Annals of Fuzzy Mathematics and Informatics Volume 8, No. 3, (September 2014), pp. 365–371 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

C-set and a decomposition of bicontinuous difunctions

Şenol Dost

Received 20 September 2013; Revised 17 January 2014; Accepted 18 February 2014

ABSTRACT. In this paper, the counterparts of C-sets and and co-Csets for ditopological texture spaces are introduced. The C-bicontinuity is defined and given a decomposition of bicontinuous difunction.

2010 AMS Classification: 54A05, 54C10

Keywords: Texture space, Ditopology, Difunction, C-set, C-bicontinuity, Decomposition.

Corresponding Author: Senol Dost (dost@hacettepe.edu.tr)

1. INTRODUCTION

In general topology, decomposition of continuous function has been remarkable area. Tong [15] introduced the notion of \mathcal{A} -continuity and decomposed continuity into α -continuity and \mathcal{A} -continuity. In [9], some characterizations were given depending on these concepts for bicontinuous difunctions. On the other hand, in [11] (and [14]), the notion of C-set for topological spaces (fuzzy topological spaces) and C-continuity were introduced and given another decomposition of continuity. In this study we generalize these notions to ditopological texture spaces and give a decomposition of bicontinuous difunction.

Textures and ditopological texture spaces were first introduced by L. M. Brown as a point-based setting for the study fuzzy topology. This section concludes with some basic definitions from the theory, and the reader is referred to [1, 2, 3, 4, 5, 6] for more background material.

Definition 1.1 ([2]). Let S be a set. A texturing is a point-separating, complete, completely distributive lattice with respect to inclusion, which contains S and \emptyset , and for which arbitrary meets coincide with intersections, and finite joins with unions. If S is a texturing of S, then the pair (S, S) is called a *texture space* or shortly, *texture*.

For a texture (S, \mathbb{S}) , most properties are conveniently defined in terms of the *p*sets $P_s = \bigcap \{A \in \mathbb{S} \mid s \in A\}$ and, as a dually, the *q*-sets, $Q_s = \bigvee \{A \in \mathbb{S} \mid s \notin A\}$. We note in particular that $A^{\flat} = \{s \in S \mid A \nsubseteq Q_s\}$ is called the *core* of $A \in \mathbb{S}$.

Examples 1.2. (1) If X is a set and $\mathcal{P}(X)$ the powerset of X, then $(X, \mathcal{P}(X))$ is the discrete texture on X. For $x \in X$, $P_x = \{x\}$ and $Q_x = X \setminus \{x\}$.

(2) The texture (L, \mathcal{L}) is defined by $L = (0, 1], \mathcal{L} = \{(0, r] \mid r \in \mathbb{I}\}$. For $r \in L$, $P_r = (0, r] = Q_r$.

(3) Setting $\mathbb{I} = [0, 1]$, $\mathbb{I} = \{[0, r), [0, r] \mid r \in \mathbb{I}\}$ gives the unit interval texture (\mathbb{I}, \mathbb{J}) . For $r \in \mathbb{I}$, $P_r = [0, r]$ and $Q_r = [0, r)$.

Definition 1.3 ([1]). A *ditopology* on a texture (S, S) is a pair (τ, κ) of subsets of S, where the set of *open sets* τ and the set of closed sets κ satisfies

$S, \varnothing \in au,$	$S, arnothing \in \kappa,$
$G_1, G_2 \in \tau \implies G_1 \cap G_2 \in \tau,$	$K_1, K_2 \in \kappa \implies K_1 \cup K_2 \in \kappa,$
$G_i \in \tau, i \in I \implies \bigvee_i G_i \in \tau.$	$K_i \in \kappa, \ i \in I \implies \bigcap K_i \in \kappa.$

Hence a ditopology is essentially a "topology" for which there is no a priori relation between the open and closed sets. For $A \in S$ we define the *closure* and the *interior* of A under (τ, κ) by the equalities

$$cl(A) = \bigcap \{ K \in \kappa \mid A \subseteq K \}, \quad int(A) = \bigvee \{ G \in \tau \mid G \subseteq A \}.$$

We denote by $O(S, \mathfrak{S}, \tau, \kappa)$, or when there can be no confusion by O(S), the set of open sets in \mathfrak{S} . Likewise, $C(S, \mathfrak{S}, \tau, \kappa)$, C(S) will denote the set of closed sets.

