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Abstract. In this paper, we investigate some properties of complete
bipolar fuzzy graphs, describe various methods of their construction. We
also define strong product and categorical product on bipolar fuzzy graphs
and give some of their properties. Moreover, we show that the strong
product, join and intersection of two complete bipolar fuzzy graphs C1

and C2 is also complete bipolar fuzzy graph. Finally we define isometry
on bipolar fuzzy graphs and show that isometry on bipolar fuzzy graphs is
an equivalence relation.

2010 AMS Classification: 05C99

Keywords: Bipolar fuzzy graph, Complete Bipolar fuzzy graphs, Isometry, Strong
product, Categorical product.

Corresponding Author: Ali Asghar Talebi (a.talebi@umz.ac.ir)

1. Introduction

Presently, science and technology is featured with complex processes and phe-
nomena for which complete information is not always available. For such cases,
mathematical models are developed to handle various types of systems containing
elements of uncertainty. A large number of these models is based on an extension of
the ordinary set theory, namely, fuzzy sets. Graph theory has numerous applications
to problems in computer science, electrical engineering, system analysis, operations
research, economics, networking routing, and transportation. In 1965, Zadeh [29]
introduced the notion of a fuzzy subset of a set as a method for representing uncer-
tainty. Since then, the theory of fuzzy sets has become a vigorous area of research
in different disciplines including medical and life sciences, management sciences, so-
cial sciences, engineering, statistics, graph theory, computer networks and automata
theory.

In 1994, Zhang [31, 32] initiated the concept of bipolar fuzzy sets as a generaliza-
tion of fuzzy sets. Bipolar fuzzy sets are an extension of fuzzy sets whose membership
degree range is [−1, 1]. In a bipolar fuzzy set, the membership degree of an element
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means that the element is irrelevant to the corresponding property, the membership
degree (0, 1] of an element indicates that the element somewhat satisfies the prop-
erty, and the membership degree [−1, 0) of an element indicates that the element
somewhat satisfies the implicit counter-property. Although bipolar fuzzy sets and
intuitionistic fuzzy sets look similar to each other, they are essentially different sets.
In many domains, it is important to be able to deal with bipolar information. It is
noted that positive information represents what is granted to be possible, while neg-
ative information represents what is considered to be impossible. This domain has
recently motivated new research in several directions. In particular, fuzzy and pos-
sibilistic formalisms for bipolar information have been proposed [9], because when
we deal with spatial information in image processing or in spatial reasoning appli-
cations, this bipolarity also occurs. For instance, when we assess the position of an
object in a space, we may have positive information expressed as a set of possible
places and negative information expressed as a set of impossible places. As another
example, let us consider the spatial relations. Human beings consider ”left” and
”right” as opposite directions. But this does not mean one of them is the negation
of the other. The semantic of ”opposite” captures a notion of symmetry rather than
a strict complementation. In particular, there may be positions which are considered
neither to the right nor to the left of some reference object, thus leaving some room
for indetermination.

In 1975, Rosenfeld [20] introduced the concept of fuzzy graphs. The fuzzy relations
between fuzzy sets were also considered by Rosenfeld and he developed the structure
of fuzzy graphs. Bhattacharya [7] gave some remarks on fuzzy graphs, and some
operations on fuzzy graphs were introduced by Mordeson and Peng [13]. Bhutani and
Rosenfeld introduced the concept of M-strong fuzzy graphs in [8] and studied some of
their properties. Talebi and Rashmanlou [23] studied properties of isomorphism and
complement on interval- valued fuzzy graphs. The first definition of bipolar fuzzy
graphs was proposed by Akram [1] . Akram and Davvaz discussed the properties of
strong intuitionistic fuzzy graphs and they introduced the concept of intuitionistic
fuzzy line graphs in [2]. Shannon and Atanassov [21] introduced the concept of
intuitionistic fuzzy graphs and investigated some of their properties in [22].We have
used standard definitions and terminologies in this paper. For the notations not
mentioned in the paper, the readers are referred to [1]-[6],[10],[14],[15]-[19],[22]-[28].

2. Preliminaries

In this section, we first review some definitions of undirected graphs that are
necessary of this paper.

Definition 2.1 ([10]). Recall that a graph is an ordered pair G∗ = (V,E), where
V is the set of vertices of G∗ and E is the set of edges of G∗ such that every edge is
corresponded to a two- element subset of V . We use the notation xy instead {x, y}.
Definition 2.2 ([10]). The complement graph G∗ of a simple graph G∗ has the
same vertices as G∗ and two vertices are adjacent in G∗ if and only if they are not
adjacency in G∗.

Definition 2.3 ([10]). The cartesian product of graphs G∗1 = (V1, E1) and
G∗2 = (V2, E2) is denoted by
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G∗ = G1 ×G2 = (V, E) that V = V1 × V2 and
E = {(x, x2), (x, y2) | x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z)(y1, z) | z ∈ V2, x1y1 ∈ E1}.
Definition 2.4 ([10]). The composition of two simple graphs G∗1 = (V1, E1) and
G∗2 = (V2, E2) is denoted by G∗1[G

∗
2] = (V1 × V2, E

0). Where
E0 = E ∪{(x1, x2), (y1, y2) | x1y1 ∈ E1, x2 6= y2} and E is defined in G∗1 ×G∗2. Note
that G∗1[G

∗
2] 6= G∗2[G

∗
1].

Definition 2.5 ([10]). The union of two simple graphs G∗1 = (V1, E1) and
G∗2 = (V2, E2) is the simple graph with the vertex set V1 ∪ V2 and edge set E1 ∪E2.
The union of G∗1 and G∗2 is denoted by G∗ = G∗1 ∪G∗2 = (V1 ∪ V2, E1 ∪ E2).

