Annals of Fuzzy Mathematics and Informatics Volume 8, No. 3, (September 2014), pp. 347–364 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Pairwise ordered soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} space

T. Yogalakshmi, E. Roja, M. K. Uma

Received 29 August 2013; Revised 13 December 2013; Accepted 28 January 2014

ABSTRACT. In this paper, a new structure called soft \tilde{L} -fuzzy \mathcal{V} -structure is introduced and studied. Uryshon Lemma and Tietze Extension Theorem in a pairwise ordered soft \tilde{L} -fuzzy C-basically disconnected \mathcal{V} -space via ideals is established.

2010 AMS Classification: 54A40, 03E72

Keywords: Soft \tilde{L} -fuzzy \mathcal{V} -structure, Soft \tilde{L} -fuzzy ideal \mathcal{V} -space, Pairwise ordered soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space, Soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}$ -continuous function.

Corresponding Author: T. Yogalakshmi (YogaPrithvi_ssp@yahoo.co.in)

1. INTRODUCTION

The fundamental definitions and theories of scientific studies, specially in mathematical ones, with respect to the ordinary sets are considered as a particular case of the corresponding fuzzy notions. Therefore, it is natural to extend the concept of point set topology to fuzzy sets which is characterized by a membership function in the sense of L. A. Zadeh [17], resulting in the theory of fuzzy topology due to C. L. Chang [2]. Fuzzy sets have applications in many fields such as information [10] and control [11]. D. Molodtsov [8] proposed the soft set which is free from parameterization inadequacy syndrome of fuzzy set theory. The notion of soft fuzzy set was introduced and studied by Ismail U. Triyaki [12]. The concept of soft fuzzy C-open set was introduced by T. Yogalakshmi, E. Roja, M. K. Uma [14].

Kuratowski [7], Vaidyanathaswamy [13] and several other authors introduced the notion of ideal theory in general topology. Debasis Sarkar [9] introduced the notions of fuzzy ideal and fuzzy local function in fuzzy set theory. T. Yogalakshmi, E. Roja, M. K. Uma [16] introduced the concepts of soft fuzzy ideal and soft fuzzy local function theory. Bruce Hutton [4] constructed an interesting L-fuzzy topological space, called L-fuzzy unit interval. Thomas Kubiak [6] introduced and studied about

the properties of L-sets in fuzzy sense. The concept of soft \hat{L} -fuzzy set was introduced by T. Yogalakshmi, E. Roja, M. K. Uma [15].

In this paper, a new structure, called soft \tilde{L} -fuzzy \mathcal{V} -structure is introduced by using the notion of the Fell topology [3] of the hyperspaces which is bit better than the Vietoris topology [5]. Urysohn Lemma and Tietz Extension Theorem in a pairwise ordered soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space is introduced and studied.

2. Preliminaries

Definition 2.1 ([6]). Let X be a set and L be a complete lattice. An L-fuzzy set on X is a map from X into L. That is, if λ is a L-fuzzy subset of X then $\lambda \in L^X$, where L^X denotes the collection of all maps from X into L.

Definition 2.2 ([1]). A fuzzy topological space (X, τ) is said to be a fuzzy basically disconnected space if the closure of a fuzzy open and fuzzy F_{σ} set is fuzzy open.

Definition 2.3 ([14]). Let X be a nonempty set and I=[0,1] be the unit interval. Let μ be a fuzzy subset of X such that $\mu : X \to [0,1]$ and M be any crisp subset of X. Then, the pair (μ, M) is called as a *soft fuzzy set* in X. The family of all soft fuzzy subsets of X, will be denoted by SF(X).

3. On soft \tilde{L} -fuzzy \mathcal{V} -structure

Throughout this paper $\tilde{L} = \tilde{L} < \Box, \Box, \Box, ' >$ is an infinitely distributive lattice with an order-reversing involution. Such a lattice being complete has a least element $(0_X, \psi_{\phi})$ and greatest element $(1_X, \psi_X)$.

Definition 3.1 ([15]). Let X be a non-empty set and $N \subseteq X$. Let L be any lattice. Associated to each soft fuzzy set (λ, N) , a soft \tilde{L} -fuzzy set (λ, ψ_N) is defined as a function from X to $L \times L$ such that $(\lambda, \psi_N)(x) = (\mathfrak{l}_x, \psi_N(x))$ where $\mathfrak{l}_x = \wedge \{\alpha \in L : \lambda(x) \leq \alpha\}$ and

$$\psi_N(x) = \begin{cases} 1, & \text{if } x \in N = X \\ \mathfrak{l}_x, & \text{if } x \in N \subset X \\ 0, & \text{otherwise} \end{cases}$$

The family of all soft \tilde{L} -fuzzy sets is denoted by \tilde{L}^X .

Example 3.2. Let $X = \{a, b, c\}$ be a non-empty set and $L = \{0, 1/4, 2/4, 3/4, 1\}$ be any lattice. Let (λ, N) be any soft fuzzy set where $\lambda : X \to [0, 1]$ such that $\lambda(a) = 0.2; \lambda(b) = 0.3; \lambda(c) = 0.5; N = \{a, c\}$. Then (λ, ψ_N) is a soft \tilde{L} -fuzzy set where $\mathfrak{l}_a = 1/4; \mathfrak{l}_b = 2/4; \mathfrak{l}_c = 2/4; \psi_N(a) = 1/4; \psi_N(b) = 0; \psi_N(c) = 2/4$.

Definition 3.3. If f is a function from X to Y and $(\lambda, \psi_N) \in \tilde{L}^X$, then the *image* of (λ, ψ_N) , $f(\lambda, \psi_N)$ is the soft \tilde{L} -fuzzy set in Y defined by

$$f((\lambda,\psi_N))(y) = \sup_{x \in f^{-1}(y)} \{(\lambda,\psi_N)(x)\}.$$

Definition 3.4. If f is a function from X to Y and $(\mu, \psi_M) \in \tilde{L}^Y$, then the *inverse image* of (μ, ψ_M) , $f^{-1}(\mu, \psi_M)$ is the soft \tilde{L} -fuzzy set in X defined by

$$f^{-1}((\mu, \psi_M)) = (\mu, \psi_M) \circ f.$$

348

Example 3.5. Let $X = \{a, b, c\}$ and $Y = \{p, q\}$ be any two non-empty sets. Let $L = \{0, 1/4, 2/4, 3/4, 1\}$ be any lattice. Define a function $f : X \to Y$ as f(a) = f(b) = p; f(c) = q. If (λ, ψ_N) is a soft \tilde{L} -fuzzy set in X such that $(\lambda, \psi_N)(a) = (1/4, 1/4); (\lambda, \psi_N)(b) = (2/4, 0); (\lambda, \psi_N)(c) = (2/4, 2/4)$, then $f((\lambda, \psi_N))$ is a soft \tilde{L} -fuzzy set in Y such that $f((\lambda, \psi_N))$ (p) = $(2/4, 1/4); f((\lambda, \psi_N))(q) = (2/4, 2/4)$. If (μ, ψ_M) is a soft \tilde{L} -fuzzy set in Y such that $(\mu, \psi_M)(p) = (2/4, 1/4); (\mu, \psi_M)(q) = (2/4, 2/4)$, then $f^{-1}((\mu, \psi_M))$ is a soft \tilde{L} -fuzzy set in X such that $f^{-1}((\mu, \psi_M))(a) = (2/4, 1/4); f^{-1}((\mu, \psi_M))(b) = (2/4, 1/4); f^{-1}((\mu, \psi_M))(c) = (2/4, 2/4)$.

Definition 3.6. A soft \tilde{L} -fuzzy topology on a non-empty set X is a collection, τ of soft \tilde{L} -fuzzy sets in X satisfying the following axioms:

- (1) $(0_X, \psi_{\phi}), (1_X, \psi_X) \in \tau.$
- (2) For any family of soft \tilde{L} -fuzzy sets $(\lambda_j, \psi_{N_j}) \in \tau, j \in J$, $\Rightarrow \sqcup_{j \in J}(\lambda_j, \psi_{N_j}) \in \tau$.
- (3) For any finite number of soft \tilde{L} -fuzzy sets $(\lambda_j, \psi_{N_j}) \in \tau$, j=1,2,3,. . . n , $\Rightarrow \sqcap_{j=1}^n (\lambda_j, \psi_{N_j}) \in \tau$.

Then the pair (X, τ) is called as a *soft* \tilde{L} -fuzzy topological space. (in short, $S\tilde{L}FTS$). Any soft \tilde{L} -fuzzy set in τ is said to be a *soft* \tilde{L} -fuzzy open set (in short, $S\tilde{L}FOS$) in X. The complement of $S\tilde{L}FOS$ in a $S\tilde{L}FTS$ (X, τ) is called as a *soft* \tilde{L} -fuzzy closed set, denoted $S\tilde{L}FCS$ in X.

Example 3.7. Let $X = \{a, b, c\}$ be a non-empty set and $L = \{0, 1/5, 2/5, 3/5, 4/5, 1\}$ be any lattice. Define a soft \tilde{L} -fuzzy topology $\tau = \{(0_X, \psi_{\phi}), (1_X, \psi_X), (\lambda_i, \psi_{N_i})\}$ for i = 1, 2, 3, 4 such that

 $\begin{aligned} &(\lambda_1,\psi_{N_1})(a)=(1/5,1/5),\,(\lambda_1,\psi_{N_1})(b)=(2/5,0),\\ &(\lambda_1,\psi_{N_1})(c)=(0,0);\,(\lambda_2,\psi_{N_2})(a)=(1/5,0),\\ &(\lambda_2,\psi_{N_2})(b)=(0,0),\,(\lambda_2,\psi_{N_2})(c)=(3/5,3/5);\,(\lambda_3,\psi_{N_3})(a)=(1/5,1/5),\\ &(\lambda_3,\psi_{N_3})(b)=(2/5,0),\,(\lambda_3,\psi_{N_3})(c)=(3/5,3/5);\\ &(\lambda_4,\psi_{N_4})(a)=(1/5,0),\,(\lambda_4,\psi_{N_4})(b)=(\lambda_4,\psi_{N_4})(c)=(0,0). \end{aligned}$ Then the pair (X,τ) is a soft \tilde{L} -fuzzy topological space.