If a ditopology (τ, κ) on (S, S) satisfies the following conditions it is called *clint* ditopology [9],

- (1) $\forall A \in \tau, A \cap cl(B) \subseteq cl(A \cap B), B \in S$,
- (2) $\forall A \in \kappa, int (A \cup B) \subseteq A \cup int (B), B \in S.$

Definition 1.4 ([2]). A mapping $\sigma : \mathfrak{S} \to \mathfrak{S}$ satisfying $\sigma(\sigma(A)) = A$, $\forall A \in \mathfrak{S}$ and $A \subseteq B \Longrightarrow \sigma(B) \subseteq \sigma(A), \forall A, B \in \mathfrak{S}$ is called a complementation on (S, \mathfrak{S}) and $(S, \mathfrak{S}, \sigma)$ is said to be a *complemented texture*.

If (τ, κ) is a ditopology on a complemented texture $(S, \mathfrak{S}, \sigma)$ we say (τ, κ) is complemented if $\kappa = \sigma(\tau)$. In this case we have $\sigma(cl(A)) = int(\sigma(A))$ and $\sigma(int(A)) = cl(\sigma(A))$.

Let $(S, \mathfrak{S}), (T, \mathfrak{T})$ be textures. In the following definition we consider the product texture $\mathfrak{P}(S) \otimes \mathfrak{T}$. To avoid confusion $\overline{P}_{(s,t)}, \overline{Q}_{(s,t)}$ are used to denote the *p*-sets and *q*-sets for the product texture $(S \times T, \mathfrak{P}(S) \otimes \mathfrak{T})$.

Definition 1.5 ([4]). Let (S, S), (T, \mathcal{T}) be textures. Then

- (1) $r \in \mathcal{P}(S) \otimes \mathcal{T}$ is called a *relation from* (S, \mathbb{S}) *to* (T, \mathcal{T}) if it satisfies $R1 \ r \notin \overline{Q}_{(s,t)}, P_{s'} \notin Q_s \implies r \notin \overline{Q}_{(s',t)}.$
- $R2 \ r \nsubseteq \overline{Q}_{(s,t)} \implies \exists s' \in S \text{ such that } P_s \nsubseteq Q_{s'} \text{ and } r \nsubseteq \overline{Q}_{(s',t)}.$ $(2) \ R \in \underline{\mathcal{P}}(S) \otimes \mathfrak{T} \text{ is called a$ *corelation from* $} (S, \mathfrak{S}) \ to \ (T, \mathfrak{T}) \text{ if it satisfies}$
 - $CR1 \ \overline{P}_{(s,t)} \nsubseteq R, P_s \nsubseteq Q_{s'} \implies \overline{P}_{(s',t)} \nsubseteq R.$ $CR2 \ \overline{P}_{(s,t)} \nsubseteq R \implies \exists s' \in S \text{ such that } P_{s'} \nsubseteq Q_s \text{ and } \overline{P}_{(s',t)} \nsubseteq R.$

(3) A pair (r, R), where r is a relation and R a corelation from (S, S) to (T, \mathcal{T}) , is called a *direlation from* (S, S) to (T, \mathcal{T}) .

Definition 1.6 ([4]). Let (f, F) be a direlation from (S, S) to (T, \mathcal{T}) . Then (f, F)is called a *difunction from* (S, S) to (T, T) if it satisfies the following two conditions.

DF1 For $s, s' \in S$, $P_s \nsubseteq Q_{s'} \implies \exists t \in T$ with $f \nsubseteq \overline{Q}_{(s,t)}$ and $\overline{P}_{(s',t)} \nsubseteq F$.

DF2 For $t, t' \in T$ and $s \in S$, $f \nsubseteq \overline{Q}_{(s,t)}$ and $\overline{P}_{(s,t')} \nsubseteq F \implies P_{t'} \nsubseteq Q_t$.

Definition 1.7 ([5]). Let $(f, F) : (S, S) \to (T, T)$ be a difunction.