Definition 2.6 ([10]). The join of two simple graphs G∗1 = (V1, E1) and
G∗2 = (V2, E2) is the simple graph with the vertex set V1∪V2 and edge set E1∪E2∪E′,
where E′ is the set of all edges joining the nodes of V1 and V2 and assume that
V1∩V2 = φ. The join of G∗1 and G∗2 is denoted by G∗ = G∗1 +G∗2 = (V1∪V2, E1∪E′).

Definition 2.7 ([28, 29]). A fuzzy subset µ on a set X is a map µ : X → [0, 1]. A
map ν : X ×X → [0, 1] is called a fuzzy relation on X if
ν(x, y) ≤ min(µ(u), µ(y)) for all x, y ∈ X.
A fuzzy relation ν is symmetric if ν(x, y) = ν(y, x), for all x, y ∈ X.

Definition 2.8 ([11, 30]). Let X be a nonempty set. A bipolar fuzzy set B in X is
an object having the form B = {(x, µP (x), µN (x)) | x ∈ X}, where µP : X → [0, 1]
and µN : X → [−1, 0] are mappings. We use the positive membership degree µP (x)
to denote the satisfaction degree of an element x to the property corresponding to
a bipolar fuzzy set B and the negative membership degree µN (x) 6= 0 to denote the
satisfaction degree of an element x to some implicit counter-property corresponding
to a bipolar fuzzy set. B If µP (x) 6= 0 and µN (x) = 0, it is the situation that x is
regarded as having only positive satisfaction for B. If µP (x) = 0 and µN (x) 6= 0, it
is the situation that x does not satisfy the property of B but somewhat satisfies the
counter property of B. It is possible for an element x to be such that µP (x) 6= 0
and µN (x) 6= 0 when the membership function of the property overlaps that of its
counter property over some portion of x .We shall use the symbol B = (µP , µN ) for
the bipolar fuzzy set B = {(x, µP (x), µN (x)) | x ∈ X}.
Definition 2.9 ([12]). For every two bipolar fuzzy sets A = (µP

A, µN
A ) and

B = (µP
B , µN

B ) in X, we define
(A ∩B)(x) = (min(µP

A(x), µP
B(x)),max(µN

A (x), µN
B (x))), for all x ∈ X,

(A ∪B)(x) = (max(µP
A(x), µP

B(x)), min(µN
A (x), µN

B (x))), for all x ∈ X.

Definition 2.10 ([30]). Let X be a nonempty set. Then we call a mapping
A = (µP

A, µN
A ) : X × X → [−1, 1] × [−1, 1] a bipolar fuzzy relation on X such

that µP
A(x, y) ∈ [0, 1] and µN

A (x, y) ∈ [−1, 0].

Definition 2.11 ([30]). Let B = (µP
B , µN

B ) be a bipolar fuzzy set on a set X. If
A = (µP

A, µN
A ) is a bipolar fuzzy relation on X, then A = (µP

A, µN
A ) is called a bipolar

fuzzy relation on B = (µP
B , µN

B ) if µP
A(x, y) ≤ min(µP

B(x), µP
B(y)),

µN
A (x, y) ≥ max(µN

B (x), µN
B (y)), for all x, y ∈ X. A bipolar fuzzy relation A on X is

called symmetric if µP
A(x, y) = µP

A(y, x), µN
A (x, y) = µN

A (y, x) for all x, y ∈ X.
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Definition 2.12. A bipolar fuzzy graph with an underlying set V is defined to be a
pair G = (A,B) where A = (µP

A, µN
A ) is a bipolar fuzzy set in V and B = (µP

B , µN
B )

is a bipolar fuzzy set such that µP
B({x, y}) ≤ min(µP

A(x), µP
A(y)),

µN
B ({x, y}) ≥ max(µN

A (x), µN
A (y)) for all x, y ∈ V .

We call A the bipolar fuzzy vertex set of V , B the bipolar fuzzy edge set of E,
respectively. Note that B is a symmetric bipolar fuzzy relation on A. Throughout
this paper, G∗ will be a crisp graph, and G a bipolar fuzzy graph.

3. Complete bipolar fuzzy graphs

Throughout this paper, we suppose that G1 = (A1, B1) and G2 = (A2, B2) are two
bipolar fuzzy graphs with underling fuzzy graphs G∗1 = (V1, E1) and G∗2 = (V2, E2)
respectively.

Definition 3.1. A bipolar fuzzy graph G = (A, B) is called complete if
µP

B(xy) = min(µP
A(x), µP

A(y)), µN
B (xy) = max(µN

A (x), µN
A (y)), for all x, y ∈ V .

Example 3.2. Consider the set V = {x, y, z}. Let A be a bipolar fuzzy subset of
V and let B be a bipolar fuzzy subset of V × V defined by

x y z
µAP 0.3 0.4 0.5
µAN -0.3 -0.4 -0.4

xy yz xz
µBP 0.3 0.4 0.3
µBN -0.3 -0.4 -0.3

(0.3,−0.3)

(0.4,−0.4) (0.5,−0.4)

(0.3,−0.3)

y z

G

x

(0.4,−0.4)

(0.3,−0.3)

By routine computations, it is easy to see that G is a complete bipolar fuzzy graph.

Definition 3.3. Let A1 = (µP
A1

, µN
A1

) and A2 = (µP
A2

, µN
A2

) be bipolar fuzzy subsets
of V1 and V2 and let B1 = (µP

B1
, µN

B1
) and B2 = (µP

B2
, µN

B2
) be bipolar fuzzy subsets

of E1 and E2, respectively. Then, we denote the union of two bipolar fuzzy graphs
G1 and G2 of the graphs G∗1 and G∗2 by G1 ∪G2 = (A1 ∪A2, B1 ∪B2) and define as
follows
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(A)





(µP
A1
∪ µP

A2
)(x) = µP

A1
(x) if x ∈ V1 − V2,

(µP
A1
∪ µP

A2
)(x) = µP

A2
(x) if x ∈ V2 − V1,

(µP
A1
∪ µP

A2
)(x) = max(µP

A1
(x), µP

A2
(x)) if x ∈ V1 ∩ V2.

