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1. Introduction

Zadeh generalized the notion of subset of a set to that of fuzzy subset of a set
in his pioneering paper Zadeh [6] in the year 1965. According to Zadeh, a fuzzy
subset of a set X is any function A : X → [0, 1], where [0, 1] is the closed interval 0,
1 of real numbers. For any element x in X, the degree of belonging of x to A is the
number Ax in [0, 1]. If Ax = 1, then x belongs to A wholly and if Ax = 0 then x
does not belong to A and if Ax is some number between 0 and 1 then x belongs to
A to the degree of belonging Ax.

Recently, generalizing the notion of fuzzy subset of a set, the notion of multi
fuzzy subset of a set is introduced by Sabu Sebastian and T. V. Ramakrishnan [1],
according to which a multi fuzzy subset A of a set X is a family of fuzzy subsets
(Aj)j∈J , where Aj : X → Lj is an Lj-fuzzy subset of X for each j ∈ J .

If A is any multi fuzzy subset of a crisp set X, for any element x in X, the degree
of belonging of x to A, Ax is the element (Ajx)j∈J in Πj∈JLj .

After introducing, multi fuzzy subsets of a crisp set, they have also introduced
and studied some elementary properties of multi fuzzy subgroups in Sabu Sebastian
and T. V. Ramakrishnan [2].

Now the aim of this paper is to introduce and study some elementary properties
of multi fuzzy subrings, multi fuzzy (left, right) ideals.

Through out the paper X, Y , Z are crisp sets; I, J , K are index sets; (Lj)j∈J

and (Mi)i∈I are families of complete lattices and PQ is the set of all functions
from Q to P . The Cartesian products Πj∈JLj and Πi∈IMi are products of complete
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lattices and are themselves complete lattices with point wise ordering. The Cartesian
products Πj∈JLY

j and Πi∈IM
X
i are also complete lattices.

2. Preliminaries

Definition 2.1 ([4]). Let ′ : M → M and ′ : L → L be order reversing involutions.
A mapping h : M → L is called an order homomorphism, if it satisfies the conditions
h(0) = 0, h(∨ai) = ∨h(ai) and h−1(b′) = (h−1(b))′.

h−1 : L → M is defined by ∀b ∈ L, h−1(b) = ∨{a ∈ M : h(a) ≤ b}. Wang[7] proved
the following properties of order homomorphism. For every a ∈ M and p ∈ L;
a ≤ h−1(h(a)), h(h−1(p)) ≤ p, h−1(1L) = 1M , h−1(0L) = 0M and a ≤ h−1(p) iff
h(a) ≤ p iff h−1(p′) ≤ a′. Both h and h−1 are order preserving and arbitrary join
preserving maps. Moreover h−1(∧ai) = ∧h−1(ai).

Proposition 2.2 ([5]). Let f : L1 → L2 be a mapping. If f is injective, then
f−1(f(a)) = a,∀a ∈ L1 and if f is surjective, then f(f−1(b)) = b,∀b ∈ L2.

Definition 2.3 ([1]). Let A = (Ai)i∈I and B = (Bi)i∈I be a pair of multi fuzzy
subsets of X with Ai, Bi : X → Li for each i ∈ I. Then

(a) A ⊆ B iff Aix ≤ Bix for each i ∈ I and for each x ∈ X
(b) A = B iff Aix = Bix for each i ∈ I and for each x ∈ X
(c) (A ∪B)(x) = (Aix ∨Bix)i∈I for each x ∈ X
(d) (A ∩B)(x) = (Aix ∧Bix)i∈I for each x ∈ X.

Proposition 2.4 ([2]). Let A,B, C ∈ ΠMX
i be any multi fuzzy sets in X then:

(a) A ∪A = A, A ∩A = A;
(b) A ⊆ A ∪B, B ⊆ A ∪B, A ∩B ⊆ A and A ∩B ⊆ B;
(c) A ⊆ B iff A ∪B = B iff A ∩B = A.

Proposition 2.5 ([3]). Let A ∈ ΠMX
i and for any α ∈ ΠMi, the set Aα = {x ∈ X :

A(x) ≥ α, α ∈ ΠMi} be the α-level of A. A,B ∈ ΠMX
i , then for every α, β ∈ ΠMi:

(a) α ≤ β implies Aβ ⊆ Aα

(b) A ⊆ B iff Aα ⊆ Bα

(c) A= B iff Aα = Bα.