- (1) For $A \in S$, the *image* $f^{\rightarrow}(A)$ and the *co-image* $F^{\rightarrow}(A)$ are defined by $f^{\rightarrow}(A) = \bigcap \{ Q_t \mid \forall s, \ f \not\subseteq \overline{Q}_{(s,t)} \implies A \subseteq Q_s \},$
- $F^{\rightarrow}(A) = \bigvee \{P_t \mid \forall s, \ \overline{P}_{(s,t)} \notin F \implies P_s \subseteq A\}.$ (2) For $B \in \mathcal{T}$, the inverse image $f^{\leftarrow}(B)$ and the inverse co-image $F^{\leftarrow}(B)$ are defined by $\lambda f(D + \lambda f) = f(d \overline{O})$

$$f^{\leftarrow}(B) = \bigvee \{ P_s \mid \forall t, \ f \nsubseteq Q_{(s,t)} \implies P_t \subseteq B \},$$

$$F^{\leftarrow}(B) = \bigcap \{ Q_s \mid \forall t, \ \overline{P}_{(s,t)} \nsubseteq F \implies B \subseteq Q_t \}.$$

For a difunction, the inverse image and the inverse co-image are equal; and the image and co-image can't be equal.

Definition 1.8 ([4]). Let (f, F) be a diffunction between the complemented textures $(S, \mathfrak{S}, \sigma)$ and $(T, \mathfrak{T}, \theta)$. The complement (f, F)' = (F', f') of the difunction (f, F) is a difunction, where $f' = \bigcap \{ \overline{Q}_{(s,t)} \mid \exists u, v \text{ with } f \nsubseteq \overline{Q}_{(u,v)}, \sigma(Q_s) \nsubseteq Q_u \text{ and } P_v \nsubseteq Q_u \}$ $\theta(P_t)$ and $F' = \bigvee \{\overline{P}_{(s,t)} \mid \exists u, v \text{ with } \overline{P}_{(u,v)} \nsubseteq F, P_u \nsubseteq \sigma(P_s) \text{ and } \theta(Q_t) \nsubseteq Q_v\}.$

If (f, F) = (f, F)' then the diffunction (f, F) is called complemented.

Definition 1.9 ([5]). A diffunction $(f, F) : (S, S, \tau_S, \kappa_S) \to (T, \mathcal{T}, \tau_T, \kappa_T)$ is called continuous if $B \in \tau_T \Longrightarrow F^{\leftarrow} B \in \tau_S$, cocontinuous if $B \in \kappa_T \Longrightarrow f^{\leftarrow} B \in \kappa_S$ and bicontinuous if it is both.

Finally, we also recall the some classes of ditopological texture spaces.

Definition 1.10. Let $(S, \mathfrak{S}, \tau, \kappa)$ be a ditopological texture space. $A \in \mathfrak{S}$ is called pre-open [12] (respectively, semi-open [8], β -open [10], α -open [7], regular open [13]) if $A \subseteq int cl(A)$ (respectively, $A \subseteq cl int (A)$, $A \subseteq cl int cl(A)$, $A \subseteq int cl int (A)$, A =int cl (A). A is called A-set [9], if $A = G \cap K$, where G is open and K is regular closed. A is called locally closed [9], if $A = G \cap K$, where G is open and K is closed.

We denote by $PO(S, \mathfrak{S}, \tau, \kappa)$, more simply by PO(S) the set of pre-open sets in S. Likewise, it is denoted by SO(S) (respectively, $\beta O(S)$, $O_{\alpha}(S)$, RO(S), AO(S), LC(S) the set of semi-open (respectively, β -open, α -open, regular open, \mathcal{A} -set, locally closed).

On the other hand, $A \in S$ is called pre-closed (respectively, semi-closed, β closed, α -closed, regular closed) if $cl int(A) \subseteq A$ (respectively, $int cl(A) \subseteq A$, $int cl int (A) \subseteq A, cl int cl(A) \subseteq A, A = cl int(A)$. A is called co-A-set, if A = $K \cup G$, where K is closed and G is regular open. A is called locally-coclosed, if $A = K \cup G$, where K is closed and G is open.