Definition 3.8 ([15]). Let (X, τ) be a soft \tilde{L} -fuzzy topological space. Let $(\lambda, \psi_N) \in \tilde{L}^X$. Then, the soft \tilde{L} -fuzzy real line $\tilde{L}^{\mathbb{R}}$ i. e. $\mathbb{R}(L \times L)$ is the set of all monotone decreasing element $[(\lambda, \psi_N)] \in \tilde{L}^{\mathbb{R}}$ satisfying

$$\sqcup \{ (\lambda, \psi_N)(t) : t \in \mathbb{R} \} = (1, 1)$$

$$\sqcap \{ (\lambda, \psi_N)(t) : t \in \mathbb{R} \} = (0, 0)$$

after the identification of $(\lambda, \psi_N), (\mu, \psi_M) \in \tilde{L}^{\mathbb{R}}$ iff

$$(\lambda, \psi_N)(t-) = (\mu, \psi_M)(t-)$$
$$(\lambda, \psi_N)(t+) = (\mu, \psi_M)(t+)$$

for all $t \in \mathbb{R}$, where,

$$(\lambda, \psi_N)(t-) = \sqcap_{s < t} (\lambda, \psi_N)(s) = lt_{s \to t-} (\lambda, \psi_N)(s).$$
$$(\lambda, \psi_N)(t+) = \sqcup_{s > t} (\lambda, \psi_N)(s) = lt_{s \to t+} (\lambda, \psi_N)(s).$$
$$349$$

Definition 3.9. A partial order on $\mathbb{R}(L \times L)$ is defined by $[(\lambda, \psi_N)] \sqsubseteq [(\mu, \psi_M)]$ iff $(\lambda, \psi_N)(t-) \sqsubseteq (\mu, \psi_M)(t-)$ and $(\lambda, \psi_N)(t+) \sqsubseteq (\mu, \psi_M)(t+)$, for all $t \in \mathbb{R}$.

Definition 3.10. Let (X, τ) be a soft *L*-fuzzy topological space. Let $(\lambda, \psi_N) \in L^X$. The *natural soft* \tilde{L} -fuzzy topology on $\mathbb{R}(L \times L)$ is generated from the sub-basis $\{L_t, R_t : t \in \mathbb{R}\}$, where, $L_t, R_t : \mathbb{R} \to L \times L$ and $L_t(\lambda, \psi_N) = (\lambda, \psi_N)(t-)' = (1, 1) - (\lambda, \psi_N)(t-)$ and $R_t(\lambda, \psi_N) = (\lambda, \psi_N)(t+)$, for all $(\lambda, \psi_N) \in \tilde{L}^{\mathbb{R}}$. This topology is called as the usual topology for $\mathbb{R}(L \times L)$. $\mathcal{L} = \{L_t : t \in \mathbb{R}\} \cup \{(0_X, \psi_\phi), (1_X, \psi_X)\}$ and $\mathcal{R} = \{R_t : t \in \mathbb{R}\} \cap \{(0_X, \psi_\phi), (1_X, \psi_X)\}$ are called the left and right hand *I*topologies respectively.

Definition 3.11 ([15]). Let (X, τ) be a soft \tilde{L} -fuzzy topological space. The soft \tilde{L} -fuzzy unit interval $I(L \times L)$ is a subset of $\mathbb{R}(L \times L)$ such that $[(\lambda, \psi_N)] \in I(L \times L)$ i. e. $[(\lambda, \psi_N)] \in \tilde{L}^I$, if

$$(\lambda, \psi_N)(t) = (1, 1) \text{for} t < 0, t \in \mathbb{R}$$
$$(\lambda, \psi_N)(t) = (0, 0) \text{for} t > 1, t \in \mathbb{R}$$

It is equipped with the soft \tilde{L} -fuzzy subspace topology.

Definition 3.12. Let (X, τ) be a soft *L*-fuzzy topological space. A soft *L*-fuzzy set (λ, ψ_N) is said to be a *soft* \tilde{L} -fuzzy compact set iff each soft \tilde{L} -fuzzy open cover of (λ, ψ_N) has a finite subcover.

Definition 3.13. A soft \tilde{L} -fuzzy topological space (X, τ) is said to be a *soft* \tilde{L} -fuzzy *locally compact space* iff for every soft \tilde{L} -fuzzy point (x_p, ψ_x) in (X, τ) , there exists a soft \tilde{L} -fuzzy open set $(\lambda, \psi_N) \in \tau$ such that (i) $(x_p, \psi_x) \in (\lambda, \psi_N)$ and

(1)
$$(x_p, \psi_x) \in (\lambda, \psi_N)$$
 and

(ii) (λ, ψ_N) is soft *L*-fuzzy compact.

Example 3.14. Let $X = \{a, b, c\}$ be a non-empty set and $L = \{0, 1/5, 2/5, 3/5, 4/5, 1\}$ be any lattice. Define a soft \tilde{L} -fuzzy topology $\tau = \{(0_X, \psi_{\phi}), (1_X, \psi_X), (\lambda_i, \psi_{N_i})\}$ for i = 1, 2, ...6 such that

 $\begin{aligned} &(\lambda_1,\psi_{N_1})(a)=(1,1),\,(\lambda_1,\psi_{N_1})(b)=(0,0),\\ &(\lambda_1,\psi_{N_1})(c)=(0,0);\,(\lambda_2,\psi_{N_2})(a)=(0,0),\\ &(\lambda_2,\psi_{N_2})(b)=(1,1),\,(\lambda_2,\psi_{N_2})(c)=(0,0);\\ &(\lambda_3,\psi_{N_3})(a)=(0,0),\,(\lambda_3,\psi_{N_3})(b)=(0,0),\\ &(\lambda_3,\psi_{N_3})(c)=(1,1);\,(\lambda_4,\psi_{N_4})(a)=(1,1),\\ &(\lambda_4,\psi_{N_4})(b)=(0,0),\,(\lambda_4,\psi_{N_4})(c)=(1,1);\\ &(\lambda_5,\psi_{N_5})(a)=(0,0),\,(\lambda_5,\psi_{N_5})(b)=(1,1),\\ &(\lambda_5,\psi_{N_5})(c)=(1,1);\,(\lambda_6,\psi_{N_6})(a)=(1,1),\\ &(\lambda_6,\psi_{N_6})(b)=(1,1),\,(\lambda_6,\psi_{N_6})(c)=(0,0). \end{aligned}$

Then the pair (X, τ) is a soft *L*-fuzzy locally compact space.

Definition 3.15. Let (X, τ) be a soft \tilde{L} -fuzzy topological space and a soft \tilde{L} -fuzzy locally compact space. Let $C_F(X)$ be the hyperspace of all soft \tilde{L} -fuzzy sets, which are both soft \tilde{L} -fuzzy closed and soft \tilde{L} -fuzzy compact sets in (X, τ) . Let

$$(\lambda, \psi_N)^+ = \{(\gamma, \psi_K) \in C_F(X) : (\lambda, \psi_N) \sqcap (\gamma, \psi_K) \neq (0_X, \psi_\phi)\} (\lambda, \psi_N)^- = \{(\gamma, \psi_K) \in C_F(X) : (\lambda, \psi_N) \sqcap (\gamma, \psi_K) = (0_X, \psi_\phi)\} 350$$

Soft \tilde{L} -fuzzy \mathcal{V} -structure on $C_F(X)$ is the collection \mathcal{V} which is generated by the sub-base consisting of soft \tilde{L} -fuzzy sets of the form $(\lambda, \psi_N)^+$ and $(\lambda, \psi_N)^-$, where (λ, ψ_N) is both soft \tilde{L} -fuzzy open set and soft \tilde{L} -fuzzy compact set in (X, τ) . Then the pair (X, \mathcal{V}) is said to be a soft \tilde{L} -fuzzy \mathcal{V} -space. The member of soft \tilde{L} -fuzzy \mathcal{V} -structure is said to be soft \tilde{L} -fuzzy \mathcal{V} -open set. It is denoted by $S\tilde{L}F\mathcal{V}OS$. The complement of soft \tilde{L} -fuzzy \mathcal{V} -open set is said to be a soft \tilde{L} -fuzzy \mathcal{V} -closed set. It is denoted by $S\tilde{L}F\mathcal{V}CS$.

Example 3.16. Let $X = \{a, b, c\}$ be a non-empty set and

$$L = \{0, 1/5, 2/5, 3/5, 4/5, 1\}$$

be any lattice. Define a soft \tilde{L} -fuzzy topology $\tau = \{(0_X, \psi_{\phi}), (1_X, \psi_X), (\lambda_i, \psi_{N_i})\}$ for i = 1, 2, ...6 such that

 $\begin{aligned} &(\lambda_1,\psi_{N_1})(a)=(1,1), (\lambda_1,\psi_{N_1})(b)=(0,0),\\ &(\lambda_1,\psi_{N_1})(c)=(0,0); (\lambda_2,\psi_{N_2})(a)=(0,0),\\ &(\lambda_2,\psi_{N_2})(b)=(1,1), (\lambda_2,\psi_{N_2})(c)=(0,0);\\ &(\lambda_3,\psi_{N_3})(a)=(0,0), (\lambda_3,\psi_{N_3})(b)=(0,0),\\ &(\lambda_3,\psi_{N_3})(c)=(1,1); (\lambda_4,\psi_{N_4})(a)=(1,1),\\ &(\lambda_4,\psi_{N_4})(b)=(0,0), (\lambda_4,\psi_{N_4})(c)=(1,1);\\ &(\lambda_5,\psi_{N_5})(a)=(0,0), (\lambda_5,\psi_{N_5})(b)=(1,1),\\ &(\lambda_5,\psi_{N_5})(c)=(1,1); (\lambda_6,\psi_{N_6})(a)=(1,1),\\ &(\lambda_6,\psi_{N_6})(b)=(1,1), (\lambda_6,\psi_{N_6})(c)=(0,0). \end{aligned}$

Then the pair (X, τ) is a soft \tilde{L} -fuzzy locally compact space. Let

 $\mathfrak{b} = \{(0_X, \psi_{\phi}), (1_X, \psi_X), (\lambda_4, \psi_{N_4}), (\lambda_5, \psi_{N_5}), (\lambda_6, \psi_{N_6})\}$

be a subbase. Now, soft \tilde{L} -fuzzy \mathcal{V} -structure \mathcal{V} is the collection which generated by \mathfrak{b} . Then the pair (X, \mathcal{V}) is the soft \tilde{L} -fuzzy \mathcal{V} -space.