(B)





(µN
A1
∪ µN

A2
)(x) = µN

A1
(x) if x ∈ V1 − V2,

(µN
A1
∪ µN

A2
)(x) = µN

A2
(x) if x ∈ V2 − V1,

(µN
A1
∪ µN

A2
)(x) = min(µN

A1
(x), µN

A2
(x)) if x ∈ V1 ∩ V2.

(C)





(µP
B1
∪ µP

B2
)(xy) = µP

B1
(xy) if xy ∈ E1 − E2,

(µP
B1
∪ µP

B2
)(xy) = µP

B2
(xy) if xy ∈ E2 − E1,

(µP
B1
∪ µP

B2
)(xy) = max(µP

B1
(xy), µP

B2
(xy)) if xy ∈ E1 ∩ E2.

(D)





(µN
B1
∪ µN

B2
)(xy) = µN

B1
(xy) if xy ∈ E1 − E2,

(µN
B1
∪ µN

B2
)(xy) = µN

B2
(xy) if xy ∈ E2 − E1,

(µN
B1
∪ µN

B2
)(xy) = min(µN

B1
(xy), µN

B2
(xy)) if xy ∈ E1 ∩ E2.

Remark 3.4. The union of two complete bipolar fuzzy graphs is not necessary a
complete bipolar fuzzy graph.

Example 3.5. Consider the complete bipolar fuzzy graphs.

(0.6,−0.4)

(0.7,−0.4) (0.5,−0.6)

(0.6,−0.5)

a b

c

(0.5,−0.4)

(0.5,−0.5)

(0.4,−0.3) (0.8,−0.5)

(0.3,−0.4)

(0.4,−0.3)

(0.3,−0.3)

(0.3,−0.4)

b c

a

G1 is complete G2 is complete
273



A. A. Talebi et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 2, 269–289

(0.6,−0.4)

(0.7,−0.4) (0.5,−0.6)

(0.8,−0.5)

a b

c

(0.5,−0.4)

(0.5,−0.5)

G1 ∪G2 is not complete bipolar fuzzy graph

Definition 3.6. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs with
underlying set V1 and V2, respectively. Then we denote the intersection. Then we
denote the intersection G1 and G2 by G1 ∩ G2 = (A1 ∩ A2, B1 ∩ B2) and define as
following

(µP
A1
∩ µP

A2
)(x) = min(µP

A1
(x), µP

A2
(x)),

(µN
A1
∩ µN

A2
)(x) = max(µN

A1
(x), µN

A2
(x)), for all x ∈ V1 ∩ V2.

(µP
B1
∩ µP

B2
)(xy) = min(µP

B1
(xy), µP

B2
(xy)),

(µN
B1
∩ µN

B2
)(xy) = max(µN

B1
(xy), µN

B2
(xy)), for all xy ∈ V1 ∩ V2.

Proposition 3.7. Let G1 = (A1, B1) and G2 = (A2, B2) be complete bipolar fuzzy
graphs. Then G1 ∩G2 is a complete bipolar fuzzy graph.

Proof. Let x, y ∈ V1 ∩ V2. we have

(µP
B1
∩ µP

B2
)(xy) = min{µP

B1
(xy), µP

B2
(xy)}

= min{min{µP
A1

(x), µP
A1

(y)},min{µP
A1

(x), µP
A1

(y)}}
= min{min{µP

A1
(x), µP

A1
(x)},min{µP

A1
(y), µP

A1
(y)}}

= min{(µP
A1
∩ µP

A1
(x), (µP

A1
∩ µP

A1
(y)},

(µN
B1
∩ µN

B2
)(xy) = max{µN

B1
(xy), µN

B2
(xy)}

= max{max{µN
A1

(x), µN
A1

(y)}, max{µN
A2

(x), µN
A2

(y)}}
= max{max{µN

A1
(x), µN

A2
(x)}, max{µN

A1
(y), µN

A2
(y)}}

= max{(µN
A1
∩ µN

A1
)(x), (µN

A1
∩ µN

A1
)(y)}.

Hence G1 ∩G2 is a complete bipolar fuzzy graph. ¤
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Definition 3.8. Let A1 = (µP
A1

, µN
A1

) and A2 = (µP
A2

, µN
A2

) be bipolar fuzzy subsets
of V1 and V2 in which V1 ∩ V2 = φ, and let B1 = (µP

B1
, µN

B1
) and B2 = (µP

B2
, µN

B2
)

be bipolar fuzzy subsets of V1 × V2 and V2 × V1, respectively. Then, we denote the
join of two bipolar fuzzy graphs G1 and G2 by G1 + G2 = (A1 + A2, B1 + B2) and
define as follows

(µP
A1

+ µP
A2

)(x) = (µP
A1
∪ µP

A2
)(x),

(µN
A1

+ µN
A2

)(x) = (µN
A1
∩ µN

A2
)(x), for all x ∈ V1 ∪ V2.

(µP
B1

+ µP
B2

)(xy) = (µP
B1
∪ µP

B2
)(xy),

(µN
B1

+ µN
B2

)(xy) = (µN
B1
∩ µN

B2
)(xy), for all xy ∈ E1 ∪ E2.

(µP
B1

+ µP
B2

)(xy) = max(µP
A1

(x), µP
A2

(y)),

(µN
B1

+ µN
B2

)(xy) = min(µN
A1

(x), µN
A2

(y)), for all xy ∈ E′,

where E′ is the set of all edges joining the nodes of V1 and V2.