We denote by $PC(S, \mathfrak{S}, \tau, \kappa)$, more simply by PC(S) the set of pre-closed sets in S. Likewise, it is denoted by SC(S) (respectively, $\beta C(S)$, $C_{\alpha}(S)$, RC(S), AC(S),

LCC(S)) the set of semi-closed (respectively, β -closed, α -closed, regular closed, co- \mathcal{A} -set, locally-coclosed).

Corresponding to the above concepts, we have variations of continuity.

Definition 1.11. A difunction $(f, F) : (S, \delta, \tau_S, \kappa_S) \to (T, \mathcal{T}, \tau_T, \kappa_T)$ is called precontinuous [13] (resp. semi-continuous [8], β -continuous [10], α -continuous [7], \mathcal{A} continuous [9], locally-continuous [9]) if the inverse image under (f, F) of open set in τ_T is an pre-open (semi-open, β -open, α -open, \mathcal{A} -set, locally-closed).

On the other hand, (f, F) is called pre-cocontinuous (resp. semi-cocontinuous, β -cocontinuous, α -cocontinuous, β -cocontinuous, locally-cocontinuous) if the inverse co-image under (f, F) of closed set in κ_T is an pre-closed (semi-closed, β -closed, α -closed, co-A-set, locally-coclosed).

2. C-SETS IN DITOPOLOGICAL TEXTURE SPACES

We begin by recalling [11] that a subset A of a topological space X is called C-set if $A = O \cap C$, where O is open and C is pre-closed set. This leads to the following analogous concepts in a ditopological texture space. As expected, there is also the dual notion.

Definition 2.1. Let $(S, \mathfrak{S}, \tau, \kappa)$ be ditopological texture space and $A \in \mathfrak{S}$.

- (1) A is called C-set, if $A = G \cap K$, where $G \in O(S)$ and $K \in PC(S)$.
- (2) A is called co- \mathcal{C} -set, if $A = K \cup G$, where where $K \in C(S)$ and $G \in PO(S)$.

We denote by $\mathcal{CO}(S, \mathfrak{S}, \tau, \kappa)$, or when there can be no confusion by $\mathcal{CO}(S)$, the set of \mathcal{C} -sets in \mathcal{S} . Likewise, $\mathcal{CC}(S, \mathfrak{S}, \tau, \kappa)$, or $\mathcal{CC}(S)$ will denote the set of co- \mathcal{C} -sets.

Remark 2.2. For any ditopological space $(S, \mathfrak{S}, \tau, \kappa)$:

- (1) $O(S), C(S) \subseteq CO(S)$ and $O(S), C(S) \subseteq CC(S)$.
- Because, we may write $G = G \cap S$ and $K = \emptyset \cup K$ for some $G \in \tau$, $K \in \kappa$. (2) Likewise, $PC(S) \subseteq CO(S)$ and $PO(S) \subseteq CC(S)$.
- (3) Since every open(closed) set is pre-open(pre-closed) set, it is obvious that $\mathcal{AO}(S) \subseteq LC(S) \subseteq \mathcal{CO}(S)$ and $\mathcal{AC}(S) \subseteq LCC(S) \subseteq \mathcal{CC}(S)$, by [9, Proposition 3.4].

Definition 2.3. Let $(S, \mathfrak{S}, \tau, \kappa)$ be a ditopological texture space. For $A \in \mathfrak{S}$, we define:

- (1) The pre-closure pcl(A) of A under (τ, κ) by the equality $pcl(A) = \bigcap \{B \mid B \in PC(S) \text{ and } A \subseteq B\}.$
- (2) The pre-interior pint (A) of A under (τ, κ) by the equality $pint(A) = \bigvee \{B \mid B \in PO(S) \text{ and } B \subseteq A\}.$

By [10, Lemma 2.3], since the family of pre-closed (pre-open) sets is closed under arbitrary intersections(joins) we have, $pint(A) \in PO(S)$, $pcl(A) \in PC(S)$, while $A \in PO(S) \iff A = pint(A)$ and $A \in PC(S) \iff A = pcl(A)$.

Obviously, pint(A) is the greatest pre-open set which is contained in A and pcl(A) is pre-closed set which contains A and we have, $A \subseteq pcl(A) \subseteq clA$ and $intA \subseteq pint(A) \subseteq A$.

