an onto homomorphism from Σ∗ to [Σ∗].

If the condition of state independence holds for all x ∈ Σ+, then A is called as
partially state independent fuzzy automaton.

Theorem 4.5. Every input independent fuzzy automaton is partially state indepen-
dent fuzzy automaton.
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Proof. Suppose x ≡F
q y, for some x, y ∈ Σ+ and q ∈ Q. Since A is input independent

fuzzy automaton, we have x ≡F
t y, for all t ∈ Q. Therefore, A is partially state

independent fuzzy automaton. �

Recall that a semigroup S is right simple, if for any a, b ∈ S, there exists c ∈ S
such that ac = b. It is a right group, if S is a right simple semigroup with a left
identity[2].

Definition 4.6. A fuzzy automaton A = (Q,Σ, µ) is said to be a right simple (right
group,group)-type fuzzy automaton, if A is state independent fuzzy automaton and
the semigroup [Σ∗] is a right simple (right group,group respectively).

Definition 4.7. Fuzzy automaton A = (Q,Σ, µ) is said to be invertible, if µ(p, x, q) >
0 for some p, q ∈ Q and x ∈ Σ∗ then there exists y ∈ Σ∗ such that µ(q, y, p) > 0.

Theorem 4.8. Every group type fuzzy automaton is invertible.

Proof. Let A be a group type fuzzy automaton and µ(p, x, q) > 0, for some p, q ∈ Q
and x ∈ Σ∗. Then [x] ∈ [Σ∗] and [Σ∗] is a group. Thus, there exists [y] ∈ [Σ∗] such
that [x][y] = [ε]. Therefore, µ(p, xy, p) > 0. This implies that µ(p, x, q)∧µ(q, y, p) >
0. Hence, µ(q, y, p) > 0. �

The following example shows that a group-type fuzzy automaton is not strongly
connected.

Example 4.9. Let Q = {q1, q2, q3, q4, q5, q6} and Σ = {a}. Let µ be defined by the
following diagram.

In fact, we conclude the following

Lemma 4.10. Every singly generated group-type fuzzy automaton is strongly con-
nected.

Proof. Consider a singly generated group type fuzzy automaton A = A(q). Let
q1, q2 ∈ Q. Then there exist x, y ∈ Σ∗ such that µ(q, x, q1)∧µ(q, y, q2) > 0. Since [Σ∗]
is a group, we have [x−1] ∈ [Σ∗] such that [x][x−1] = [ε]. Therefore, µ(q1, x

−1, q) > 0.
Hence, µ(q1, x

−1y, q2) > 0. �

If we designate a singly generated group-type fuzzy automaton as quasi-perfect
fuzzy automaton, then due to Lemma 4.10, we have

Theorem 4.11. Every quasi-perfect fuzzy automaton is strongly connected.
401
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Let A = (Q,Σ, µ) be a state independent fuzzy automaton. Define a binary
operation ∗ on S(q) as p∗r = s, where µ(q, x, p) > 0, µ(q, y, r) > 0 and µ(q, xy, s) > 0,
for some x, y ∈ Σ∗. Then (S(q), ∗) is a semigroup.

Theorem 4.12. Let A = (Q,Σ, µ) be a state independent fuzzy automaton. Then,
[Σ∗] is isomorphic to (S(q), ∗), for each q ∈ Q.

Proof. Define h : S(q) → [Σ∗] by h(p) = [x], where µ(q, x, p) > 0. Since A is state
independent, h is well defined. Now, let p, r, s ∈ Q with µ(q, x, p) > 0, µ(q, y, r) > 0
and µ(q, xy, s) > 0. Then h(p ∗ r) = h(s) = [xy] = [x][y] = h(p)h(r). i.e. h is a
homomorphism. Let h(p) = h(r). Then [x] = [y]. In particular [x]q = [y]q. This
shows that h is 1-1. Now, for [x] ∈ [Σ∗] we choose p ∈ Q such that µ(q, x, p) > 0.
Then p ∈ S(q) and h(p) = [x]. Hence h is an isomorphism. �

Corollary 4.13. If A = (Q, Σ, µ) is a quasi-perfect fuzzy automaton, then (Q, ∗) is
a group and [Σ∗] is isomorphic to (Q, ∗).