Proposition 3.9. Let G1 = (A1, B1) and G2 = (A2, B2) are complete bipolar fuzzy
graphs, with underlying set V1 and V2, respectively, in which V1 ∩ V2 = φ, then
G1 + G2 is a complete bipolar fuzzy graph.

Proof. Let xy ∈ E′. Then

(µP
B1

+ µP
B2

)(xy) = max(µP
A1

(x), µP
A2

(y)) = max((µP
A1
∪ µP

A2
)(x), (µP

A1
∪ µP

A2
)(y))

= max((µP
A1

+ µP
A2

)(x), (µP
A1

+ µP
A2

)(y)),

(µN
B1

+ µN
B2

)(xy) = min(µN
A1

(x), µN
A2

(y)) = min((µN
A1
∪ µN

A2
)(x), (µN

A1
∪ µN

A2
)(y))

= min((µN
A1

+ µN
A2

)(x), (µN
A1

+ µN
A2

)(y)).

For case xy ∈ E1 ∪ E2, it is obvious. ¤

4. Some operations on bipolar fuzzy graphs

In this section, we introduce strong product and categorical product on bipolar
fuzzy graphs and show that strong product and categorical product of two bipolar
fuzzy graphs is a bipolar fuzzy graph.

Definition 4.1. The strong product G1¤timesG2 of two bipolar fuzzy graphs G1

and G2 is denoted by (A1¤timesA2, B1¤timesB2) and is defined by

(µP
A1

¤times µP
A2

)(x1, x2) = min(µP
A1

(x1), µP
A2

(x2)),

(µN
A1

¤times µN
A2

)(x1, x2) = max(µN
A1

(x1), µN
A2

(x2)), for all (x1, x2) ∈ V1 × V2.

(µP
B1

¤times µP
B2

)(x1, x2)(y1, y2) = min(µP
A1

(x1), µP
B2

(x2y2)),

(µN
B1

¤times µN
B2

)(x1, x2)(y1, y2) = max(µN
A1

(x1), µN
B2

(x2y2)), if x1 = y1, x2y2 ∈ E2.

(µP
B1

¤times µP
B2

)(x1, x2)(y1, y2) = min(µP
B1

(x1y1), µP
A2

(x2)),

(µN
B1

¤times µN
B2

)(x1, x2)(y1, y2) = max(µN
B1

(x1y1), µN
A2

(x2)), if x2 = y2, x1y1 ∈ E1.

(µP
B1

¤times µP
B2

)(x1, x2)(y1, y2) = min(µP
B1

(x1y1), µP
B2

(x2y2)),

(µN
B1

¤times µN
B2

)(x1, x2)(y1, y2) = max(µN
B1

(x1y1), µN
B2

(x2y2)), if x1 6= y1,

x2 6= y2, x1y1 ∈ E1, x2y2 ∈ E2.
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Example 4.2. Consider two bipolar fuzzy graphs G1 and G2 defined as follows.

G1 is bipolar fuzzy graph G2 is bipolar fuzzy graph

(0.3,−0.5) (0.2,−0.5)

(0.4,−0.6) (0.3,−0.7)

(0.2,−0.3) (0.2,−0.4)

a

b

c

d

G1 G2

(0.2,−0.5) (0.3,−0.5)

(0.2,−0.5) (0.3,−0.6)

(0.2,−0.3) (0.2,−0.3)

(a, c)

(b, c)

(a, d)

(b, d)
G1¤timesG2

(0.2,−0.4)

(0.2,-0.4)

(0.2,−0.3)

(0.2,−0.3)

By a routine computation, it is easy to see that G1¤times G2 is a bipolar fuzzy
graph.

Proposition 4.3. The strong product G1¤times G2 = (A1¤times A2, B1¤times B2)
of two bipolar fuzzy graphs G1 and G2 is a bipolar fuzzy graph.
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Proof. We verify only conditions for B1¤timesB2, because conditions for A1¤timesA2

are obvious. If x1, y1 ∈ V1, x2y2 ∈ E2, then

(µP
B1

¤times µP
B2

)((x1, x2)(y1, y2)) = min(µP
A1

(x1), µP
B2

(x2y2))

≤ min(µP
A1

(x1), min(µP
A2

(x2), µP
A2

(y2)))

= min(min(µP
A1

(x1), µP
A2

(x2)), min(µP
A1

(y1), µP
A2

(y2)))

= min((µP
A1

¤times µP
A2

)(x1, x2), (µP
A1

¤times µP
A2

)(y1, y2)),

(µN
B1

¤times µN
B2

)((x1, x2)(y1, y2)) = max(µN
A1

(x1), µN
B2

(x2y2))

≥ max(µN
A1

(x1), max(µN
A2

(x2), µN
A2

(y2)))

= max(max(µN
A1

(x1), µN
A2

(x2)), max(µN
A1

(y1), µN
A2

(y2)))

= max((µN
A1

¤times µN
A2

)(x1, x2), (µN
A1

¤times µN
A2

)(y1, y2)).

If x2 = y2 ∈ V2, x1y1 ∈ E1, then

(µP
B1

¤times µP
B2

)((x1, x2)(y1, y2)) = min(µP
B1

(x1y1), µP
A2

(x2))

≤ min(min(µP
A1

(x1), µP
A1

(y1)), µP
A2

(x2))

= min(min(µP
A1

(x1), µP
A2

(x2)), min(µP
A1

(y1), µP
A2

(y2)))

= min((µP
A1

¤times µP
A2

)(x1, x2), (µP
A1

¤times µP
A2

)(y1, y2)).

(µN
B1

¤times µN
B2

)((x1, x2)(y1, y2)) = max(µN
B1

(x1y1), µN
A2

(x2))

≥ max(max(µN
A1

(x1), µN
A1

(y1)), µN
A2

(x2))

= max(max(µN
A1

(x1), µN
A2

(x2)), max(µN
A1

(y1), µN
A2

(y2)))

= max((µN
A1

¤times µN
A2

)(x1, x2), (µN
A1

¤times µN
A2

)(y1, y2)).