Definition 3.17. Let (X, \mathcal{V}) be a soft \tilde{L} -fuzzy \mathcal{V} -space. Let $(\lambda, \psi_N) \in S\tilde{L}FS$ in X. Then, the soft \tilde{L} -fuzzy \mathcal{V} -interior and the soft \tilde{L} -fuzzy \mathcal{V} -closure of (λ, ψ_N) are defined as

$$SLF\mathcal{V}\text{-}int(\lambda,\psi_N) = \sqcup \{(\mu,\psi_M) : (\mu,\psi_M) \text{ is a soft } L\text{-}fuzzy \ \mathcal{V}\text{-}open \text{ set and} \\ (\lambda,\psi_N) \sqsupseteq (\mu,\psi_M) \}$$
$$S\tilde{L}F\mathcal{V}\text{-}cl(\lambda,\psi_N) = \sqcap \{(\mu,\psi_M) : (\mu,\psi_M) \text{ is a soft } \tilde{L}\text{-}fuzzy \ \mathcal{V}\text{-}closed \text{ set and} \\ (\lambda,\psi_N) \sqsubseteq (\mu,\psi_M) \}$$

4. On soft \tilde{L} -fuzzy ideal \mathcal{V} -space

Definition 4.1 ([9]). Asoft \tilde{L} -fuzzy ideal \mathcal{I} on X is a non-empty collection of soft \tilde{L} -fuzzy sets which satisfies the following axiom:

(i) If $(\mu, \psi_M) \in \mathcal{I}$ and $(\mu, \psi_M) \supseteq (\lambda, \psi_N)$ then $(\lambda, \psi_N) \in \mathcal{I}$. (heredity)

(ii) If $(\mu, \psi_M), (\lambda, \psi_N) \in \mathcal{I}$, then, $(\mu, \psi_M) \sqcup (\lambda, \psi_N) \in \mathcal{I}$. (finite additivity)

Example 4.2. Let $X = \{a, b, c\}$ be a non-empty set and

 $L = \{0, 1/10, 2/10, 3/10, 4/10, 5/10, 6/10, 7/10, 8/10, 9/10, 1\}$

be any lattice. Then $\mathcal{I} = \{(\lambda, \psi_N) : \text{ for all } x \in X, 0 \le (\lambda, \psi_N)(x) \le 6/10\}$ is a soft \tilde{L} -fuzzy ideal.

Definition 4.3. A soft \tilde{L} -fuzzy ideal \mathcal{V} -space, denoted by $(X, \mathcal{V}, \mathcal{I})$ means a soft \tilde{L} -fuzzy \mathcal{V} -space with a soft \tilde{L} -fuzzy ideal, \mathcal{I} and soft \tilde{L} -fuzzy \mathcal{V} -structure, \mathcal{V} .

Definition 4.4 ([16]). Given a soft \tilde{L} -fuzzy ideal \mathcal{V} -space, $(X, \mathcal{V}, \mathcal{I})$ and if \tilde{L}^X is the set of all soft \tilde{L} -fuzzy sets, $(\lambda, \psi_N) : X \to L \times L$, then the soft \tilde{L} -fuzzy set operator $(.)^* : \tilde{L}^X \to \tilde{L}^X$ called the *soft* \tilde{L} -fuzzy *local function of* (λ, ψ_N) with respect to \mathcal{V} and \mathcal{I} , is defined as follows:

$$(\lambda, \psi_N)^* (\mathcal{V}, \mathcal{I}) = \sqcap \{ (\gamma, \psi_K) \in \tilde{L}^X : \text{ if } (\mu, \psi_M) \in \mathcal{V}, \text{ then there exists} \\ (\lambda, \psi_N) \sqcap (\mu, \psi_M) \notin \mathcal{I} \text{ such that } (\lambda, \psi_N) \sqcap (\mu, \psi_M) \sqsupseteq (\gamma, \psi_K) \\ \text{ with } (\gamma, \psi_K) \text{ is } aS\tilde{L}F\mathcal{V}\text{closed set} \}$$

Definition 4.5. A soft \tilde{L} -fuzzy closure operator, $Cl^*(.)$ for a soft \tilde{L} -fuzzy ideal \mathcal{V} -space $(\mathcal{V}, \mathcal{I})$ is defined by

$$SLF\mathcal{V}cl^*(\lambda,\psi_N) = (\lambda,\psi_N) \sqcup (\lambda,\psi_N)^*$$

Definition 4.6. Let $(X, \mathcal{V}, \mathcal{I})$ be a soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be a soft \tilde{L} -fuzzy set. Then, (λ, ψ_N) is said to be a *soft* \tilde{L} -fuzzy \mathcal{I} \mathcal{V} -open set if $(\lambda, \psi_N) \sqsubseteq int(\lambda, \psi_N)^*$.

Definition 4.7. Let $(X, \mathcal{V}, \mathcal{I})$ be a soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be a soft \tilde{L} -fuzzy set. Then, (λ, ψ_N) is said to be a soft \tilde{L} -fuzzy α^* - \mathcal{I} \mathcal{V} -open set if $int(\lambda, \psi_N) = int(cl^*(int(\lambda, \psi_N)))$.

5. Ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space :

Definition 5.1. An ordered \mathcal{I} -set on which there is given a soft \tilde{L} -fuzzy \mathcal{V} -structure is called as an *ordered soft* \tilde{L} -fuzzy *ideal* \mathcal{V} -space. (for short. ordered $S\tilde{L}F\mathcal{IVS}$)

Definition 5.2. A soft \tilde{L} -fuzzy set (λ, ψ_N) in a partially ordered set $(X, \mathcal{V}, \sqsubseteq)$ is said to be an

(1) Increasing soft \tilde{L} -fuzzy set (for short. $\uparrow S\tilde{L}FS$) if $x \leq y \Rightarrow (\lambda, \psi_N)(x) \sqsubseteq (\mu, \psi_M)(y)$ (2) Decreasing soft \tilde{L} -fuzzy set (for short. $\downarrow S\tilde{L}FS$) if $x \leq y \Rightarrow (\lambda, \psi_N)(x) \sqsupseteq (\mu, \psi_M)(y)$

Definition 5.3. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let $(\lambda, \psi_N) \in \uparrow$ (resp. \downarrow) S \tilde{L} FS in X. Then, (λ, ψ_N) is said to be an *increasing (resp. decreasing) soft* \tilde{L} -fuzzy \mathcal{V} -closure^{*} of (λ, ψ_N) if $I^{*\mathcal{V}}(\lambda, \psi_N) = (\lambda, \psi_N) \sqcup (\lambda, \psi_N)^*$ (resp. $D^{*\mathcal{V}}(\lambda, \psi_N) = (\lambda, \psi_N) \sqcup (\lambda, \psi_N)^*$).

Definition 5.4. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be any soft \tilde{L} -fuzzy set. Then, (λ, ψ_N) is said to be an *increasing (resp. decreasing) soft* \tilde{L} -fuzzy $\mathcal{I}\mathcal{V}$ -open set if $(\lambda, \psi_N) \sqsubseteq I_0^{\mathcal{V}}(\lambda, \psi_N)^*$ (resp. $(\lambda, \psi_N) \sqsubseteq D_0^{\mathcal{V}}(\lambda, \psi_N)^*$). It is denoted by $\uparrow S\tilde{L}F\mathcal{I}\mathcal{V}OS$ (resp. $\downarrow S\tilde{L}F\mathcal{I}\mathcal{V}OS$). The complement of $\uparrow S\tilde{L}F\mathcal{I}\mathcal{V}OS$ (resp. $\downarrow S\tilde{L}F\mathcal{I}\mathcal{V}OS$) is decreasing (resp. increasing) soft \tilde{L} -fuzzy $\mathcal{I}\mathcal{V}$ -closed set. It is denoted by $\downarrow S\tilde{L}F\mathcal{I}\mathcal{V}CS$ (resp. $\uparrow S\tilde{L}F\mathcal{I}\mathcal{V}CS$).

Definition 5.5. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be any soft \tilde{L} -fuzzy set. Then, (λ, ψ_N) is said to be an *increasing (resp.* 352)

decreasing) soft \tilde{L} -fuzzy $\alpha^* \mathcal{IV}$ -open set if $I_0^{\mathcal{V}}(\lambda, \psi_N) = I_0^{\mathcal{V}}(I^* \mathcal{V}(I_0^{\mathcal{V}}(\lambda, \psi_N)))$ (resp. $D_0^{\mathcal{V}}(\lambda, \psi_N) = D_0^{\mathcal{V}}(D^* \mathcal{V}(D_0^{\mathcal{V}}(\lambda, \psi_N)))$). It is denoted by \uparrow (resp. $\downarrow) S\tilde{L}F\alpha^* \mathcal{IVOS}$. The complement of \uparrow (resp. $\downarrow) S\tilde{L}F\alpha^* \mathcal{IVOS}$ is decreasing (resp. increasing) soft \tilde{L} -fuzzy $\alpha^* \mathcal{IV}$ -closed set. It is denoted by \downarrow (resp. $\uparrow) S\tilde{L}F\alpha^* \mathcal{IVCS}$.