Theorem 4.14. Every right simple type fuzzy automaton is quasi-strongly con-
nected.

Proof. Let q ∈ Q and q1, q2 ∈ S(q). Then there exists x1, x2 ∈ Σ∗ such that
µ(q, x1, q1) > 0 and µ(q, x2, q2) > 0. Since A is a right simple type fuzzy automaton,
we have [z] ∈ [Σ∗] such that [x1][z] = [x2]. Therefore µ(q, x2, q2) = µ(q, x1z, q2) =
µ(q, x1, q1) ∧ µ(q1, z, q2) > 0 . This gives us µ(q1, z, q2) > 0 . Therefore, A(q) is
strongly connected for any q ∈ Q. Hence, A is quasi-strongly connected. �

The above theorem is the fuzzy counterpart of the theorem for classical deter-
ministic automata theory given in [20].

Corollary 4.15. Every connected right simple type fuzzy automaton is strongly
connected.

Theorem 4.16. Let A = (Q,Σ, µ) be a strongly connected fuzzy automaton. Then
A is a quasi-perfect fuzzy automaton if and only if A is state independent.

Proof. Clearly, quasi-perfect fuzzy automaton is a state independent fuzzy automa-
ton. Conversely, we have strongly connectedness of A implies A is singly generated.
Also [Σ∗] is always monoid with [ε] as the identity. Let [x] ∈ [Σ∗]. Since A is strongly
connected for p, q ∈ Q, there exists y ∈ Σ∗ such that µ(q, x, p) > 0 and µ(p, y, q) > 0.
Now, µ(q, xy, q) = µ(q, x, p) ∧ µ(p, y, q) > 0 implies that [xy] = [x][y] = [ε], as A is
state independent. Similarly, we have [y][x] = [ε]. Therefore, [y] = [x]−1 and [Σ∗] is
a group. Hence, A is a quasi-perfect fuzzy automaton. �

Theorem 4.17. Let A = (Q,Σ, µ) be a quasi-perfect fuzzy automaton and x0 ∈ Σ∗

be fixed element. Let the map h : Q → Q defined by h(q) = p, where µ(q, x0, p) > 0.
Then h ∈ WGF (A) if and only if x0 ∈ Z(A).

Proof. Suppose x0 ∈ Z(A). We first prove that h is one one. Let h(q1) = h(q2),
for q1, q2 ∈ Q. Then µ(q1, x0, p) > 0 and µ(q2, x0, p) > 0, for some p ∈ Q. Since
A is strongly connected, there exists z ∈ Σ∗ such that µ(q1, z, q2) > 0. Then,
µ(q1, zx0, p) = µ(q1, z, q2) ∧ µ(q2, x0, p) > 0. Thus, [zx0] = [z][x0] = [x0] = [x0][z],
since µ(q1, x0, p) > 0 and x0 ∈ Z(A). Then, [z] is an identity of [Σ∗]. Thus, q1 = q2.
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Hence h is 1-1. Since Q is finite we have h is onto. To prove that h ∈ WGF (A), let
q, r ∈ Q, z ∈ Σ∗ and µ(q, z, r) > 0. Let [y] ∈ [Σ∗] be such that [z] = [y][x0]. Then,
µ(q, yx0, r) = µ(q, x0y, r) = µ(q, x0, p) ∧ µ(p, y, r) > 0. Thus, µ(h(q), z, h(r)) =
µ(p, yx0, h(r)) = µ(p, y, r) ∧ µ(r, x0, h(r)). Therefore, µ(h(q), z, h(r)) > 0. Hence
h ∈ WGF (A). Conversely, suppose that h ∈ WGF (A). Let y ∈ Σ∗. For q, r ∈ Q,
let µ(q, x0y, r) > 0. Then µ(q, x0y, r) = µ(q, x0, p) ∧ µ(p, y, r) > 0, for some p ∈ Q.
Now, µ(q, yx0, t) = µ(q, y, s) ∧ µ(s, x0, t) > 0, for some s ∈ Q. Then h(s) = t.
Therefore, µ(h(q), y, h(s)) > 0 i.e. µ(p, y, t) > 0. This implies that t = r. Thus,
µ(q, x0y, r) > 0 ⇒ µ(q, yx0, r) > 0. �

A permutation group G on a set Q is said to be transitive on Q, if given any
ordered pair (q, q′) of elements of Q, there exists g ∈ G such that g(q) = q′

Theorem 4.18. Let A = (Q,Σ, µ) be a fuzzy automaton. Then A is quasi-perfect
if and only if A is strongly connected and WGF (A) is transitive on Q.

Proof. Suppose that A is a quasi-perfect automaton. Let q1, q2 ∈ Q and x ∈ Σ∗

such that µ(q1, x, q2) > 0. Define a map h as (i) h(q1) = q2 and (ii) h(p) = r,
whenever µ(q1, z, p) ∧ µ(q2, z, r) > 0, for some z ∈ Σ∗. Since A is state indepen-
dent fuzzy automaton, h is well defined and 1-1. Also A is strongly connected
implies that h is onto. Let p1, p2 ∈ Q and µ(p1, z, p2) > 0, for some z ∈ Σ∗.
Suppose µ(q1, y, p1) > 0, for some y ∈ Σ∗. Then µ(q1, yz, p2) > 0 implies that
µ(q2, yz, h(p2)) > 0, by the definition of h. Then, µ(q2, y, h(p1))∧µ(h(p1), z, h(p2)) >
0. Therefore, µ(h(p1), z, h(p2)) > 0. Hence, h ∈ WGF (A) and WGF (A) is transi-
tive on Q. Conversely suppose A is strongly connected and WGF (A) is transitive
on Q. Let p, q ∈ Q and g, h ∈ WGF (A) such that g(p) = q and h(q) = p. Let
y ∈ [x]p, for some x ∈ Σ∗. Then µ(p, x, r) ∧ µ(p, y, r) > 0, for some r ∈ Q. There-
fore, µ(q, x, g(r)) ∧ µ(q, y, g(r)) > 0. Thus, y ∈ [x]q. Hence [x]p ⊆ [x]q. Similarly
[x]q ⊆ [x]p. Thus, [x]p = [x]q, for all p, q ∈ Q. i.e. A is state independent. Theorem
4.16 proves that A is quasi-perfect fuzzy automaton. �

Lemma 4.19. If A = (Q, Σ, µ) is a strongly connected fuzzy automaton and h1, h2 ∈
WEF (A) with h1(q0) = h2(q0), for some q0 ∈ Q, then h1 = h2.

Theorem 4.20. Let A = (Q,Σ, µ) be a quasi-perfect fuzzy automaton and h : Q →
Q. Then h ∈ WGF (A) if and only if for a fixed q0 ∈ Q, h(p) = r, whenever
µ(q0, x, p) ∧ µ(h(q0), x, r) > 0, x ∈ Σ∗.

Proof. Let h ∈ WGF (A) and for fixed q0 ∈ Q. Let h(q0) = q for some q ∈ Q. Since
A is quasi-perfect, A is strongly connected. Therefore there exists y ∈ Σ∗ such that
µ(q0, y, q) > 0. Define g by g(p) = r, if µ(p, y, r) > 0. Then g is a weak fuzzy
automaton homomorphism and µ(q0, x, p) ∧ µ(q, x, r) > 0. Since h(q0) = g(q0), by
Lemma 4.19, h = g. Converse follows by the above theorem. �

Theorem 4.21. Let A = (Q, Σ, µ) be a quasi-perfect fuzzy automaton. Then [Σ∗]
is isomorphic to WGF (A).