Definition 2.6 ([3]). Let f : X → Y and h : ΠMi → ΠLj be functions. The
multi-fuzzy extension of f and the inverse of the extension are f : ΠMX

i → ΠLY
j

and f−1 : ΠLY
j → ΠMX

i defined by f(A)(y) =
∨

y=f(x) h(A(x)), A ∈ ΠMX
i , y ∈ Y

and f−1(B)(x) = h−1(B(f(x))), B ∈ ΠLY
j , x ∈ X

where h−1 is the upper adjoint [7] of h. The function h : ΠMi → ΠLj is called
the Bridge function of the multi-fuzzy extension of f .

Theorem 2.7 ([3]). If an order homomorphism h : ΠMi → ΠLj is the bridge
function for the multi-fuzzy extension of a crisp function f : X → Y , then for any
k ∈ K, Ak ∈ ΠMX

i , Bk ∈ ΠLY
j :

(a) f(0X) = 0Y (b) A1 ⊆ A2 implies f(A1) ⊆ f(A2)
(c) f(∪Ak) = ∪f(Ak) (d) f(∩Ak) ⊆ ∩f(Ak)
(e) f(Aα) ⊆ f(A)h(α) (f) f−1(1Y ) = 1X and f−1(0Y ) = 0X

(g) B1 ⊆ B2 implies f−1(B1) ⊆ f−1(B2) (h) f−1(∪Bk) = ∪f−1(Bk)
386
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(i) f−1(∩Bk) = ∩f−1(Bk) (j) (f−1(B))′ = f−1(B′)
(k) A ⊆ f−1(f(A)) (l) f(f−1(B)) ⊆ B.

Theorem 2.8 ([3]). (i) If f : X → Y and h : ΠMi → ΠLj are injective (that is
f−1(f(x)) = x, ∀x ∈ X and h−1(h(m)) = m ∈ ΠMi), then f−1(f(A)) = A, for
every A ∈ ΠMX

i . Moreover the multi-fuzzy extension f : ΠMX
i → ΠLY

j is injective.
(ii) If f : X → Y and h : ΠMi → ΠLj are surjective, then f(f−1(B)) = B, for

every B ∈ ΠLY
j .

3. Multi fuzzy subrings

In this section first we introduce the notion of multi fuzzy sub ring then show
that any intersection of multi fuzzy sub rings is a multi fuzzy sub ring, image and
inverse image of a multi fuzzy sub ring is a multi fuzzy sub ring.

Definition 3.1. A multi fuzzy sub set A of a ring R is called a multi fuzzy sub ring
of R iff

(1) A(x− y) ≥ A(x) ∧A(y)
(2) A(xy) ≥ A(x) ∧A(y).

Examples: (1) Let R be a ring and A be an L-fuzzy sub ring of R. Then by the
definition of L-fuzzy sub ring, A satisfies A(x − y) ≥ A(x) ∧ A(y) and A(xy) ≥
A(x)∧A(y), for all x, y in R. Clearly, letting I = {1} and letting A = {A1}, A is a
multi fuzzy sub ring of R.

(2) Let R be a ring and L1 and L2 be a pair of complete lattices. Let α1 in L1

and α2 in L2 be a pair of arbitrary but fixed elements. Let I = {1, 2} and let Ai be
the constant map from R to Li assuming the value αi, for i = 1, 2. Then one can
easily see that A = {A1, A2} is a multi fuzzy sub ring of R.

Theorem 3.2. If {Ai/i ∈ I} is a family of multi fuzzy sub rings of a ring R, then
∩i∈IAi is a multi fuzzy sub ring of R.

Proof. Let A = ∩Ai and let x, y ∈ R.
(a) A(x− y) = (∧Ai)(x− y) = ∧i∈IAi(x− y) ≥ ∧i∈I(Aix ∧Aiy) = (∧i∈IAix) ∧

(∧i∈IAiy) = (∩i∈IAi)(x) ∧ (∩i∈IAi)(y) = Ax ∧Ay.
(b) A(xy) = (∧Ai)(xy) = ∧i∈IAi(xy) ≥ ∧i∈I(Aix∧Aiy) = (∧i∈IAi)x∧(∧i∈IAi)y

= (∧i∈IAi)(x) ∧ (∧i∈IAi)(y) = Ax ∧Ay.
From (a) and (b) it follows that, ∩i∈IAi is a multi fuzzy sub ring of R. ¤

Note: Union of two multi fuzzy sub rings need not be a multi fuzzy sub ring.
Example: Since every crisp sub ring S can be regarded as a [0, 1]-fuzzy sub ring
via its characteristic map χS and every [0, 1]-fuzzy sub ring µ can be regarded as a
multi fuzzy sub ring via the singleton family {µ}, the sub rings 2Z, 3Z of the ring
of integers Z can be regarded as a multi fuzz sub rings of Z. It is easy to see that
their (multi fuzzy) union is not a (multi fuzzy) sub ring of Z.