Definition 5.6. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be any soft \tilde{L} -fuzzy set in $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$. Then, (λ, ψ_N) is said to be an increasing (resp. decreasing) soft \tilde{L} -fuzzy $c\mathcal{I}\mathcal{V}$ -open set if

 $(\lambda,\psi_N) = (\mu,\psi_M) \sqcap (\gamma,\psi_K)$

where, (μ, ψ_M) is an \uparrow (resp. \downarrow) $S\tilde{L}F\mathcal{IV}$ -open set and (γ, ψ_K) is an \uparrow (resp. \downarrow) $S\tilde{L}F\alpha^*\mathcal{IV}$ -open set. It is denoted by \uparrow (resp. \downarrow) $S\tilde{L}Fc\mathcal{IV}OS$. The complement of an \uparrow (resp. \downarrow) $S\tilde{L}Fc\mathcal{IV}OS$ is a *decreasing (resp. increasing) soft* \tilde{L} -fuzzy $c\mathcal{IV}$ -closed set. It is denoted by \downarrow (resp. \uparrow) $S\tilde{L}Fc\mathcal{IV}CS$.

Definition 5.7. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be a soft \tilde{L} -fuzzy set in $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$. Then, (λ, ψ_N) is said to be an *increasing* (resp. decreasing) soft \tilde{L} -fuzzy $G_{\delta} \mathcal{I} \mathcal{V}$ set if

$$(\lambda,\psi_N) = \sqcap_{i=1}^{\infty} (\lambda_i,\psi_{N_i})$$

where, each (λ_i, ψ_{N_i}) is an \uparrow (resp. \downarrow) S $\tilde{L}F\mathcal{I}\mathcal{V}$ -open set. The complement of an \uparrow (resp. \downarrow) S $\tilde{L}FG_{\delta}\mathcal{I}\mathcal{V}S$ is a *decreasing (resp. increasing) soft* \tilde{L} -fuzzy $F_{\sigma}\mathcal{I}\mathcal{V}$ set. It is denoted by \downarrow (resp. \uparrow) S $\tilde{L}FF_{\sigma}\mathcal{I}\mathcal{V}S$.

Definition 5.8. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be a soft \tilde{L} -fuzzy set in $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$. Then, (λ, ψ_N) is said to be an *increasing* (*resp. decreasing*) soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{I}\mathcal{V}$ set if it is both increasing (resp. decreasing) soft \tilde{L} -fuzzy $c\mathcal{I}\mathcal{V}$ -open set and increasing (resp. decreasing) soft \tilde{L} -fuzzy $F_{\sigma}\mathcal{I}\mathcal{V}$ set. It is denoted by \uparrow (resp. \downarrow) S $\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}S$. The complement of \uparrow (resp. \downarrow) S $\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}S$. It is denoted by \downarrow (resp. \uparrow) S $\tilde{L}FcG_{\delta}\mathcal{I}\mathcal{V}S$.

Definition 5.9. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be a soft \tilde{L} -fuzzy set in $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$. Then, (λ, ψ_N) is said to be an *increasing* (*resp. decreasing*) soft \tilde{L} -fuzzy C-clopen $G_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}$ set if it is both increasing (resp. decreasing) S $\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}$ set and increasing (resp. decreasing) S $\tilde{L}FcG_{\delta}\mathcal{I}\mathcal{V}$ set. It is denoted by \uparrow (resp. \downarrow) S $\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}$ s.

Remark 5.10. Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. If (λ, ψ_N) is $S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}$ -set, then $D_0^{S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}}(\lambda, \psi_N) = D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}}(\lambda, \psi_N)$

Proof. Proof is obvious.

Definition 5.11. An ordered soft \tilde{L} -fuzzy set which is both \downarrow (resp. \uparrow) $S\tilde{L}Fc\mathcal{IV}$ open set and \downarrow (resp. \uparrow) $S\tilde{L}Fc\mathcal{IV}$ -closed set is called as a \downarrow (resp. \uparrow) $S\tilde{L}Fc\mathcal{IV}$ clopen set.

Definition 5.12. An ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ is said to have a *property* \sharp , if the union of any family of soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}$ -open set is soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}$ -open. **Definition 5.13.** Let $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$ be an ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let (λ, ψ_N) be a soft *L*-fuzzy set in $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$. Then,

$$\begin{split} I^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N) &=\uparrow S\tilde{L}Fc\mathcal{IV}\text{-closure of }(\lambda,\psi_N) \\ &= \sqcap\{(\mu,\psi_M):(\mu,\psi_M) \text{ is an }\uparrow S\tilde{L}Fc\mathcal{IV}\text{-closed set and }(\lambda,\psi_N) \sqsubseteq (\mu,\psi_M)\} \\ D^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N) &=\downarrow S\tilde{L}Fc\mathcal{IV}\text{-closure of }(\lambda,\psi_N) \\ &= \sqcap\{(\mu,\psi_M):(\mu,\psi_M)\text{ is a }\downarrow S\tilde{L}Fc\mathcal{IV}\text{-closed set and}(\lambda,\psi_N) \sqsubseteq (\mu,\psi_M)\} \\ I_0^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N) &=\uparrow S\tilde{L}Fc\mathcal{IV}\text{-interior of}(\lambda,\psi_N) \\ &= \sqcup\{(\mu,\psi_M):(\mu,\psi_M)\text{ is an }\uparrow S\tilde{L}Fc\mathcal{IV}\text{-open set and}(\lambda,\psi_N) \sqsupseteq (\mu,\psi_M)\} \\ D_0^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N) &=\downarrow S\tilde{L}Fc\mathcal{IV}\text{-interior of }(\lambda,\psi_N) \\ &= \sqcup\{(\mu,\psi_M):(\mu,\psi_M)\text{ is a }\downarrow S\tilde{L}Fc\mathcal{IV}\text{-open set and}(\lambda,\psi_N) \sqsupseteq (\mu,\psi_M)\} \end{split}$$

Clearly, $I^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N)$ (resp. $D^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N)$) is the smallest increasing (resp. decreasing) soft \tilde{L} -fuzzy $c\mathcal{IV}$ -closed set containing (λ, ψ_N) and $I_0^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N)$ (resp. $D_0^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N)$ is the largest increasing (resp. decreasing) soft \tilde{L} -fuzzy $c\mathcal{IV}$ -open set contained in (λ, ψ_N) .

Proposition 5.14. For any soft \tilde{L} -fuzzy set, (λ, ψ_N) in $(X, \mathcal{V}, \mathcal{I}, \sqsubseteq)$, the following statements are hold.

statements are hold. (i) $(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N) = D_0^{S\tilde{L}Fc\mathcal{IV}}((1_X, \psi_X) - (\lambda, \psi_N)).$ (ii) $(1_X, \psi_X) - D^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N) = I_0^{S\tilde{L}Fc\mathcal{IV}}((1_X, \psi_X) - (\lambda, \psi_N)).$ (iii) $(1_X, \psi_X) - I_0^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N) = D^{S\tilde{L}Fc\mathcal{IV}}((1_X, \psi_X) - (\lambda, \psi_N)).$ (iv) $(1_X, \psi_X) - D_0^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N) = I^{S\tilde{L}Fc\mathcal{IV}}((1_X, \psi_X) - (\lambda, \psi_N)).$

Proof. (i) Let $I^{S\tilde{L}Fc\mathcal{IV}}(\lambda,\psi_N)$ be an increasing $S\tilde{L}Fc\mathcal{IV}$ -closed set containing (λ,ψ_N) . Then, $(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N)$ is a decreasing $S\tilde{L}Fc\mathcal{IV}$ -open set such that

$$(1_X, \psi_X) - I^{SLFc\mathcal{IV}}(\lambda, \psi_N) \sqsubseteq (1_X, \psi_X) - (\lambda, \psi_N).$$

Now, consider (μ, ψ_M) is another decreasing $S\tilde{L}Fc\mathcal{IV}$ -open set such that $(\mu, \psi_M) \sqsubseteq$ $(1_X, \psi_X) - (\lambda, \psi_N)$. Then, $(1_X, \psi_X) - (\mu, \psi_M)$ is an increasing \tilde{SLFcTV} -closed set such that $(1_X, \psi_X) - (\mu, \psi_M) \supseteq (\lambda, \psi_N)$. It follows that, $I^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N) \sqsubseteq$ $I^{S\tilde{L}Fc\mathcal{IV}}((1_X,\psi_X) - (\mu,\psi_M)) = (1_X,\psi_X) - (\mu,\psi_M).$ This implies that, (μ,ψ_M) $\subseteq (1_X, \psi_X) - I^{SLFc\mathcal{IV}}(\lambda, \psi_N)$. Thus, $(1_X, \psi_X) - I^{SLFc\mathcal{IV}}(\lambda, \psi_N)$ is the largest $\downarrow S\tilde{L}Fc\mathcal{IV}$ -open set such that $(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N) \sqsubseteq (1_X, \psi_X) - (\lambda, \psi_N)$. This implies that, $(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{IV}}(\lambda, \psi_N) = D_0^{S\tilde{L}Fc\mathcal{IV}}((1_X, \psi_X) - (\lambda, \psi_N))$. Hence, (i) is proved. Similarly, (ii), (iii), (iv) can be proved. \square

6. PAIRWISE ORDERED C-BASICALLY DISCONNECTED IDEAL V-SPACE

Definition 6.1. A pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space is a 5-tuples $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_3,$ \mathcal{I}, \sqsubseteq), where X is a set, $\mathcal{V}_1, \mathcal{V}_2$ are any two soft \tilde{L} -fuzzy \mathcal{V} -structures on X, \mathcal{I} is a soft \hat{L} -fuzzy ideal and \sqsubseteq is an ordered set.

Notation: $An \uparrow (resp. \downarrow) S\tilde{L}Fc\mathcal{I}\mathcal{V}_1 - cl(\lambda, \psi_N) (or) \uparrow (resp. \downarrow) S\tilde{L}Fc\mathcal{I}\mathcal{V}_2 - cl(\lambda, \psi_N)$ is denoted by $I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda,\psi_N)$ (resp. $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda,\psi_N)$). Similarly, for interior is denoted by $I_0^{\tilde{S}\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda,\psi_N)$ (resp. $D_0^{\tilde{S}\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda,\psi_N)$).