Proposition 2.4. Let $(S, \mathfrak{S}, \tau, \kappa)$ be a clint ditopological texture space and $A \in \mathfrak{S}$.

(1) $pcl(A) = A \cup cl int(A)$,

(2) $pint(A) = A \cap int cl(A)$

Proof. We prove (1), leaving the dual proof of (2) to the interested reader. Since pcl(A) is pre-closed, we have $clint(A) \subseteq clint(pcl(A)) \subseteq pcl(A)$ and hence $A \cup clint(A) \subseteq pcl(A)$.

On the other hand, $cl int (A \cup cl int (A)) \subseteq cl (int (A) \cup cl int (A)) = cl int (A) \subseteq A \cup cl int (A)$ by the definition of *clint* ditopology. Hence $A \cup cl int (A)$ is pre-closed and $pcl (A) \subseteq A \cup cl int (A)$.

Lemma 2.5. Let $(S, \mathfrak{S}, \tau, \kappa)$ be a ditopological space. Then:

(1) $A \in \mathcal{CO}(S)$ if and only if $A = G \cap pcl(A)$ for some $G \in O(S)$.

(2) $A \in \mathcal{C}C(S)$ if and only if $A = K \cap pint(A)$ for some $K \in C(S)$.

Proof. We prove (1), leaving the dual proof of (2) to the interested reader. Suppose that $A = G \cap pcl(A)$ for some $G \in O(S)$. Since pcl(A) is pre-closed, $A \in CO(S)$.

Conversely, let $A \in \mathcal{CO}(S)$. Then $A = G \cap K$, where $G \in O(S)$ and $K \in PC(S)$. Since $A \subseteq G \cap K \subseteq K$ and K is pre-closed, we have $pcl(A) \subseteq pcl(K) = K$. Thus, $G \cap pcl(A) \subseteq G \cap K = A$. Since $A \subseteq G$ and $A \subseteq pcl(A)$, we have $A \subseteq G \cap pcl(A)$, which shows that $A = G \cap pcl(A)$, with $G \in O(S)$ as required. \Box

Lemma 2.6. Let $(S, \mathfrak{S}, \tau, \kappa)$ be a ditopological space and $A \in \mathfrak{S}$. Then:

(1) $A = G \cap cl int(A)$ for some $G \in O(S)$ if and only if $A \in CO(S) \cap SO(S)$.

(2) $A = K \cup int cl (A)$ for some $K \in C(S)$ if and only if $A \in CC(S) \cup SC(S)$.

Proof. We prove only (1), leaving the dual proof of (2) to the interested reader. Suppose that $A = G \cap cl$ int (A) for some $G \in O(S)$. Then $A \subseteq cl$ int (A), which show that $A \in SO(S)$. Since cl int (A) is closed and so pre-closed, we have $A \in CO(S)$.

Conversely, let $A \in CO(S) \cap SO(S)$. Then there exists $G \in O(S)$ such that $A = G \cap pcl(A)$, by Lemma 2.5. Because of $A \in SO(S)$, $A \subseteq clint(A)$ and so $pcl(A) \subseteq clint(A)$. Since $(A \cup clint(A)) \subseteq pcl(A)$, we have $(G \cap clint(A)) \subseteq (G \cap pcl(A)) = A \subseteq (G \cap clint(A))$ and $A = G \cap clint(A)$ with $G \in O(S)$, as required.

Theorem 2.7. Let $(S, \mathfrak{S}, \tau, \kappa)$ be a clint ditopological texture space.

(1) $\mathcal{AO}(S) = \mathcal{CO}(S) \cap SO(S).$

(2) $\mathcal{A}C(S) = \mathcal{C}C(S) \cap SC(S).$

Proof. We prove (1), leaving the dual proof of (2) to the interested reader. From Remark 2.2. and [8, Proposition 3.4], it is clear that $AO(S) \subseteq CO(S) \cap SO(S)$.

Conversely, suppose that $A \in CO(S) \cap SO(S)$. Then, by Lemma 2.6, $A = G \cap cl int(A)$, where G is open. Since int(G) is open, cl int(A) is regular closed, by [9, Lemma 3.13(1)]. Thus, $A \in AO(S)$, which is required.