Proof. Let h ∈ WGF (A). Then by above theorem, h(p) = r, when µ(q0, x, p) ∧
µ(h(q0), x, r) > 0, for some x ∈ Σ∗. Let xh ∈ Σ∗ be such that µ(q0, xh, h(q0)) > 0.
Define f : WGF (A) → [Σ∗] by f(h) = [xh]. If h1 = h2, then h1(q0) = h2(q0).
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Therefore, µ(q0, xh1 , h1(q0)) > 0 and µ(q0, xh2 , h2(q0)) > 0. i.e. xh1 ≡F
q0

xh2 .
Thus, [xh1 ]q0 = [xh2 ]q0 . As A is state independent fuzzy automaton, [xh1 ] = [xh2 ].
This proves that f is well defined. If f(h1) = f(h2), then [xh1 ] = [xh2 ]. Thus,
[xh1 ]q0 = [xh2 ]q0 . Hence by Lemma 4.19, h1 = h2. Therefore f is 1-1. Let [x] ∈ [Σ∗]
and p ∈ Q such that µ(q0, x, p) > 0. Define h(q0) = p. Then, by above theorem,
h ∈ WGF (A). Clearly, f(h) = [x] proves f is onto. �

Due to Corollary 4.13, we have

Corollary 4.22. If A = (Q,Σ, µ) is a quasi-perfect fuzzy automaton, then WGF (A)
is isomorphic to (Q, ∗). In particular |WGF (A)| = |Q|.

Theorem 4.23. Let A = (Q, Σ, µ) be a strongly connected fuzzy automaton. If
|WGF (A)| = |Q|, then A is a quasi-perfect fuzzy automaton.

Proof. Since A is strongly connected, in light of Theorem 4.18, it is sufficient to
prove that WGF (A) is transitive on Q. Let Q = {q1, q2, . . . , qn} and WGF (A) =
{h1, h2, . . . , hn}. If WGF (A) is not transitive on Q, then there exist q1, q2 ∈ Q such
that q2 6∈ {h1(q1), h2(q1), . . . , hn(q1)}. This gives hi(q1) = hj(q1), for some i 6= j.
By Lemma 4.19, hi = hj . This contradicts to the fact that |WGF (A)| = |Q|. �

Theorems 4.12, 4.17, 4.18, 4.21, 4.23 reduces to their classical deterministic case
when we restrict range of µ to {0, 1}, these can be found in [19].

5. Properties of state independent fuzzy automaton

The purpose of this section is to count the number of elements in the characteristic
semigroup of a state independent fuzzy automaton with the help of concepts like
index and period of the state independent fuzzy automaton.

Definition 5.1. A maximal connected fuzzy subautomaton A′ = (Q′,Σ′, µ′) of a
fuzzy automaton A = (Q,Σ, µ) is called a block of A. We shall denote Q′ as a
component of Q (or A).

Definition 5.2. Let A = (Q, {x}, µ) be a fuzzy automaton. Let C be a component of
A. For each q ∈ C, there exist two non-negative integers m,n such that µ(q, xm, p) >
0 and µ(q, xm+n, p) > 0 ,where x0 is the identity element. The smallest non-negative
integers m and n with this property are respectively called the index and the period
of q with respect to x. (or the x - index and x - period of q.) We shall symbolically
denote them respectively as Ix

q and P x
q .

The largest x - index of all the elements of C is the index of the component C with
respect to x (or the x - index of C), in symbol Ix

c . The x - period of any element
of C is the period of the component C with respect to x (or the x - period of C), in
symbol P x

c .

Definition 5.3. Let A = (Q,Σ, µ) be any fuzzy automaton, q ∈ Q, x ∈ Σ∗. The
x-path of q is the subautomaton Ox(q) = (Sx(q), {x}, µ′), where µ′ is the restriction
of µ to Sx(q)× {x} × Sx(q).

Definition 5.4. The x circle of q is the subautomaton Cx(q) = (Sc
x(q), {x}, µ′),

where Sc
x(q) = {t ∈ Sx(q) : µ(q, xk, t) > 0 and µ(q, xm, t) > 0, for some integer

m > k} and µ′ is the restriction of µ to Sc
x(q)× {x} × Sc

x(q) .
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The x - path of q, Ox(q) is said to be circular, if Ox(q) = Cx(q).