Definition 6.2. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} space. Let (λ, ψ_N) be any \uparrow (resp. \downarrow) $S\tilde{L}FcF_{\sigma}\mathcal{IV}_1$ set or \uparrow (resp. \downarrow) $S\tilde{L}FcF_{\sigma}\mathcal{IV}_2$ set in $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$. If $I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda, \psi_N)$ (resp. $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda, \psi_N)$) is \uparrow (resp. \downarrow) $S\tilde{L}Fc\mathcal{I}\mathcal{V}_1$ -open or \mathcal{V}_2 -open set, then, $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ is said to be upper (resp. lower) SLF C-basically disconnected ideal \mathcal{V}_1 or \mathcal{V}_2 -space.

Definition 6.3. A pairwise ordered soft \hat{L} -fuzzy ideal \mathcal{V} -space $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ is said to be pairwise upper (resp. lower) $S\tilde{L}F$ C-basically disconnected ideal V-space if it is both upper (resp. lower) SLF C-basically disconnected ideal \mathcal{V}_1 -space and upper (resp. lower) SLF C-basically disconnected ideal \mathcal{V}_2 -space.

Definition 6.4. A pairwise ordered soft L-fuzzy ideal \mathcal{V} -space $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \Box)$ is said to be pairwise ordered SLF C-basically disconnected ideal V-space if it is both pairwise upper SLF C-basically disconnected ideal \mathcal{V} -space and pairwise lower SLFC-basically disconnected ideal \mathcal{V} -space.

Proposition 6.5. For a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$, the following statements are equivalent:

(a) $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubset)$ is pairwise upper soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} space.

(b) For each decreasing soft \tilde{L} -fuzzy $cG_{\delta}\mathcal{IV}_1$ set or \mathcal{V}_2 set (λ, ψ_N) , $D_0^{S\tilde{L}Fc\mathcal{IV}_2/\mathcal{V}_1}(\lambda, \psi_N)$ is a decreasing soft \tilde{L} -fuzzy $c\mathcal{IV}_2$ or \mathcal{V}_1 -closed set.

(c) For each increasing soft \hat{L} -fuzzy $cF_{\sigma}\mathcal{IV}_1$ or \mathcal{V}_2 set (λ, ψ_N) , we have

$$I_0^{SLFc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N)) = I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N).$$

(d) For each pair of increasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{IV}_1$ or \mathcal{V}_2 set (λ, ψ_N) and decreasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 set (μ, ψ_M) with $D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}((1_X, \psi_X) - (\lambda, \psi_N)) = (\mu, \psi_M)$, we have $(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda, \psi_N) = D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\mu, \psi_M)$.

Proof. (a) \Rightarrow (b): Let (λ, ψ_N) be a decreasing soft \tilde{L} -fuzzy $cG_{\delta}\mathcal{IV}_1$ or \mathcal{V}_2 set. Now, $(\lambda, \psi_N)'$ is an increasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{IV}_1$ or \mathcal{V}_2 set. By (a), $I^{SLFc\mathcal{IV}_2/\mathcal{V}_1}((1_X, \psi_X) - \mathcal{V}_2)$ (λ, ψ_N) is an increasing soft \tilde{L} -fuzzy $c\mathcal{I}\mathcal{V}_2$ -open or \mathcal{V}_1 -open set. Now,

$$I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}((1_X,\psi_X)-(\lambda,\psi_N)) = (1_X,\psi_X) - D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N)$$

This implies that, $D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N)$ is a decreasing soft \tilde{L} -fuzzy $c\mathcal{I}\mathcal{V}_2$ -closed or \mathcal{V}_1 -closed set.

 $(b) \Rightarrow (c)$: Let (λ, ψ_N) be an increasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{IV}_1$ or \mathcal{V}_2 set. Then, $(\lambda, \psi_N)'$ is a decreasing soft \tilde{L} -fuzzy $cG_{\delta}\mathcal{IV}_1$ or \mathcal{V}_2 set. By (b), $D_0^{S\tilde{L}Fc\mathcal{IV}_2/\mathcal{V}_1}((\lambda, \psi_N)')$ is a decreasing $S\tilde{L}Fc\mathcal{I}\mathcal{V}_2$ -closed or \mathcal{V}_1 -closed set. Now,

$$(1_X, \psi_X) - I_0^{SLFc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1} (I^{SLFc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda, \psi_N))$$

= $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1} (D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1} ((1_X, \psi_X) - (\lambda, \psi_N)))$
= $D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1} ((1_X, \psi_X) - (\lambda, \psi_N))$
= $(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda, \psi_N)$

Hence, $I_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N)) = I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N)$

 $(c) \Rightarrow (d)$: Let (λ, ψ_N) be an increasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{IV}_1$ or \mathcal{V}_2 set and (μ, ψ_M) be a decreasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{IV}_1$ or \mathcal{V}_2 set in $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ with $D_0^{S\tilde{L}Fc\mathcal{IV}_2/\mathcal{V}_1}((1_X, \psi_X) - (\lambda, \psi_N)) = (\mu, \psi_M)$. By (c), we have

$${}_{0}^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}(I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}(\lambda,\psi_{N}))=I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}(\lambda,\psi_{N}).$$

Now,

$$D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}(D_{0}^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}((1_{X},\psi_{X})-(\lambda,\psi_{N})))$$

$$=(1_{X},\psi_{X})-I_{0}^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}(I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}(\lambda,\psi_{N})))$$

$$=(1_{X},\psi_{X})-I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}(\lambda,\psi_{N})$$

$$=D_{0}^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{2}/\mathcal{V}_{1}}((1_{X},\psi_{X})-(\lambda,\psi_{N})))$$

$$=(\mu,\psi_{M})$$

This implies that, $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\mu,\psi_M) = (\mu,\psi_M)$. Now,

$$(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda, \psi_N) = D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}((1_X, \psi_X) - (\lambda, \psi_N))$$
$$= (\mu, \psi_M) = D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\mu, \psi_M).$$

 $(d) \Rightarrow (a)$: Let (λ, ψ_N) be an increasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 set in $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$. Consider a decreasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 set (μ, ψ_M) with $D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}((1_X, \psi_X) - (\lambda, \psi_N)) = (\mu, \psi_M)$. By (d),

$$(1_X, \psi_X) - I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda, \psi_N) = D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\mu, \psi_M).$$

This implies that, $I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N) = (1_X,\psi_X) - D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\mu,\psi_M)$. It follows that, $I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_2/\mathcal{V}_1}(\lambda,\psi_N)$ is an increasing $S\tilde{L}Fc\mathcal{I}\mathcal{V}_2$ -open or \mathcal{V}_1 -open set. Therefore, $(X,\mathcal{V}_1,\mathcal{V}_2,\mathcal{I},\sqsubseteq)$ is pairwise upper $S\tilde{L}F$ C-basically disconnected ideal \mathcal{V}_1 -space and pairwise upper $S\tilde{L}F$ C-basically disconnected ideal \mathcal{V}_2 -space. Hence, $(X,\mathcal{V}_1,\mathcal{V}_2,\mathcal{I},\sqsubseteq)$ is pairwise upper $S\tilde{L}F$ C-basically disconnected ideal \mathcal{V}_2 -space. \Box

Proposition 6.6. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Then, $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ is pairwise upper $S\tilde{L}F$ C-basically disconnected ideal \mathcal{V} -space iff for each $\downarrow S\tilde{L}F \ cF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set, (λ, ψ_N) and $\downarrow S\tilde{L}F \ cG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2$ or \mathcal{V}_1 -set, (μ, ψ_M) such that $(\lambda, \psi_N) \sqsubseteq (\mu, \psi_M)$, we have

$$D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda,\psi_N) \sqsubseteq D_0^{SLFc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\mu,\psi_M).$$

356

Proof. Using Proposition 6. 5 and Remark 5. 10, it is clear.

Remark 6.7. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise upper soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ possess the property \sharp . Let

 $\{(\lambda_i, \psi_{N_i}), (\mu_j, \psi_{M_j}) : i, j \in \mathbb{N}\}$

be a collection such that each (λ_i, ψ_{N_i}) 's are $\downarrow S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -sets and (μ_j, ψ_{M_j}) 's are $\downarrow S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2$ or \mathcal{V}_1 -sets. Let (λ, ψ_N) and (μ, ψ_M) be the decreasing $S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set and $\downarrow S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2$ or \mathcal{V}_1 -set respectively. If $(\lambda_i, \psi_{N_i}) \equiv (\lambda, \psi_N) \equiv$ (μ_j, ψ_{M_j}) and $(\lambda_i, \psi_{N_i}) \equiv (\mu, \psi_M) \equiv (\mu_j, \psi_{M_j})$, for all $i, j \in \mathbb{N}$, then there exists a \downarrow soft \tilde{L} -fuzzy $c\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -clopen set (γ, ψ_K) such that $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ $(\lambda_i, \psi_{N_i}) \equiv$ $(\gamma, \psi_K) \equiv D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ (μ_j, ψ_{M_i}) for all $i, j \in \mathbb{N}$.