Remark: When a multi fuzzy sub group of a group G is constant on a kernel of
a group homomorphism f : G → H, for all y ∈ H there exists u ∈ f−1y such that
Au = ∨Af−1y whenever f−1y 6= φ. First observe that for all u, v ∈ f−1y, uv−1 ∈
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ker(f) which contains the identity of G. So Auv−1 = Ae. Now Ae = ∨AG because
for all g ∈ G, Ae = Agg−1 ≥ Ag ∧Ag = Ag, implying the assertion.

So Au = Auv−1v ≥ Ae∧Av = Av and vice versa, implying Au = Av. Obviously,
Au = ∨Af−1y for any u ∈ f−1y.

Theorem 3.3. Let R and S be a pair of rings, f be a ring homomorphism from R to
S and a finite meet preserving order homomorphism h : ΠMi → ΠLj be the bridge
function for the multi fuzzy extension of f such that each Lj is complete infinite
meet distributive lattice.Then if A is a multi fuzzy sub ring of R, then f(A) is a
multi fuzzy sub ring of S.

Proof. Let c, d ∈ S. If either f−1c or f−1d is empty, then fAc∧fAd = 0 and trivially
we have f(A)(x−y) ≥ f(A)x∧f(A)y and f(A)(xy) ≥ f(A)x∧f(A)y. Assume that
neither f−1c nor f−1d is empty. Then there exist u ∈ f−1c and v ∈ f−1d such that
fu = c and fv = d.

Since each Lj is a complete infinite meet distributive lattice we shall get that
Πj∈JLj is a complete infinite meet distributive lattice and hence for any α ∈ Πj∈JLj

and (βk)k∈K ⊆ Πj∈JLj , we have α ∧ (∨k∈Kβk) = ∨k∈K(α ∧ βk).
(a) c− d = fu− fv = f(u− v) and u− v ∈ f−1(c− d).
Further, fA(c − d) = ∨hAf−1(c − d) ≥ hA(u − v) ≥ h(Au ∧ Av) = hAu ∧ hAv

for all u ∈ f−1c and v ∈ f−1d.
Therefore fA(c − d) ≥ ∨v∈f−1d(hAu ∧ hAv) = hAu ∧ ∨v∈f−1dhAv = hAu ∧

∨hAf−1d = hAu ∧ fAd for all u ∈ f−1c, since Πj∈JLj is complete infinite meet
distributive lattice.

Again fA(c−d) ≥ ∨u∈f−1c(hAu∧fAd) = (∨u∈f−1chAu)∧fAd = ∨hAf−1c∧fAd
= fAc ∧ fAd, again since Πj∈JLj is a complete infinite meet distributive lattice.

(b) c.d = fu.fv = f(u.v) and u.v ∈ f−1(c.d).
Further, fA(c.d) = ∨hAf−1(c.d) ≥ hA(uv) ≥ h(Au ∧ Av) = hAu ∧ hAv for all

u ∈ f−1c and v ∈ f−1d.
Therefore fA(cd) ≥ ∨v∈f−1d(hAu∧hAv) = hAu∧∨v∈f−1dhAv = hAu∧∨hAf−1d

= hAu ∧ fAd for all u ∈ f−1c, since Πj∈JLj is complete infinite meet distributive
lattice.

From (a) and (b) it follows that f(A) is a multi fuzzy sub ring of S. ¤
Theorem 3.4. Let R and S be rings f : R → S be a ring homomorphism from
R to S and order homomorphism h : ΠMi → ΠLj be a the bridge function for the
multi fuzzy extension of f . Then for any multi-fuzzy sub ring B of S, f−1(B) is a
multi-fuzzy sub ring of R.

Proof. By the discussion after definition 1.1, we have h−1 is meet preserving. Let
x, y ∈ R.

(a) f−1(B)(x − y) = h−1B(f(x − y)) = h−1B(f(x) − f(y)) ≥ h−1(B(f(x)) ∧
B(f(y))) = h−1(B(f(x))) ∧ h−1(B(f(y))) = f−1(B)(x) ∧ f−1(B)(y).

(b) f−1(B)(xy) = h−1B(f(xy)) = h−1B(f(x)f(y)) ≥ h−1(B(f(x))∧B(f(y))) =
h−1(B(f(x))) ∧ h−1(B(f(y))) = f−1(B)(x) ∧ f−1(B)(y).