Lemma 5.5. Let A = (Q,Σ, µ) be a fuzzy automaton and x ∈ Σ∗. If C is a
component of (Q, {x}, µ′), then for any q ∈ C , P x

q = |Cx(q)|.

Lemma 5.6. Let A = (Q,Σ, µ) be a fuzzy automaton and x ∈ Σ∗. If C is a
component of (Q, {x}, µ′), then for any q ∈ C , Ix

q = |Ox(q)| − |Cx(q)|.

Lemma 5.7. Let A = (Q,Σ, µ) be a state independent fuzzy automaton and x ∈ Σ∗.
If C is a component of (Q, {x}, µ′), then for any q ∈ C, we have Ix

q ≤ 1. Further,
Ix
C ≤ 1.

Proof. Let q0 ∈ C be such that Ix
q0

= m. Then, µ(q0, x
m, qm) > 0 and

µ(q0, x
m+n, qm) > 0. Let µ(q0, x

j , qj) > 0 for j = 0, 1, 2, . . . ,m. Then

µ(qm−1, x, qm) > 0 and µ(qm−1, x
1+n, qm) > 0.

Thus, [x] = [x1+n]. This gives us µ(q0, x, qm) > 0 and µ(q0, x
1+n, qm) > 0. Hence,

m ≤ 1. �

Theorem 5.8. Let A = (Q,Σ, µ) be a state independent fuzzy automaton and x ∈
Σ∗. Then any two components of (Q, {x}, µ′) have same x - period.

Proof. Let C1 and C2 be two components of (Q, {x}, µ′). Let the elements of C1

are q0, q1, . . . , qm1+n1 and of C2 are q′0, q
′
1, . . . , q

′
m2+n2

. Then µ(q0, x
m1 , qm1) > 0

and µ(q0, x
m1+n1 , qm1) > 0. Let µ(q0, x

j , qj) > 0, for j = 0, 1, 2, . . . ,m1. Then
µ(qm1 , x

0, qm1) > 0 and µ(qm1 , x
0+n1 , qm1) > 0. Thus, [x0] = [xn1 ]. This gives

us µ(q′m2
, x0, q′m2

) > 0 and µ(q′m2
, x0+n1 , q′m2

) > 0. Therefore, n2 ≤ n1. Similarly,
n1 ≤ n2. �

Theorem 5.9. Let A = (Q,Σ, µ) be a state independent fuzzy automaton and C be
a component of A. Let q ∈ C and x ∈ Σ∗. If p ∈ Q is such that µ(q, x, p) > 0, then
p is a state of strongly connected fuzzy subautomaton of A.

Proof. Let q′′ be a state in a strongly connected subautomaton A′′ of A. Let s, r ∈
Q′′ and y ∈ Σ∗ be such that µ(q′′, x, s) > 0 and µ(s, y, r) > 0. Since A′′ is strongly
connected, there exists z ∈ Σ∗ such that µ(r, z, s) > 0. Then µ(q′′, xyz, s) > 0. This
implies that [x] = [xyz]. Therefore, µ(t, z, p) > 0, where µ(p, y, t) > 0. Therefore, p
can be reached from any of its successor. Hence, A(p) is strongly connected. �

Lemma 5.10. A component of a fuzzy automaton has distinct strongly connected
subautomata if and only if it has a singly generated subautomaton with distinct
strongly connected subautomata.

Proof. Let C be a component of a fuzzy automaton A. Let B1, B2 be distinct
strongly connected subautomata of C. For any q1 ∈ B1 and q2 ∈ B2, µ(q1, x, q2) = 0
for all x ∈ Σ∗. Since C is a component, there exists q ∈ C − (B1 ∪ B2) such
that µ(q, x, q1) > 0 and µ(q, y, q2) > 0, for some x, y ∈ Σ∗, q1 ∈ B1 and q2 ∈ B2.
Then A(q) is a singly generated subautomaton of C and B1, B2 are distinct strongly
connected subautomata of A(q). Converse is immediate. �
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Theorem 5.11. Let A = (Q, Σ, µ) be a state independent fuzzy automaton and
C be a component of A. Then C contains exactly one strongly connected fuzzy
subautomaton of A.