Proof. By Proposition 6. 6,

$$D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{1}/\mathcal{V}_{2}}\left(\lambda_{i},\psi_{N_{i}}\right) \sqsubseteq D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{1}/\mathcal{V}_{2}}\left(\lambda,\psi_{N}\right) \sqcap D_{0}^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{1}/\mathcal{V}_{2}}\left(\mu,\psi_{M}\right)$$
$$\sqsubseteq D_{0}^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_{1}/\mathcal{V}_{2}}\left(\mu_{i},\psi_{M_{i}}\right),$$

for all $i, j \in \mathbb{N}$. Since $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ is pairwise upper soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space, it follows that, $(\gamma, \psi_K) = D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1\mathcal{V}_2}(\lambda, \psi_N) \sqcap D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\mu, \psi_M)$ is a \downarrow soft \tilde{L} -fuzzy $c\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -clopen set satisfying the required condition. \Box

Proposition 6.8. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise upper soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ possess the property \sharp . Let $\{(\lambda_q, \psi_{N_q})\}_{q \in \mathbb{Q}}$ and $\{(\mu_q, \psi_{M_q})\}_{q \in \mathbb{Q}}$

be the monotone increasing collections of $\downarrow S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 sets and \downarrow soft \tilde{L} -fuzzy $cG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2$ or \mathcal{V}_1 sets of $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ respectively. (\mathbb{Q} is the set of all rational numbers). If $(\lambda_{q_1}, \psi_{N_{q_1}}) \sqsubseteq (\mu_{q_2}, \psi_{M_{q_2}})$, whenever $q_1 < q_2, (q_1, q_2 \in \mathbb{Q})$, where $(\lambda_{q_1}, \psi_{N_{q_1}})$ is $\downarrow S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set and $(\mu_{q_2}, \psi_{M_{q_2}})$ is $\downarrow S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set, then, there exists a monotone increasing collection $\{(\gamma_q, \psi_{K_q})\}_{q\in\mathbb{Q}}$ of soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -clopen sets of $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ such that $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ $(\lambda_{q_1}, \psi_{N_{q_1}}) \sqsubseteq (\gamma_{q_2}, \psi_{K_{q_2}})$ and $(\gamma_{q_1}, \psi_{K_{q_1}}) \sqsubseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ $(\mu_{q_2}, \psi_{M_{q_2}})$ whenever $q_1 < q_2$.

Proof. Let us arrange into a sequence $\{q_n\}$ of rational numbers without repetitions. For every $n \ge 2$, define inductively a collection $\{(\gamma_{q_i}, \psi_{K_{q_i}}) : 1 \le i < n\} \subseteq \tilde{L}^X$ such that

$$\left\{ \begin{array}{l} D^{SLFc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda_q,\psi_{N_q}) \sqsubseteq (\gamma_{q_i},\psi_{K_{q_i}}), & \text{if } q < q_i \\ (\gamma_{q_i},\psi_{K_{q_i}}) \sqsubseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\mu_q,\psi_{M_q}), & \text{if } q_i < q \end{array} \right\} \dashrightarrow (S_n)$$

for all i < n. By Proposition 6. 6, the countable collections

 $\{D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}\ (\lambda_q,\psi_{N_q})\}_{q\in\mathbb{Q}} \text{ and } \{D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}\ (\mu_q,\psi_{M_q})\}_{q\in\mathbb{Q}}$

satisfying $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ $(\lambda_{q_1},\psi_{N_{q_1}}) \subseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ $(\mu_{q_2},\psi_{M_{q_2}})$, if $q_1 < q_2$. By Remark 6. 7, there exists a $\downarrow S\tilde{L}Fc\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -open set, (δ,ψ_L) such that $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ $(\lambda_{q_1},\psi_{N_{q_1}}) \subseteq (\delta,\psi_L) \subseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}$ $(\mu_{q_2},\psi_{M_{q_2}})$. By setting $(\gamma_{q_1},\psi_{K_{q_1}}) = (\delta,\psi_L)$, 357 we get (S_2) . Assume that soft \tilde{L} -fuzzy sets $(\gamma_{q_i}, \psi_{K_{q_i}})$ (already defined), for i < nand satisfy (S_n) . Define

$$\Phi = \sqcup \{ (\gamma_{q_i}, \psi_{K_{q_i}}) : i < n, q_i < q_n \} \sqcup (\lambda_{q_n}, \psi_{N_{q_n}}) \\ \Omega = \sqcap \{ (\gamma_{q_j}, \psi_{K_{q_j}}) : j < n, q_j > q_n \} \sqcap (\mu_{q_n}, \psi_{M_{q_n}})$$

Then, we have, $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\gamma_{q_i},\psi_{K_{q_i}}) \equiv D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\Phi) \equiv D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\gamma_j,\psi_{K_j})$ and $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\gamma_{q_i},\psi_{K_{q_i}}) \equiv D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\Omega) \equiv D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\gamma_j,\psi_{K_j})$ whenever $q_i < q_n < q_j \ (i,j < n)$, as well as $(\lambda_q,\psi_{N_q}) \equiv D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\Phi) \equiv (\mu_{q'},\psi_{M_{q'}})$ and $(\lambda_q,\psi_{N_q}) \equiv D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\Omega) \equiv (\mu_{q'},\psi_{M_{q'}})$, whenever $q < q_n < q'$. This shows that the countable collections $\{(\gamma_{q_i},\psi_{K_{q_i}}):i < n,q_i < q_n\} \bigcup \{(\lambda_q,\psi_{N_q}):q < q_n\}$ and $\{(\gamma_{q_j},\psi_{K_{q_j}}):j < n,q_j > q_n\} \bigcup \{(\mu_{q'},\psi_{M_{q'}}):q' > q_n\}$ together with Φ and Ω , fulfil all the conditions of the Remark 6. 7. Hence, there exists a decreasing soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -clopen set, (δ_n,ψ_{L_n}) such that $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\delta_n,\psi_{L_n}) \equiv (\mu_q,\psi_{M_q})$ if $q_n < q$, and $(\lambda_q,\psi_{N_q}) \equiv D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\delta_n,\psi_{L_n})$ if $q < q_n$. Also,

$$D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\gamma_{q_i}, \psi_{K_{q_i}}) \sqsubseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\delta_n, \psi_{L_n}), \text{ if } q_i < q_n$$

and $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\delta_n,\psi_{L_n}) \sqsubseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\gamma_{q_j},\psi_{K_{q_j}})$ if $q_n < q_j$, where $1 \le i,j \le n-1$. Now setting $(\gamma_{q_n},\psi_{K_{q_n}}) = (\delta_n,\psi_{L_n})$, we obtain the soft \tilde{L} -fuzzy sets $(\gamma_{q_1},\psi_{K_{q_1}})$, $(\gamma_{q_2},\psi_{K_{q_2}}),\cdots,(\gamma_{q_n},\psi_{K_{q_n}})$ that satisfy (S_{n+1}) . Therefore, the collection $\{(\gamma_{q_i},\psi_{K_{q_i}}):i=1,2,3,\ldots\}$ has the required property. This completes the proof. \Box

Definition 6.9. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. A mapping $f : X \to \mathbb{R}(L \times L)$ is called as the \mathcal{V}_i -lower (resp. \mathcal{V}_i -upper) soft \tilde{L} -fuzzy C- \mathcal{I} -continuous function, if $f^{-1}R_t$ (respy. $f^{-1}L_t$) is an increasing or decreasing soft \tilde{L} -fuzzy $cF_{\sigma}\mathcal{I}\mathcal{V}_i$ -set (soft \tilde{L} -fuzzy $cG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_i$ -set), for each $t \in \mathbb{R}$, i = 1,2.

Proposition 6.10. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let $(\lambda, \psi_N) \in \tilde{L}^X$. Let $f: X \to \mathbb{R}(L \times L)$ be such that

$$f(x)(t) = \begin{cases} (1,1), & ift < 0\\ (\lambda,\psi_N)(x), & ift \in [0,1]\\ (0,0), & ift > 1 \end{cases} , \text{ for all } x \in X$$

Then, f is \mathcal{V}_i -lower (resp. \mathcal{V}_i -upper) soft \tilde{L} -fuzzy C- \mathcal{I} -continuous function iff (λ, ψ_N) is an \uparrow or \downarrow soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_i$ -open (resp. $S\tilde{L}Fc\mathcal{I}\mathcal{V}_i$ -closed) set, for i = 1, 2.

Proof. Proof is obvious.

Definition 6.11. The \mathcal{V} -characteristic function of $(\lambda, \psi_N) \in \tilde{L}^X$ is the map $\chi_{(\lambda, \psi_N)}$: $X \to \mathbb{R}(L \times L)$ defined by

$$\chi_{(\lambda,\psi_N)}(x) = \begin{cases} (0,0), & \text{if } t < 0\\ (\lambda,\psi_N)(x), & \text{if } t \in [0,1]\\ (1,1), & \text{if } t > 1 \end{cases}$$

$$358$$

Proposition 6.12. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space. Let $(\lambda, \psi_N) \in \tilde{L}^X$. Then, $\chi_{(\lambda,\psi_N)}$ is \mathcal{V}_i -lower (resp. \mathcal{V}_i -upper) soft \tilde{L} -fuzzy C- \mathcal{I} -continuous function iff (λ, N) is an \uparrow or \downarrow soft \tilde{L} -fuzzy C- $F_{\sigma}\mathcal{I}\mathcal{V}_i$ ($S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_i$) set, for i = 1, 2.

Proof. It follows from the above Proposition 6. 10.

Definition 6.13. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ and $(Y, \mathcal{V}_3, \mathcal{V}_4, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -spaces. A function $f : (X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq) \to (Y, \mathcal{V}_3, \mathcal{V}_4, \mathcal{I}, \bigsqcup)$ is called an \uparrow (resp. \downarrow) $S\tilde{L}Fc\mathcal{I}\mathcal{V}_i$ continuous function if $f^{-1}(\lambda, \psi_N)$ is an increasing (resp. decreasing) $S\tilde{L}Fc\mathcal{I}\mathcal{V}_i$ -open set in $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \bigsqcup)$, for every \uparrow (resp. \downarrow) $S\tilde{L}F\mathcal{I}\mathcal{V}_3$ -open set or \uparrow (resp. \downarrow) $S\tilde{L}F\mathcal{I}\mathcal{V}_4$ -open set, (λ, ψ_N) in $(Y, \mathcal{V}_3, \mathcal{V}_4, \mathcal{I}, \bigsqcup)$, for i = 1, 2. If f is both \uparrow and $\downarrow S\tilde{L}Fc\mathcal{I}\mathcal{V}_i$ continuous function, then it is called the ordered $S\tilde{L}Fc\mathcal{I}\mathcal{V}_i$ continuous function, for i = 1, 2.

Proposition 6.14. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \mathring{L} -fuzzy ideal \mathcal{V} -space. Then, the following statements are equivalent.