If x1 6= y1, x2 6= y2, x1y1 ∈ E1, x2y2 ∈ E2, then

(µP
B1

¤times µP
B2

)((x1, x2)(y1, y2)) = min(µP
B1

(x1y1), µP
B2

(x2y2))

≤ min(min(µP
A1

(x1), µP
A1

(y1)), µP
A2

(x2), µP
A2

(y2)))

= min(min(µP
A1

(x1), µP
A2

(x2)), min(µP
A1

(y1), µP
A2

(y2)))

= min((µP
A1

¤times µP
A2

)(x1, x2), (µP
A1

¤times µP
A2

)(y1, y2)).

(µN
B1

¤times µN
B2

)((x1, x2)(y1, y2)) = max(µN
B1

(x1y1), µN
B2

(x2y2))

≥ max(max(µN
A1

(x1), µN
A1

(y1)), max(µN
A2

(x2), µN
A2

(y2)))

= max(max(µN
A1

(x1), µN
A2

(x2)), max(µN
A1

(y1), µN
A2

(y2)))

= max((µN
A1

¤times µN
A2

)(x1, x2), (µN
A1

¤times µN
A2

)(y1, y2)).

This complete the proof. ¤

Proposition 4.4. If G1 and G2 are complete bipolar fuzzy graphs, then G1¤timesG2

is a complete bipolar fuzzy graph.
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Proof. If x1 ∈ V1, then for every x2, y2 ∈ V2, we have

(µP
B1

¤times µP
B2

)((x, x2)(x, y2)) = min(µP
A1

(x), µP
B2

(x2y2))

= min(µP
A1

(x), min(µP
A2

(x2), µP
A2

(y2)))

= min(min(µP
A1

(x), µP
A2

(x2)),min(µP
A1

(x), µP
A2

(y2)))

= min((µP
A1

¤times µP
A2

)(x, x2), (µP
A1

¤times µP
A2

)(x, y2)),

(µN
B1

¤times (µN
B1
× µN

B2
)(x, x2)(x, y2)) = max(µN

A1
(x), µN

B2
(x2y2))

= max(µN
A1

(x), max(µN
A2

(x2), µN
A2

(y2)))

= max(max(µN
A1

(x), µN
A2

(x2)), max(µN
A1

(x), µN
A2

(y2)))

= max((µN
A1

¤times µN
A2

)(x, x2), (µN
A1

¤times µN
A2

)(x, y2)).
If z ∈ V2, then for every x1, y1 ∈ V1, we have

(µP
B1

¤times µP
B2

)((x1, z)(y1, z)) = min(µP
B1

(x1y1), µP
A2

(z))

= min(min(µP
A1

(x1), µP
A1

(y1)), µP
A2

(z))

= min(min(µP
A1

(x), µP
A2

(z)), min(µP
A1

(y1), µP
A2

(z)))

= min((µP
A1

¤times µP
A2

)(x, z), (µP
A1

¤times µP
A2

)(y1, z)),

(µN
B1

¤times µN
B2

)((x1, z)(y1, z)) = max(µN
B1

(x1y1), µN
A2

(z))

= max(max(µN
A1

(x1), µN
A1

(y1)), µN
A2

(z))

= max(max(µN
A1

(x1), µN
A2

(z)), max(µN
A1

(y1), µN
A2

(z)))

= max((µN
A1

¤times µN
A2

)(x1, z), (µN
A1

¤times µN
A2

)(y1, z)).
If xi, yi ∈ Vi (i = 12) are distinct, then we have

(µP
B1

¤times µP
B2

)(x1, x2)(y1, y2)) = min(µP
B1

(x1y1), µP
B2

(x2y2))

= min(min(µP
A1

(x1), µP
A1

(y1)),min(µP
A2

(x2), µP
A2

(y2)))

= min(min(µP
A1

(x1), µP
A2

(x2)),min(µP
A1

(y1), µP
A2

(y2)))

= min(µP
A1

¤times µP
A2

)(x1, x2), µP
A1

¤times µP
A2

)(y1, y2)).

(µN
B1

¤times µN
B2

)((x1, x2)(y1, y2)) = min(µN
B1

(x1y1), µN
B2

(x2y2))

= min(min(µN
A1

(x1), µN
A2

(y1)), min(µN
A2

(x2), µN
A2

(y2)))

= min(min(µN
A1

(x1), µN
A2

(x2)), min(µN
A1

(y1), µN
A2

(y2)))

= min(µN
A1

¤times µN
A2

)(x1, x2), µN
A1

¤times µN
A2

)(y1, y2)).
This complete the proof. ¤

Example 4.5. Let V1 = {a, b} and V2 = {c, d}. Consider two complete bipolar
fuzzy graphs G1 = (A1, B1) and G2 = (A2, B2) defined by

C1 is bipolar fuzzy graph C2 is bipolar fuzzy graph
a b

µP
A1

0.4 0.3
µN

A1
-0.4 -0.3

ab
µP

B1
0.3

µN
B1

-0.3
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c d
µP

A2
0.4 0.2

µN
A2

-0.5 -0.4

cd
µP

B2
0.2

µN
B2

-0.4

(0.4,−0.4) (0.4,−0.5)

(0.3,−0.3) (0.2,−0.4)

a

b

c

d

G1 is complete bipolar fuzzy graph G2 is complete bipolar fuzzy graph

(04,−0.4) (0.2− 0.4)

(0.3,−0.3) (0.2,−0.3)

(0.2,−0.3) (0.2,−0.3)

(a, c)

(b, c)

(a, d)

(b, d)

(0.2,−0.4)

(0.2,-0.4)

(0.2,−0.3)

(0.2,−0.3)