Proof. Consider a singly generated fuzzy subautomaton A(q), q ∈ C, of a state
independent fuzzy automaton A. If A(q) has two strongly connected fuzzy sub-
automata A1 = (Q1,Σ, µ1) and A2 = (Q2,Σ, µ2), then for some x, y ∈ Σ∗ and
q1 ∈ Q1, q2 ∈ Q2, we have µ(q, x, q1) > 0 and µ(q, y, q2) > 0. But there is z ∈ Σ∗

such that µ(q1, yz, t) > 0 and µ(q1, x, t) > 0. Therefore, [yz] = [x]. Since A is
state independent fuzzy automaton,we have[yz]q = [x]q. Then q1 ∈ A2. Hence
A1 = A2. �

Theorem 5.12. Let A′ = (Q′,Σ′, µ′) be a connected state independent fuzzy au-
tomaton and q1, q2 ∈ Q′. Let x ∈ Σ′∗ be such that µ′(q1, x, p) ∧ µ′(q2, x, p) > 0, for
some p ∈ Q′. Then for all y ∈ Σ′∗, µ′(q1, y, r) ∧ µ′(q2, y, r) > 0, for some r ∈ Q′.

Proof. Let q1, q2 ∈ Q′ and x ∈ Σ′∗ be such that µ′(q1, x, p) ∧ µ′(q2, x, p) > 0,
for some p ∈ Q′. Let y ∈ Σ′∗ and µ′(q1, y, r) > 0. By Theorem 5.9, p and r
are states of strongly connected fuzzy subautomaton of A′ (by Theorem 5.11, A′

has a unique strongly connected fuzzy subautomaton). Thus, there exists z ∈ Σ′∗

such that µ′(p, z, r) > 0. Then, µ′(q1, xz, r) > 0 and µ′(q1, y, r) > 0. Therefore,
[xz] = [y]. Thus, µ′(q2, xz, s) > 0 and µ′(q2, y, s) > 0. But r = s, implies that
µ′(q1, y, r) ∧ µ′(q2, y, r) > 0. �

Lemma 5.13. Let A1 and A2 be strongly connected subautomata of fuzzy automaton
A. Then WIF (A1 → A2) 6= φ if and only if there are q1 ∈ Q1 and q2 ∈ Q2 such
that for all x, y ∈ Σ∗, we have x ≡F

q1
y ⇔ x ≡F

q2
y.

Proof. Let f ∈ WIF (A1 → A2) and for x, y ∈ Σ∗, x ≡F
q1

y. Then, µ1(q1, x, p) ∧
µ1(q1, y, p) > 0, for some p ∈ Q1. Thus, µ2(f(q1), x, f(p)) ∧ µ2(f(q1), y, f(p)) > 0.
i.e. µ2(q2, x, f(p)) ∧ µ2(q2, y, f(p)) > 0, where f(q1) = q2. Therefore, x ≡F

q2
y.

Similarly we have x ≡F
q2

y ⇒ x ≡F
q1

y. Conversely, let q1 ∈ Q1 and q2 ∈ Q2 such
that for all x, y ∈ Σ∗,x ≡F

q1
y ⇔ x ≡F

q2
y. Define h : Q1 → Q2 by h(q1) = q2 and

h(p) = r, whenever µ1(q1, z, p) > 0 and µ2(q2, z, r) > 0. Suppose p1 = p2. Then
there exists x ∈ Σ∗ such that µ(q1, x, p1) > 0. Let h(p1) = r1 and h(p2) = r2. Then
µ1(q1, x, p1) > 0, µ2(q2, x, r1) > 0 and µ1(q1, y, p2) > 0, µ2(q2, y, r2) > 0. Since
p1 = p2, x ≡F

q1
y, we have x ≡F

q2
y. Therefore, r1 = r2. This proves that h is well

defined. Similarly, one can prove that h is 1-1. Now by hypothesis for any q2 ∈ Q2,
there exists q1 ∈ Q1 such that x, y ∈ Σ∗,x ≡F

q1
y ⇔ x ≡F

q2
y. Thus, h(q1) = q2.