- (a) $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise upper soft L-fuzzy C-basically disconnected space.
- (b) (Insertion Theorem)Let $g, h: X \to \mathbb{R}(L \times L)$. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ possesses the property \sharp . If g is \mathcal{V}_1 or \mathcal{V}_2 -lower soft \tilde{L} -fuzzy C- \mathcal{I} -continuous and h is \mathcal{V}_2 or \mathcal{V}_1 -upper soft \tilde{L} -fuzzy C- \mathcal{I} -continuous functions with $g \sqsubseteq h$, then there exists an increasing soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -continuous function, $f: (X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq) \to \mathbb{R}(L \times L)$ such that $g \sqsubseteq f \sqsubseteq h$.
- (c) (Urysohn Lemma)If $(\lambda, \psi_N)'$ is an increasing soft \tilde{L} -fuzzy C- $G_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2$ or \mathcal{V}_1 -set and (μ, ψ_M) is a decreasing soft \tilde{L} -fuzzy C- $F_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set such that $(\mu, \psi_M) \sqsubseteq$ (λ, ψ_N) , then there exists a function, $f : (X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq) \to [0, 1](L \times L)$, which is both an increasing soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ -continuous function and an increasing soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_2$ -continuous function such that $(\mu, \psi_M) \sqsubseteq (L_1)'f \sqsubseteq R_0f \sqsubseteq (\lambda, \psi_N)$.

Proof. (a) \Rightarrow (b): Define $H_r = L_r h$ and $G_r = R'_r g$, $r \in \mathbb{Q}$. Then, we have two monotone increasing families respectively, $\downarrow S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set and $\downarrow S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2$ or \mathcal{V}_1 -set of $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$. Moreover, $H_r \sqsubseteq G_s$, if r < s. By Proposition 6. 8, there exists a monotone increasing family $\{F_r\}_{r\in\mathbb{Q}}$ of $\downarrow S\tilde{L}Fc\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -clopen sets of $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ such that $D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(H_r) \sqsubseteq F_s$ and $F_r \sqsubseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(G_s)$, whenever r < s. Let $U_t = \prod_{r < t} F'_r$, for all $t \in \mathbb{R}$, we define a monotone decreasing family $\{U_t : t \in \mathbb{R}\} \subseteq \tilde{L}^X$. Moreover, we have $I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(U_t) \sqsubseteq I_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(U_s)$, whenever s < t. Now,

$$\sqcup_{t \in \mathbb{R}} U_t = \sqcup_{t \in \mathbb{R}} \sqcap_{r < t} F'_r$$

$$\exists \sqcup_{t \in \mathbb{R}} \sqcap_{r < t} (G_r)'$$

$$= \sqcup_{t \in \mathbb{R}} \sqcap_{r < t} g^{-1} R_r$$

$$= \sqcup_{t \in \mathbb{R}} g^{-1} R_t$$

$$= g^{-1} (\sqcup_{t \in \mathbb{R}} R_t)$$

$$= (1_X, \psi_X)$$

Similarly,

$$\Box_{t\in\mathbb{R}}U_t = (0_X, \psi_{1_\phi})$$

We now define a function $f: X \to \mathbb{R}(L \times L)$ possessing the required properties. Let $f(x)(t) = U_t(x)$, for all $x \in X, t \in \mathbb{R}$. By the above discussion, it follows that f is well defined. To prove f is $\uparrow S\tilde{L}Fc\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -continuous function, we observe that,

$$\sqcup_{s>t} U_s = \sqcup_{s>t} I_0^{SLFc\mathcal{IV}_1/\mathcal{V}_2}(U_s)$$

and

$$\Box_{s < t} U_s = \Box_{s < t} I^{S \tilde{L} F c \mathcal{I} \mathcal{V}_1 / \mathcal{V}_2} (U_s)$$

Then, $f^{-1}R_t = \bigsqcup_{s>t}U_s = \bigsqcup_{s>t}I_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(U_s)$ is $\uparrow S\tilde{L}Fc\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -open set and also, $f^{-1}(L'_t) = \sqcap_{s<t}U_s = \sqcap_{s<t}I^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(U_s)$ is $\uparrow S\tilde{L}Fc\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -closed set. Therefore, f is an increasing soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -continuous function. To conclude the proof it remains to show that $g \sqsubseteq f \sqsubseteq h$. It is enough to show that, $g^{-1}(L'_t) \sqsubseteq f^{-1}(L'_t) \sqsubseteq h^{-1}(L'_t)$ and $g^{-1}R_t \sqsubseteq f^{-1}R_t \sqsubseteq h^{-1}R_t$, for each $t \in \mathbb{R}$. Now, we have

$$g^{-1}(L'_t) = \bigcap_{s < t} g^{-1}(L'_s)$$

= $\bigcap_{s < t} \bigcap_{r < s} g^{-1} R_r$
= $\bigcap_{s < t} \bigcap_{r < s} G'_r$
 $\sqsubseteq \bigcap_{s < t} \bigcap_{r < s} ((1_X, \psi_X) - F_r)$
= $\bigcap_{s < t} U_s$
= $f^{-1}((1_X, \psi_X) - L_t)$

Now,

$$f^{-1}(L'_t) = \prod_{s < t} U_s$$

= $\prod_{s < t} \prod_{r < s} F'_r$
 $\sqsubseteq \prod_{s < t} \prod_{r < s} H'_r$
= $\prod_{s < t} \prod_{r < s} h^{-1}L'_r$
= $\prod_{s < t} h^{-1}(L'_s)$
= $h^{-1}(L'_t)$

Similarly, we obtain,

$$g^{-1}R_t = \sqcup_{s>t}g^{-1}R_s$$

= $\sqcup_{s>t} \sqcup_{r>s} g^{-1}R_r$
= $\sqcup_{s>t} \sqcup_{r>s} ((1_X, \psi_X) - G_r)$
 $\sqsubseteq \sqcup_{s>t} \sqcap_{r
= $\sqcup_{s>t}U_s$
= $f^{-1}R_t$
360$

Now,

$$f^{-1}R_t = \sqcup_{s>t}U_s$$

= $\sqcup_{s>t} \sqcap_{r
 $\sqsubseteq \sqcup_{s>t} \sqcup_{r>s} ((1_X, \psi_X) - H_r)$
= $\sqcup_{s>t} \sqcup_{r>s} h^{-1}(L'_r)$
= $\sqcup_{s>t} h^{-1}R_s$
= $h^{-1}R_t$$

Thus, (b) is proved.

 $(b) \Rightarrow (c)$: Suppose that (λ, ψ_N) is $\downarrow S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2$ or \mathcal{V}_1 -set and (μ, ψ_M) is $\downarrow S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set such that $(\mu, \psi_M) \sqsubseteq (\lambda, \psi_N)$. Then, $\chi_{(\mu,\psi_M)} \sqsubseteq \chi_{(\lambda,\psi_N)}$, where $\chi_{(\mu,\psi_M)}$ and $\chi_{(\lambda,\psi_N)}$ are the \mathcal{V}_1 or \mathcal{V}_2 -lower and \mathcal{V}_2 or \mathcal{V}_1 -upper soft \tilde{L} -fuzzy C- \mathcal{I} -continuous functions respectively. Hence, by (b), there exists an \uparrow soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -continuous function, $f: X \to \mathbb{R}(L \times L)$ such that $\chi_{(\mu,\psi_M)} \sqsubseteq f \sqsubseteq$ $\chi_{(\lambda,\psi_N)}$. Clearly, $f(x) \in \tilde{L}^{\mathbb{R}}$, for all $x \in \mathbb{R}$ and

$$(\mu, \psi_M) = L'_1 \chi_{(\mu, \psi_M)}$$
$$\sqsubseteq L'_1 f$$
$$\sqsubseteq R_0 f$$
$$\sqsubseteq R_0 \chi_{(\lambda, \psi_N)}$$
$$= (\lambda, \psi_N)$$

Therefore, $(\mu, \psi_M) \sqsubseteq L'_1 f \sqsubseteq R_0 f \sqsubseteq (\lambda, \psi_N)$.

 $(c) \Rightarrow (a) : \text{Let} (\lambda, \psi_N) \text{ be } \downarrow S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_2 \text{ or } \mathcal{V}_1 \text{-set and } (\mu, \psi_M) \text{ be } \downarrow S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1 \text{ or } \mathcal{V}_2 \text{-set such that } (\mu, \psi_M) \sqsubseteq (\lambda, \psi_N). \text{ Then, there exists an } \uparrow S\tilde{L}Fc\mathcal{I}\mathcal{V}_1 \text{ and } \mathcal{V}_2 \text{-continuous function, } f : X \to [0,1](L \times L) \text{ such that } L'_1f \sqsubseteq R_0f. \text{ In fact that, } L'_1 \text{ is a soft } \tilde{L}\text{-fuzzy closed set and } R_0 \text{ is a soft } \tilde{L}\text{-fuzzy open set. Since } (\mu, \psi_M) \sqsubseteq L'_1f \sqsubseteq R_0f \sqsubseteq (\lambda, \psi_N), \text{ it follows that, } D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\mu, \psi_M) \sqsubseteq D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(L'_1f) = L'_1f. \text{ Similarly, } R_0f = D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(R_0f) \sqsubseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda, \psi_N). \text{ This implies that, } D^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\mu, \psi_M) \sqsubseteq D_0^{S\tilde{L}Fc\mathcal{I}\mathcal{V}_1/\mathcal{V}_2}(\lambda, \psi_N). \text{ By Proposition 6. 6, } (X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq) \text{ is a pairwise upper soft } \tilde{L}\text{-fuzzy C-basically disconnected ideal } \mathcal{V}\text{-space.}$

Note: The Proposition 6. 5, Proposition 6. 6 and Prosition: 6. 8, Proposition 6. 14 and Remark 6. 7 can also be discussed for pairwise lower soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space.

Definition 6.15. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft *L*-fuzzy ideal \mathcal{V} -space. Let *A* be any subset of *X*. Then, the pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -space $(A, \mathcal{V}_1 | A, \mathcal{V}_2 | A, \mathcal{I} | A, \sqsubseteq)$ is called a pairwise ordered soft \tilde{L} -fuzzy ideal \mathcal{V} -subspace of $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$. Where $\mathcal{V}_1 | A = \{(\lambda, \psi_N) | A : (\lambda, \psi_N) \in \mathcal{V}_1\}$ and $\mathcal{V}_2 | A = \{(\mu, \psi_M) | A : (\mu, \psi_M) \in \mathcal{V}_2\}$ are the soft \tilde{L} -fuzzy \mathcal{V} -structures on *A*.