Generally there is no relation between the C-sets and co-C-closed sets, but for a complemented ditopological texture space we have the following result.

Proposition 2.8. Let $(S, \mathfrak{S}, \sigma, \tau, \kappa)$ be a complemented ditopological texture space.

 $A \in \mathbb{S}$ is \mathbb{C} -set if and only if $\sigma(A)$ is $co - \mathbb{C}$ -set 369 *Proof.* Let $A \in S$ and $A = G \cap K$, where $G \in O(S)$, $K \in PC(S)$. Since $\sigma(\tau) = \kappa$ and $\sigma(A) = \sigma(G \cap K) = \sigma(G) \cup \sigma(K)$, the proof is trivial.

Example 2.9. (1) If (X, \mathcal{T}) is a topological space then $(X, \mathcal{P}(X), \pi_X, \mathcal{T}, \mathcal{T}^c)$ is a complemented ditopological texture space. Here $\pi_X(Y) = X \setminus Y$ for $Y \subseteq X$ is the usual complementation on $(X, \mathcal{P}(X))$ and $\mathcal{T}^c = \{\pi_X(G) \mid G \in \mathcal{T}\}$. Clearly the C-sets, co-C-sets in (X, \mathcal{T}) correspond precisely to the C-sets, co-C-sets respectively, in $(X, \mathcal{P}(X), \pi_X, \mathcal{T}, \mathcal{T}^c)$.

(2) For the unit interval texture $(\mathbb{I}, \mathcal{I})$ of Examples 1.2.(3), let ι be the complementation $\iota([0, r)) = [0, 1-r], \, \iota([0, r]) = [0, 1-r), \text{ and } (\tau_{\mathbb{I}}, \kappa_{\mathbb{I}})$ the standard complemented ditopology given by

$$\tau_{\mathbb{I}} = \{ [0, r) \mid r \in \mathbb{I} \} \cup \{ \mathbb{I} \}, \quad \kappa_{\mathbb{I}} = \{ [0, r] \mid r \in \mathbb{I} \} \cup \{ \varnothing \}.$$

Since [0, r], $r \in \mathbb{I}$ is pre-closed, $[0, r) = [0, r) \cap [0, r]$ is C-set. Likewise, [0, r) is preopen, $[0, r] = [0, r) \cup [0, r]$ is co-C-set. Thus, $\mathcal{C}O(\mathbb{I}) = \mathcal{I} = \mathcal{C}C(\mathbb{I})$.

(3) The C-set (co-C-set) is different from semi-open(semi-closed) or locally-closed (locally-coclosed) set. Now, we consider $X = \{a, b, c\}$ and the ditopology (τ, κ) on the discrete texture $(X, \mathcal{P}(X))$, where $\tau = \{\emptyset, \{b\}, \{a, c\}X\}, \kappa = \{\emptyset, \{a, c\}, \{b\}, X\}$. Then $\{a\}$ is pre-closed. Thus it is a C-set, but is neither semi-open nor locally-closed. Besides, $\{b, c\}$ is semi-open, but it is not C-set.

Now, we discuss C-bicontinuous difunction and its relation other classes of difunctions. We recall that a function between topological spaces is called C-continuous [11] if the inverse image of each open set is C-set. This leads to the following concepts for a difunction between ditopological texture spaces.

Definition 2.10. Let $(S_j, \mathfrak{S}_j, \tau_j, \kappa_j)$, j = 1, 2, be ditopological texture spaces and $(f, F) : (S_1, \mathfrak{S}_1) \to (S_2, \mathfrak{S}_2)$ a diffunction.

- (1) It is called C-continuous, if $F^{\leftarrow}(G) \in CO(S_1)$, for every $G \in O(S_2)$.
- (2) It is called C-cocontinuous, if $f^{\leftarrow}(K) \in CC(S_1)$, for every $K \in C(S_2)$.
- (3) It is called C-bicontinuous, if it is C-continuous and C-cocontinuous.

The following proposition is obtained immediate from Theorem 2.7.