From (a) and (b) it follows that f−1(B) is a multi fuzzy sub ring of R. ¤
Theorem 3.5. Let f be an injective ring homomorphism from ring R to S, an
injective meet preserving order homomorphism h : ΠMi → Lj be the bridge function
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for the multi fuzzy extension of f and {Ai/i∈I} be a family of multi fuzzy sub rings
of R.Then the multi fuzzy set ∪Ai is a multi fuzzy sub ring of R iff ∪f(Ai) is a multi
fuzzy sub ring of S.

Proof. Assume that ∪Ai is a multi fuzzy sub ring of R. Theorem 2.7(c) and 3.3
together imply ∪f(Ai) = f(∪Ai) is a multi fuzzy sub ring of S. Conversely assume
that ∪f(Ai) is a multi fuzzy sub ring of S.

Theorem 2.8 and 2.7(h) and 3.4 together imply

∪Ai = ∪f−1(f(Ai)) = f−1(∪f(Ai))

is a multi fuzzy sub ring of R. ¤

4. Multi fuzzy ideals

In this section we introduce the notion of multi fuzzy (left,right) ideal of a ring
R. Further we show that any intersection of multi fuzzy (left,right) ideals is a multi
fuzzy (left,right) ideal, level set criteria for multi fuzzy sub rings, multi fuzzy sub ring
and multi fuzzy (left,right) ideals and (inverse) image of a multi fuzzy (left,right)
ideal is a multi fuzzy (left,right) ideal.

Definition 4.1. A multi fuzzy sub ring A of a ring R is called a multi fuzzy left
ideal iff A(rx) ≥ A(x) ∀r, x ∈ R.

Definition 4.2. A multi fuzzy sub ring A of a ring R is called a multi fuzzy right
ideal iff A(xr) ≥ A(x) ∀r, x ∈ R.

Definition 4.3. A multi fuzzy sub ring A of a ring R is called a multi fuzzy ideal
iff A(rx) ∧A(xr) ≥ A(x) ∀r, x ∈ R.

Examples: (1) Let R be a ring and A be an L-fuzzy left ideal of R. Then by
the definition of L-fuzzy (left,right) ideal, A satisfies A(x − y) ≥ A(x) ∧ A(y) and
A(xy) ≥ A(y), for all x, y in R. Clearly, letting I = {1} and letting A = {A1}, A is
a multi fuzzy left ideal of R.

(2) Let R be a ring and L1 and L2 be a pair of complete lattices. Let α1 in L1

and α2 in L2 be a pair of arbitrary but fixed elements. Let I = {1, 2} and let Ai be
the constant map from R to Li assuming the value αi, for i = 1, 2. Then one can
easily see that A = {A1, A2} is a multi fuzzy (left,right) ideal of R.

Theorem 4.4. If {Ai/i ∈ I} is a family of multi fuzzy left ideals of a ring R, then
∩Ai is a multi fuzzy left ideal of R.

Proof. Let A = ∩i∈IAi. Since meet of any family of multi fuzzy sub rings is a multi
fuzzy sub ring.

So, it is enough to show that A(rx) ≥ A(x)∀r, x ∈ R, to show A is a multi fuzzy
left ideal.

A(rx) = (∧i∈IAi)(rx) = ∧i∈I(Ai(rx)) ≥ ∧i∈I(Ai(x)) = (∧i∈IAi)(x) = A(x). ¤

Theorem 4.5. If {Ai/i ∈ I} is a family of multi fuzzy right ideals of a ring R, then
∩Ai is a multi fuzzy right ideal of R.
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Proof. Let A = ∩i∈IAi. Since meet of any family of multi fuzzy sub rings is a multi
fuzzy sub ring.

so, it is enough to show that A(xr) ≥ A(x)∀r, x ∈ R, to show A is a multi fuzzy
right ideal.

A(xr) = (∧i∈IAi)(xr) = ∧i∈I(Ai(xr)) ≥ ∧i∈I(Ai(x)) = (∧i∈IAi)(x) = A(x). ¤

Theorem 4.6. If {Ai/i ∈ I} is a family of multi fuzzy ideals of a ring R, then ∩Ai

is a multi fuzzy ideal of R.

Proof. It follows from above two theorems. ¤

Lemma 4.7. Let A be a multi fuzzy sub set of a ring R. Then
(1) A is a multi fuzzy sub ring R iff each non empty level sub set Aα of A is a

sub ring of R.
(2) A is a multi fuzzy left ideal R iff each non empty level sub set Aα of A is a

left ideal of R.
(3) A is a multi fuzzy right ideal R iff each non empty level sub set Aα of A is a

right ideal of R.
(4) A is a multi fuzzy ideal iff each non empty level sub set Aα of A is a ideal of

R.