Tietze Extension Theorem on pairwise ordered soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space

Definition 6.16. Let X be any non-empty crisp set. Let A be any subset of X and χ_A^* : $X \to \{(1_X, \psi_X), (0_X, \psi_\phi)\}$. Then, the *characteristic*^{*} function of A, χ_A^* is defined as

$$\chi_A^*(x) = \begin{cases} (1_X, \psi_X), & \text{if } x \in A\\ (0_X, \psi_\phi), & \text{if } x \notin A \end{cases}, \text{ for all } x \in X$$

Proposition 6.17. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ be a pairwise ordered soft \tilde{L} -fuzzy C-basically disconnected ideal \mathcal{V} -space. Let $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$ possesses the property \sharp . Let $A \subseteq X$ such that χ_A^* is a soft \tilde{L} -fuzzy C-G_{\delta}F_{\sigma} $\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set and let $f : (A, \mathcal{V}_1|A, \mathcal{V}_2|A, \mathcal{I}|A, \sqsubseteq) \to [0, 1](L \times L)$ be an \uparrow soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -continuous and isotone function. Then, f admits an extension $\mathcal{F} : (X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq) \to [0, 1](L \times L)$ with all its properties preserved if f satisfies the following θ property.

 $\begin{array}{l} (\theta) \ [(\lambda,\psi_N)] \sqsubseteq [(\mu,\psi_M)] \Rightarrow f^{-1}\{\chi_{\{[(0_X,\psi_\phi)],[(\lambda,\psi_N)]\}}\} \sqsubseteq f^{-1}\{\chi_{\{[(\mu,\psi_M)],[(1_X,\psi_X)]\}}\} \\ where \ \eta \sqsubseteq \xi \Rightarrow D_{\mathcal{V}_2}(f(\eta)) \sqcap I_{\mathcal{V}_2}(f(\xi)) = (0_X,\psi_\phi) \ and \ \{[(\lambda,\psi_N)],[(\mu,\psi_M)]\} \\ \{[(\mu,\psi_M)] \in I(L \times L) : [(\lambda,\psi_N)] \sqsubseteq [(\gamma,\psi_K)] \sqsubseteq [(\mu,\psi_M)]\}. \end{array}$

Proof. Define two functions $g, h: X \to [0,1](L \times L)$ by

$$g(x) = \begin{cases} f(x), & \text{if } x \in A\\ [(\lambda_0, \psi_{N_0})], & \text{if } x \notin A \end{cases}$$

and

$$h(x) = \begin{cases} f(x), & \text{if } x \in A\\ [(\lambda_1, \psi_{N_1})], & \text{if } x \notin A \end{cases}$$

where, $[(\lambda_0, \psi_{N_0})]$ and $[(\lambda_1, \psi_{N_1})]$ are the equivalence classes determined by

$$(\lambda_0, \psi_{N_0}), (\lambda_1, \psi_{N_1}) : \mathbb{R} \to L \times L$$

such that

$$(\lambda_0, \psi_{N_0})(t) = \begin{cases} (1,1), & \text{if } t \le 0\\ (0,0), & \text{if } t > 0 \end{cases}$$

and

$$(\lambda_1, \psi_{N_1})(t) = \begin{cases} (1,1), & \text{if } t < 1\\ (0,0), & \text{if } t \ge 1 \end{cases}$$

Now, we have to show that g and h are \mathcal{V}_1 or \mathcal{V}_2 -lower and \mathcal{V}_1 or \mathcal{V}_2 -upper $SLFc\mathcal{I}$ continuous functions. Indeed, let $t \geq 1$. Then,

$$L_t h(x) = \begin{cases} L_t f(x), & \text{if } x \in A \\ (1_X, \psi_X), & \text{if } x \notin A \end{cases}$$

where, $L_t h$ being \uparrow or $\downarrow S \tilde{L} F c G_{\delta} F_{\sigma} \mathcal{I} \mathcal{V}_1$ or \mathcal{V}_2 -set in $(A, \mathcal{V}_1 | A, \mathcal{V}_2 | A, \mathcal{I} | A, \sqsubseteq)$ is of the form $(\mu_t, \psi_{M_t}) | A$ where (μ_t, ψ_{M_t}) is $S \tilde{L} F c G_{\delta} F_{\sigma} \mathcal{I} \mathcal{V}_1$ or \mathcal{V}_2 -set so that

$$L_t h = \begin{cases} (\mu_t, \psi_{M_t}) \sqcap \chi_A^*, & \text{if } t < 1\\ (0_X, \psi_{\phi}), & \text{if } t \ge 1 \end{cases}, \text{ for all } t \in \mathbb{R}$$

is \uparrow or $\downarrow S\tilde{L}FcG_{\delta}F_{\sigma}\mathcal{I}\mathcal{V}_{1}$ or \mathcal{V}_{2} -set in $(X, \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{I}, \sqsubseteq)$. Thus, h is a \mathcal{V}_{1} or \mathcal{V}_{2} -upper soft \tilde{L} -fuzzy C- \mathcal{I} -continuous function.

$$R_t g(x) = \begin{cases} R_t f(x), & \text{if } x \in A \\ (1_X, \psi_X), & \text{if } x \notin A \\ 362 \end{cases}$$

where, $R_t g$ being \uparrow or $\downarrow S \tilde{L} F c F_{\sigma} \mathcal{I} \mathcal{V}_1$ or \mathcal{V}_2 -set in $(A, \mathcal{V}_1 | A, \mathcal{V}_2 | A, \mathcal{I} | A, \sqsubseteq)$ is of the form $(\lambda_t, \psi_{N_t}) | A$ where (λ_t, ψ_{N_t}) is $S \tilde{L} F c F_{\sigma} \mathcal{I} \mathcal{V}_1$ or \mathcal{V}_2 -set so that

$$R_t g = \begin{cases} (\lambda_t, \psi_{N_t}) \sqcap \chi_A^*, & \text{if } t > 0\\ (1_X, \psi_X), & \text{if } t \le 0 \end{cases}, \text{ for all } t \in \mathbb{R}$$

is \uparrow or $\downarrow S\tilde{L}FcF_{\sigma}\mathcal{I}\mathcal{V}_1$ or \mathcal{V}_2 -set in $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$. Thus, g is a \mathcal{V}_1 or \mathcal{V}_2 -lower soft \tilde{L} -fuzzy C- \mathcal{I} -continuous function. Clearly, $g \sqsubseteq h$. By Proposition 6. 6, there exists an \uparrow soft \tilde{L} -fuzzy C- $\mathcal{I}\mathcal{V}_1$ and \mathcal{V}_2 -continuous function, $\mathcal{F} : X \to [0,1](L \times L)$ such that $g(x) \sqsubseteq \mathcal{F}(x) \sqsubseteq h(x)$, for all $x \in X$. Hence, for all $x \in A$, we have $g(x) \sqsubseteq f(x) \sqsubseteq h(x)$ so that \mathcal{F} is the required extension of f over $(X, \mathcal{V}_1, \mathcal{V}_2, \mathcal{I}, \sqsubseteq)$. Moreover, \mathcal{F} is isotone as f satisfies the θ property.

Acknowledgements. The authors like to express our gratitude to the reviewers for their valuable suggestions to improve our paper.

References

- G. Balasubramanian and V. Chandrasekar, On pairwise fuzzy basically disconnected spaces, East Asian Math. J. 18 (2002) 85–93.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 191-201.
- [3] J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962) 472–476.
- [4] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl. 50 (1975) 74–79.
- [5] A. Illanes and S. Nadler, Hyperspaces : fundamentals & recent advances, PAM 216, NY: Marcel Dekker (1999).
- [6] Thomas Kubiak, Extending continuous L-Real functions, Math. Japon. 31(6) (1986) 875–887.
- [7] K. Kuratowski, Topology, Academic Press (New York) 1 (1966).
 [8] D. Molodtsov, Soft set theory final result, Comput. Math. Appl. 37 (1999) 19–31.
- [9] Debasis Sarkar, Fuzzy ideal theory, fuzzy local function and generated fuzzy topology, Fuzzy Sets and Systems 87 (1997) 117–123.
- [10] P. Smets, The degree of belief in a fuzzy event, Inform. Sci. 25 (1981) 1–19.
- [11] M. Sugeno, An introductory survey of fuzzy control, Inform. Sci. 36 (1985) 59-83.
- [12] Ismail U. Triyaki, Fuzzy sets over the poset I, Hacet. J. Math. Stat. 37(2) (2008) 143-166.
- [13] R. Vaidyanathaswamy, The localization theory in set topology, Proceedings of the Indian National Science Academy 20 (1945) 51–61.
- [14] T. Yogalakshmi, E. Roja and M. K. Uma, A view on soft fuzzy C-continuous function, J. Fuzzy Math. 21(2) (2013) 349–370.
- [15] T. Yogalakshmi, E. Roja and M. K. Uma, An application on soft L-fuzzy convergence structure, Ann. Fuzzy Math. Inform. 6(3) (2013) 727–742.
- [16] T. Yogalakshmi, E. Roja and M. K. Uma, Decomposition of soft fuzzy C-I open sets, J. Fuzzy Math. 22(1) (2014) 97–114.
- [17] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.

 $\underline{T. YOGALAKSHMI}$ (YogaPrithvi_ssp@yahoo.co.in)

Department of Mathematics, Sri Sarada College for Women (Autonomous) Salem - 16, TamilNadu, India

<u>E. ROJA</u> (ar.udhay@yahoo.co.in)

Department of Mathematics, Sri Sarada College for Women (Autonomous) Salem - 16, TamilNadu, India <u>M. K. UMA</u> (ar.udhay@yahoo.co.in) Department of Mathematics, Sri Sarada College for Women (Autonomous) Salem - 16, TamilNadu, India