G1¤times G2 is complete bipolar fuzzy graph

Definition 4.6. Let G1 = (A1, B1) and G2 = (A2, B2) be two bipolar fuzzy graphs.
The categorical product G1 ×G2 is defined by:
(µP

A1
× µP

A2
)(x1, x2) = min(µP

A1
(x1), µP

A2
(x2)),

(µN
A1
× µN

A2
)(x1, x2) = max(µN

A1
(x1), µN

A2
(x2)), for all (x1, x2) ∈ V1 × V2.
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(µP
B1
× µP

B2
)((x1, x2)(y1, y2)) =

{
min(µP

B1
(x1y1), µP

B2
(x2y2)) ifx1 6= y1, x2 6= y2

0 otherwise

(µN
B1
× µN

B2
)((x1, x2)(y1, y2)) =

{
max(µN

B1
(x1y1), µN

B2
(x2y2)) ifx1 6= y1, x2 6= y2

0 otherwise

Example 4.7. Let G∗1 = (V1, E1) and G∗2 = (V2, E2) be graphs such that
V1 = {a, b}, V2 = {c, d}, E1 = {ab} and E2 = {cd}. Consider two bipolar fuzzy
graphs G1 = (A1, B1) and G2 = (A2, B2), and G1 ×G2 as follows.

(0.2,−0.4) (0.1,−0.4)

(0.3,−0.5) (0.2,−0.6)

a

b

c

d

(0.1,−0.4) (0.2,−0.4)

(0.2,−0.5)(0.1,−0.4)

(a, c) (a, d)

(b, c) (b, d)

(0.1,−0.2) (0.1,−0.3)

(0.1,−0.2)

(0.1,−0.2)

G1 is bipolar G2 is bipolar G1 ×G2 is bipolar
By a routine computation, it is easy to see that G1 ×G2 is a bipolar fuzzy graph.

Proposition 4.8. The categorical product G1 × G2 = (A1 × A2, B1 × B2) of two
bipolar fuzzy graphs G1 and G2 is a bipolar fuzzy graph.

Proof. Similarly as in the previous proof we verify only conditions for B1 ×B2. Let
x1 6= y1, x1 6= y2, then we have

(µP
B1
× µP

B2
)(x1, x2)(y1, y2)) = min(µP

B1
(x1y1), µP

B2
(x2y2))

≤ min(min(µP
A1

(x1), µP
A1

(y1)), min(µP
A2

(x2), µP
A2

(y2)))

= min(min(µP
A1

(x1), µP
A2

(x2)), min(µP
A1

(y1), µP
A2

(y2)))

= min((µP
A1
× µP

A2
)(x1, x2), (µP

A1
× µP

A2
)(y1, y2)).

(µN
B1
× µN

B2
)((x1, x2)(y1, y2)) = max(µN

B1
(x1y1), µN

B2
(x2y2))

≥ max(max(µN
A1

(x1), µN
A1

(y1)), max(µN
A2

(x2), µN
A2

(y2)))

= max(max(µN
A1

(x1), µN
A2

(x2)), max(µN
A1

(y1), µN
A2

(y2)))

= max((µN
A1
× µN

A2
)(x1, x2), µN

A1
× µN

A2
)(y1, y2)).

¤

Definition 4.9. Let G1 and G2 be bipolar fuzzy graphs. A homomorphism
f : G1 → G2 is a mapping f : V1 → V2 which satisfies the following conditions:

(a) µP
A1

(x) ≤ µP
A2

(f(x)), µN
A1

(x) ≥ µN
A2

(f(x)), for all x ∈ V1.
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(b) µP
B1

(xy) ≤ µP
B2

(f(x)f(y)), µN
B1

(xy) ≥ µN
B2

(f(x)f(y)), for all xy ∈ E1.

Definition 4.10. Let G1 and G2 be bipolar fuzzy graphs. An isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(c) µP
A1

(x) = µP
A2

(f(x)), µN
A1

(x) = µN
A2

(f(x)), for all xy ∈ E1.
(d) µP

B1
(xy) = µP

B2
(f(x)f(y)), µN

B1
(xy) = µN

B2
(f(x)f(y)), for all xy ∈ E1.

Definition 4.11. Let G1 and G2 be bipolar fuzzy graphs. Then a weak isomorphism
f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(e) f is a homomorphism,
(f) µP

A1
(x) = µP

A2
(f(x)), µN

A1
(x) = µN

A2
(f(x)), for all x ∈ V1.

Definition 4.12. Let G1 and G2 be bipolar fuzzy graphs. Then a co-weak isomor-
phism f : G1 → G2 is a bijective mapping f : V1 → V2 which satisfies the following
conditions:

(g) f is a homomorphism,
(h) µP

B1
(xy) = µP

B2
(f(x)f(y)), µN

B1
(xy) = µN

B2
(f(x)f(y)), for all x, y ∈ V1.

Thus a co-weak isomorphism preserves the weights of the arcs but not necessarily
the weights of the nodes.

Definition 4.13. The complement of a bipolar fuzzy graph G = (A,B) of
G∗ = (V, E) is a bipolar fuzzy graph G = (A, B) of (V, V ×V ), where A = (µP

A, µN
A )

and B = (µP
B , µN

B ) are defined by

(i) V = V ,
(ii) µP

A(x) = µP
A(x), µN

A (x) = µN
A (x), for all x ∈ V .

(iii) µP
B(xy) = min(µP

A(x), µP
A(y)) − µP

B(xy), µN
B (xy) = max(µN

A (x), µN
A (y)) −

µN
B (xy).

Definition 4.14. A bipolar fuzzy graph G is called self- complementary if G ∼= G.