Proof. (1)(⇒): Assume that A is a multi fuzzy sub ring of R. Let α ∈ R be arbitrary
but fixed. x, y ∈ Aα implies α ≤ A(x), α ≤ A(y). Then (a) α ≤ A(x) ∧ A(y) ≤
A(x− y) implying x− y ∈ Aα.

(b) α ≤ A(x) ∧A(y) ≤ A(xy) implying xy ∈ Aα.
Therefore Aα is a sub ring of R.
(⇐): Assume that each non empty level sub set Aα of A is a sub ring of R.
To show that A is multi fuzzy sub ring R, we need to show that (a) A(x− y) ≥

Ax ∧Ay and (b) A(xy) ≥ Ax ∧Ay.
(a) Let α = Ax ∧Ay. Then x, y ∈ Aα because Ax, Ay ≥ Ax ∧Ay = α.
Since Aα is a non empty sub ring of R, x − y ∈ Aα implies A(x − y) ≥ α =

Ax ∧Ay.
(b) Let α = Ax ∧Ay. Then x, y ∈ Aα because Ax,Ay ≥ Ax ∧Ay = α.
Since Aα is a non empty sub ring of R, xy ∈ Aα implies A(xy) ≥ α = Ax ∧Ay.
(2)(⇒): Suppose A is a multi fuzzy left ideal.
To show that Aα is left ideal of R for each α ∈ Πj∈JLj , whenever Aα is non

empty.
x ∈ Aα implies α ≤ A(x). Since A is a multi fuzzy left ideal, A(rx) ≥ A(x).

Therefore α ≤ A(x) ≤ A(rx) that implies rx ∈ Aα.
(⇐): Suppose each non empty level sub set Aα of A is left ideal of R.
To show that A is a multi fuzzy left ideal of R, we need to show that A(rx) ≥ Ax

for all x, r ∈ R.
Let r, x ∈ R and α = Ax. Then x ∈ Aα. Since Aα is a left ideal of R, rx ∈ Aα.

Therefore A(rx) ≥ α = Ax.
(3) Proof of this is similar to the one of (2) above.
(4) Proof of this follows by (2) and (3) above. ¤
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Theorem 4.8. Let R and S be rings f : R → S be a ring homomorphism from R
to S and order homomorphism h : ΠMi → ΠLj be the bridge function for the multi
fuzzy extension off f .Then the following are true for any multi fuzzy subset B of S:

(1) B is a multi fuzzy left ideal of S implies f−1B is a multi fuzzy left ideal of R
(2) B is a multi fuzzy right ideal of S implies f−1B is a multi fuzzy right ideal of

R
(3) B is a multi fuzzy ideal of S implies f−1B is a multi fuzzy ideal of R.

Proof. (1) In view of Theorem 2.4 above, it is enough to show that (f−1B)(rx) ≥
f−1(Bx).

But (f−1B)rx = h−1(B(f(rx))) = h−1(B(frfx)) ≥ h−1(B(fx)) = (f−1B)x.
(2) Proof of this is similar to the one of (1) above.
(3) Proof of this follows from (2) and (3). ¤

Theorem 4.9. Let R, S be a pair of rings and let f be a ring homomorphism from
R onto S. Let h : Πi∈IMi → Πj∈JLj be a bridge function which is meet preserving
order homomorphism for the multi fuzzy extensions of f such that each Lj is a
complete infinite meet distributive lattice. Then

(a) If A is a multi fuzzy left ideal of R, then f(A) is a multi fuzzy left ideal of S
(b) If A is a multi fuzzy right ideal of R, then f(A) is a multi fuzzy right ideal of

S
(c) If A is a multi fuzzy ideal of R, then f(A) is a multi fuzzy ideal of S.

Proof. (a) In view of Theorem 2.3, it is enough to show that for all s, y in S, fA(sy) ≥
fAy, which by definition of fA, amounts to showing ∨hAf−1(sy) ≥ ∨hAf−1y.

If f−1y is empty then the inequality is trivially true.
Let x ∈ f−1y be arbitrary but fixed. Then fx = y. Since f is on to then is an

r ∈ R such that fr = s. So sy = frfx = frx and rx ∈ f−1sy.
Consequently, (fA)(sy) = ∨hAf−1(sy) ≥ hArx ≥ hAx for all x ∈ f−1y and so

(fA)(sy) ≥ ∨hAf−1y = (fA)(y).
(b) Proof of this is similar to that of (a) above.
(c) Proof of this follows from (a) and (b) above. ¤
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