Hence, h is onto. �

Theorem 5.14. Let A = (Q, Σ, µ) be a state independent fuzzy automaton. If A1

and A2 are strongly connected fuzzy subautomata of A, then WIF (A1 → A2) 6= φ.

Proof. Let q1 ∈ Q1 , q2 ∈ Q2 and x, y ∈ Σ∗. For some p ∈ Q1, if µ(q1, x, p) > 0
and µ(q1, y, p) > 0, then [x] = [y] (as A is state independent fuzzy automaton).
Therefore µ(q2, x, r) > 0 and µ(q2, y, r) > 0, for some r ∈ Q2. Then, by using
Lemma 5.13, one can complete the proof. �
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We are now in position to talk about the number of elements of the characteristic
semigroup of the state independent fuzzy automaton.

Lemma 5.15. Let A′ = (Q′,Σ′, µ′) be a connected fuzzy automaton and A′′ =
(Q′′,Σ′′, µ′′) be a strongly connected state independent fuzzy subautomaton of A′.Let
q′ ∈ Q′ − Q′′ be such that A′′ be a subautomaton of A(q′). Then A(q′) is state
independent if and only if there exists q′′ ∈ Q′′ such that for all x ∈ Σ∗, µ′(q′, x, p) >
0 and µ′′(q′′, x, p) > 0, for some p ∈ Q′′.

Proof. Let A(q′) be a state independent fuzzy automaton. Suppose that no q′′

exists satisfying required condition. Let x ∈ Σ′∗ be such that µ(q′, x, p) > 0, for
some p ∈ Q′′ and µ(s, x, p) ≯ 0, for any s ∈ Q′′. This implies that the index of q′

is greater than 1. This contradicts to the lemma 5.7. Then by Theorem 5.12, there
exists q′′ ∈ Q′′ such that , ∀x ∈ Σ∗, µ′(q′, x, p) > 0 and µ′′(q′′, x, p) > 0 for some
p ∈ Q′′. The converse is obvious. �

Theorem 5.16. Let A = (Q, Σ, µ) be a state independent fuzzy automaton and
A′′ = (Q′′,Σ′′, µ′′) be a strongly connected fuzzy subautomaton of A. Then |[Σ∗]| =
|[Σ′′]∗| = |Q′′|.

Proof. One can prove this using Corollary 4.13, Theorems 4.16 and 5.14. �

Restricting range of µ to {0, 1}, theorems 5.8, 5.9, 5.11, 5.14, 5.16 reduces to their
classical deterministic case [9].

6. Conclusion

Fuzzy automaton and semigroup associated with it influence the study of each
other. In this paper we have introduced the concept of input independent fuzzy
automaton and introduced characteristic semigroup of an input independent as well
as state independent fuzzy automaton. We have precisely established the following
properties of these input and state independent fuzzy automaton in this paper.

(1) Input independent fuzzy automaton is connected. Further, if it is singly
generated, then it is strongly connected.

(2) Characteristic semigroup of an input independent fuzzy automaton is right
zero semigroup.

(3) Characteristic semigroup of a state independent fuzzy automaton is the semi-
group of successors of any state of that fuzzy automaton with suitable binary
operation.

(4) Characteristic semigroup of a quasi-perfect fuzzy automaton is the semi-
group of its state set under suitable binary operation, as well as it is the
group of its weak fuzzy automaton isomorphisms.

(5) Any state independent fuzzy automaton contains a unique strongly con-
nected subautomaton up to weak fuzzy automaton isomorphism. Further,
the cardinality of the characteristic semigroup of a state independent fuzzy
automaton is equal to the number of states of this strongly connected sub-
automaton.
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