Example 4.15. Consider a graph G∗ = (V, E) such that V = {a, b, c}, E = {ab, bc},
and a bipolar fuzzy graph G.
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(0.2,−0.3) (0.3,−0.2)

(0.4,−0.3)

c b

G

a

(0.1,−0.2)

(0.3,−0.2)

(0.4,−0.3)

(0.2,−0.3) (0.3,−0.2)

a

c b

G

(0.2,−0.3)

(0.1, 0.)
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(0.2,−0.3) (0.3,−0.2)

(0.4,−0.3)

c b

G

a

(0.1,−0.2)

(0.3,−0.2)

Clearly, G ∼= G. Hence G is self- complementary.

Proposition 4.16. Let G1 and G2 be bipolar fuzzy graphs. If G1
∼= G2 then G ∼= G2.

Proof. Assume that G1 and G2 are isomorphic, there exists a bijective map
f : V1 → V2 satisfying
µP

A1
(x) = µP

A2
(f(x)), µN

A1
(x) = µP

A2
(f(x)) for all x ∈ V1,

µP
B1

(xy) = µP
B2

(f(x)f(y)), µN
B1

(xy) = µN
B2

(f(x)f(y)) for all xy ∈ E1.
By definition of complement, if µP

B1
(xy) > 0, then µP

B2
(f(x)f(y)) > 0 and we have

µP
B1

(xy) = µP
B2

(f(x)f(y)) = 0.
If µP

B1
(xy) = 0 then µP

B2
(f(x)f(y)) = 0, and we have

µP
B1

(xy) = min(µP
A1

(x), µP
A1

(y)) = min(µP
A2

(f(x)), µP
A2

(f(y))) = µP
B2

(f(x)f(y)).
Similarly, we can show that µN

B1
(xy) = µN

B2
(f(x)f(y)).

Hence G1
∼= G2. ¤

Definition 4.17. A bipolar fuzzy graph G = (A,B) is called strong if
µP

B(xy) = min(µP
A(x), µP

A(y)), µN
B (xy) = max(µN

A (x), µN
A (y)), for all xy ∈ E.

Remark 4.18. If G = (A,B) is a strong bipolar fuzzy graph of G∗ = (V, E), then
from Definition 4.14, it follows that G is given by the bipolar fuzzy graph G = (A,B)
on G∗ = (V, E) where A = A and

µP
B(xy) = min(µP

A(x), µP
A(y)), µN

B (xy) = min(µN
A (x), µN

A (y)) for all xy ∈ E.

Thus µP
B = µP

B and µN
B = µN

B on V where B = (µP
B , µN

B ) is the strongest bipolar
fuzzy relation on A. For any bipolar fuzzy graph G, G is a strong bipolar fuzzy
graph and G ⊂ G.

Theorem 4.19. G = G if and only if G is strong bipolar fuzzy graph.
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Proof. If G is strong bipolar fuzzy graph then, by above Remark it is obvious that
G = G. Conversely, suppose that G = G. Since for every bipolar fuzzy graph G, G

is a strong bipolar fuzzy graph, G = G implies G is strong bipolar fuzzy graph. ¤

Corollary 4.20. By the Theorem 4.19, if G is strong bipolar fuzzy graph, then
G is self-complementary, while the Example 4.15 shows that the converse of this
statement is not true.

5. Isometric bipolar fuzzy graphs

Definition 5.1. Let G1 = (A1, B1) and G2 = (A2, B2) be bipolar fuzzy graphs
. Then G2 is said to be isometric from G1 if for each v ∈ V1 there is a bijective
gv : V1 → V2 such that δP

1 (u, v) = δP
2 (gv(u), gv(v)), δN

1 (u, v) = δN
2 (gv(u), gv(v))

for every u ∈ V1, in which δP
i (i = 1, 2) and δN

i (i = 1, 2) are µP
B1

distance and

µN
B1

distance, respectively. In addition we define δP (u, v) = ∧
n∑

i=1

1
µP

B(ui−1ui)
and

δN (u, v) = ∨
n∑

i=1

1
µN

B (ui−1ui)
, where u = u0, u1, · · · , ui, · · · , un = v is a path from u

to v.

Proposition 5.2. Let G1 = (A1, B1) and G2 = (A2, B2) be two bipolar fuzzy graphs.
Then G1 is isomorphic to G2 implies G1 is isometric to G2.

Proof. As G1 is isomorphic to G2, there is a bijection g : V1 → V2 such that
µP

A1
(x) = µP

A2
(g(x)), µN

A1
(x) = µN

A2
(g(x)) for all x ∈ V1.

µP
B1

(xy) = µP
B2

(g(x)g(y)), µN
B1

(xy) = µN
B2

(g(x)g(y)) for all x, y ∈ V1.
For each u ∈ V1, we have

δP
1 (u, v) = ∧

{ n∑

i=1

1
µP

B1
(ui−1ui)

}
= ∧

{ n∑

i=1

1
µP

B2
(g(ui−1)g(ui))

}
= δP

2 (g(u), g(v)),

δN
1 (u, v) = ∨

{ n∑

i=1

1
µN

B1
(ui−1ui)

}
= ∨

{ n∑

i=1

1
µN

B2
(g(ui−1)g(ui))

}
= δN

2 (g(u), g(v)).

So, G2 is isometric from G1. ¤

Note 5.3. (i) The above result is true even G1 is co-weak isomorphic to G2 also.
(ii) we know that, G1 is isomorphic to G1 implies G1 is isomorphic to G2. But
this is not so in the case of isometry. In the following example, we show that G2 is
isometric from G1 but G2 is not isometric from G1.