Proposition 2.11. Let (f, F) be a difunction between clint ditopological texture spaces.

- (1) (f, F) is A-continuous if and only if it is C-continuous and semi-continuous.
- (2) (f, F) is A-cocontinuous if and only if it is C-cocontinuous and semi-cocontinuous.

In [9], it is proved that a difunction is bicontinuous if and only if it is both α bicontinuous and semi-bicontinuous. Since α -bicontinuity implies semi-bicontinuity, with Theorem 2.7, we obtain the following decomposition of bicontinuity.

Corollary 2.12. Let (f, F) be a diffunction between clint ditopological texture spaces.

- (1) (f, F) is continuous if and only if it is C-continuous and α -continuous.
- (2) (f, F) is cocontinuous if and only if it is C-cocontinuous and α -cocontinuous.

Proposition 2.13. Let $(S_j, S_j, \sigma_j, \tau_j, \kappa_j)$, j = 1, 2, complemented ditopology and $(f, F) : (S_1, S_1) \to (S_2, S_2)$ be complemented diffunction. Then (f, F) is C-continuous if and only if (f, F) is C-cocontinuous.

Proof. Since (f, F) is complemented, (F', f') = (f, F). From [5, Lemma 2.20], $\sigma_1((f')^{\leftarrow}(B)) = f^{\leftarrow}(\sigma_2(B))$ and $\sigma_1((F')^{\leftarrow}(B)) = F^{\leftarrow}(\sigma_2(B))$ for all $B \in S_2$. Hence the proof is clear from these equalities.

Acknowledgements. The author would like to thank the referees for their helpful comments that have helped improve the presentation of this paper.

References

- L. M Brown and M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy sets and systems 98 (1998) 217–224.
- [2] L. M. Brown and R. Ertürk, Fuzzy sets as texture spaces, I. Representation Theorems, Fuzzy Sets and Systems 110(2) (2000) 227–236.
- [3] L. M. Brown and R. Ertürk, Fuzzy sets as texture spaces, II. Subtextures and quotient textures, Fuzzy Sets and Systems 110(2) (2000) 237–245.
- [4] L. M. Brown, R. Ertürk and Ş. Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems 147(2) (2004) 171–199.
- [5] L. M. Brown, R. Ertürk and Ş. Dost, Ditopological texture spaces and fuzzy topology, II. Topological Considerations, Fuzzy Sets and Systems 147(2) (2004) 201–231.
- [6] L. M. Brown, R. Ertürk and Ş. Dost, Ditopological texture spaces and fuzzy topology, III. Separation Axioms, Fuzzy Sets and Systems 157(14) (2006) 1886–1912.
- [7] Ş. Dost, α-open sets and α-bicontinuity in ditopological texture space, J. Nonlinear Sci. Appl. 3(1) (2010) 12–20.
- [8] S. Dost, Semi-open and semi-closed sets in ditopological texture space, J. Adv. Math. Stud. 5(1) (2012) 97–110.
- [9] Ş. Dost, Some decompositions of bicontinuous difunction, J. Adv. Stud. Topol. 2(1) (2011) 1–8.
- [10] Ş. Dost, L. M. Brown and R. Ertürk, β-open and β-closed sets in ditopological setting, Filomat 24(2) (2010) 11–26.
- [11] Y. Erguang and Y. Pengfei, On decomposition of A-continuity, Acta Math. Hungar. 110(4) (2006) 309–313.
- [12] M. Gohar and L. M. Brown, Strong compactness of ditopological texture spaces, ICMS Conference on Mathematical Science 2010, 1309(1).
- [13] M. Gohar, Compactness in ditopological texture spaces, Ph. D. Thesis, Hacettepe University, 2002.
- [14] S. Jafari, K. Viswanathan, M. Rajamani and S. Krishnaprakash, On decomposition of fuzzy A-continuity, J. Nonlinear Sci. Appl. 1(4) (2008) 236–240.
- [15] J. Tong, A decomposition of continuity, Acta Math. Hungar. 48(1-2) (1986) 11-15.

ŞENOL DOST (dost@hacettepe.edu.tr)

Department of Secondary Science and Mathematics Education, Hacettepe University, 06800 Beytepe, Ankara, Turkey