Example 5.4. Consider two bipolar fuzzy graphs G1 and G2 of G∗1 and G∗2, respec-
tively.
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(
1
2
,−1)

(
1
5
,−1)

d

(
1
9
,−1

2
)

(
1
2
,−1)(1,−1)

(
1
9
,−1

2
)

ab

c

(
1
4
,−1

3
)

(
1
8
,−1

3
)

G1

(1,−1) (1,−1)

v

(
1
9
,−1

2
)

(1,−1)(1,−1)

(
1
9
,−1

2
)

wx

u

(
1
4
,−1

3
)

(
1
8
,−1

3
)

(
1
13

,−1
5
)

G2
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It is not difficult to verify that the flowing holds.
δP
1 (a, b) = 8, δP

1 (a, c) = 12, δP
1 (a, d) = 9, δP

1 (b, c) = 4, δP
1 (b, d) = 9

δN
1 (a, b) = −3, δN

1 (a, c) = −6, δN
1 (a, d) = −2, δN

1 (b, c) = −3, δN
1 (b, d) = −2

δP
1 (c, d) = 13, δN

1 (c, d) = −5. Likewise in bipolar fuzzy graph G2 we have
δP
2 (u, v) = 8, δP

2 (u,w) = 12, δP
2 (u, x) = 9, δP

2 (v, w) = 4, δP
2 (v, x) = 9

δN
2 (u, v) = −3, δN

2 (u,w) = −6, δN
2 (u, x) = −2, δN

2 (u,w) = −3, δN
2 (v, x) = −2

δP
1 (w, x) = 13, δN

1 (w, x) = −5.
Defining Q : V1 → V2 such that Q(a) = u, Q = (b) = v, Q = (c) = w, Q = (d) = x.
Clearly Q is a bijective that preserve the distance between every pair of vertices in
G1 and G2. Hence G2 is isometric from G1.
Now we consider G1 and G2 of two bipolar fuzzy graph G1 and G2.

(
1
2
,−1) (

1
5
,−1)

d

(
4
45

,−1
2
)

(1,−1)(
1
2
,−1)

(
1
2
,−1)

ba

c

(
4
45

,−1
2
)

(
1
5
,−1)

(
3
8
,−2

3
)

G1

(
1
4
,−2

3
)
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(1,−1) (1,−1)

v

(
8
9
,−1

2
)

(1,−1)(1,−1)

(
8
9
,−1

2
)

wx

u

(
3
4
,−2

3
)

(
7
8
,−2

3
)

(
12
13

,−4
5
)

G2

(1,−1)

In G1, δP
1 (a, b) = 2.6, δP

1 (a, c) = 2, δP
1 (a, d) = 7, δP

1 (b, c) = 4,
δN
1 (a, b) = −1.5, δN

1 (a, c) = −1, δN
1 (a, d) = −2, δN

1 (b, c) = −1.5,
δP
1 (b, d) = 9, δN

1 (b, d) = −2.5, δP
1 (c, d) = 5, δN

1 (c, d) = −1.
Similarly, in G2 we have
δP
2 (u, v) = 1.14, δP

2 (u,w) = 1, δP
2 (u, x) = 1.12, δP

2 (v, w) = 1.33,
δN
2 (u, v) = −1.5, δN

2 (u,w) = −1, δN
2 (u, x) = −2, δN

2 (u,w) = −1.5,
δP
2 (v, x) = 1.12, δN

2 (v, x) = −2, δP
2 (w, x) = 1.08, δN

2 (w, x) = −1.25.
So there is not a bijective between G1 and G2 which preserving distance. Hence G2

is not isometric from G1.

Proposition 5.5. Isometry on bipolar fuzzy graphs is an equivalence relation.

Proof. Let Gi = (Ai, Bi), i = 1, 2, 3 be the bipolar fuzzy graphs with underlying
sets Vi. Considering the identity map i : V1 → V1, G1 is isometric to G1. Therefore
isometry is reflexive.
To prove the symmetric, assume that G1 is isometric to G2. Hence G2 is isometric
from G1 and G2 is isometric from G2. By rearranging, G2 is isometric to G1. To
prove the transitivity, let G1 be isometric to G2 and G2 be isometric to G3, i.e. G2

is isometric from G1 and G3 is isometric from G2. Then, for each v ∈ V1, there
exists a bijective map gv : V1 → V2 such that δP

1 (v, u) = δP
2 (gv(v), gv(u)),

δN
1 (v, u) = δN

2 (gv(v), gv(u)) for all u ∈ V1.
Suppose that gv(v) = v′. Similarly, for each v′ ∈ V2, there exists a bijective map
hv′ : V2 → V3 such that δP

2 (v′, u′) = δP
3 (hv′(v′), hv′(u′)),

δN
2 (v′, u′) = δN

3 (hv′(v′), hv′(u′)) for all u′ ∈ V2. Now if v ∈ V1,
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δP
1 (v, u) = δP

2 (gv(v), gv(u)) = δP
2 (v′, u′) = δP

3 (hv′(v′), hv′(u′))
= δP

3 (hv′(gv), hv′(gv(u))) = δP
3 (hv′ ◦ gv(v), hv′ ◦ gv(u)), for all u ∈ V1.

δN
1 (v, u) = δN

2 (gv(v), gv(u)) = δN
3 (hv′ ◦ gv(v), hv′ ◦ gv(u)), for all u ∈ V1.

Hence G3 is isometric from G1, using the composite map hv′ ◦ gv : V1 → V3.
Thus isometry on bipolar fuzzy graphs is an equivalence relation. ¤

6. Conclusions

Graph theory is an extremely useful tool in solving the combinatorial problems
in different areas including geometry, algebra, number theory, topology, operations
research, optimization and computer science. The bipolar fuzzy sets constitute a
generalization of Zadeh’s fuzzy set theory. The bipolar fuzzy models give more
precision, flexibility and compatibility to the systems as compared to the classical
and fuzzy models. In this paper, we investigated some properties of complete bipolar
fuzzy graphs, describe various methods of their construction. We also defined strong
product and categorical product on bipolar fuzzy graphs and gave some of their
properties. Finally we defined isometry on bipolar fuzzy graphs and show that
isometry on bipolar fuzzy graphs is an equivalence relation.
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