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1. Introduction

Theory of fuzzy sets was introduced by Zadeh [19] in 1965. After the pioneering
work of Zadeh, there has been a great effort to obtain fuzzy analogues of classical
theories. Among other fields, a progressive developments are made in the field of
fuzzy metric spaces and fuzzy normed linear spaces [3, 4, 6, 7, 8, 9, 11]. The notion
of intuitionistic fuzzy set has been introduced by Atanassov [1] as a generalized fuzzy
set. J.H.Park [14], who first introduced the idea of intuitionistic fuzzy metric space
and studied some basic properties. On the other hand, Saadati & Park [15] have an
important contribution on the intuitionistic fuzzy topological spaces. They have also
introduced the notion of intuitionistic fuzzy normed linear space and studied some
basic properties in such spaces. There have been a good amount of work done in
intuitionistic fuzzy set such as T.K. Mandal & S.K.Samanta [12, 13], N. Thillaigovin-
dan et al.[17]. Recently Vijayabalaji et al.[18] introduced a concept of intuitionistic
fuzzy n-normed linear space and developed some results. T.K.Samanta et al. [16]
considered a fuzzy normed linear space which was introduced by Bag & Samanta
[2, 5] and defined an intuitionistic fuzzy normed linear space in general setting (
taking ∗ and ♦ as t-norm and t-co-norm respectively ). They mainly studied differ-
ent results on finite dimensional intuitionistic fuzzy normed linear space. But their
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results depend on the decomposition theorem of the intuitionistic fuzzy norm into
a family of pairs of crisp norms for which they have taken the additional conditions
on t-norm and t-conorm as a ∗ a = a and a♦a = a ∀a ∈ [0 , 1] which resulted
∗=min and a♦a=max. So effectively the generality of the t-norm and t-conorm are
lost. On the other hand, because of the relation M(x, t) + N(x, t) ≤ 1, some of the
conditions involving the functions M(x, t) and N(x, t) in the definition considered
by T.K.Samanta et al.[16] led to such a situation that in some definitions and results
related to convergence and Cauchyness of a sequence statements involving one of the
functions M and N follows from the other.

To avoid these triviality, in this paper, we have modified the definition of intu-
itionistic fuzzy normed linear space introduced by R. Saadati et al. [15] and study
finite dimensional intuitionistic fuzzy normed linear space. In our definition both
the conditions viz. (1) a ∗ a = a, a♦a = a and (2) M(x, t)+N(x, t) ≤ 1 are waived.
In our present approach we have avoided the decomposition technique which is very
much dependent on the restricted t-norm viz. min and t-conorm viz. max.

The organization of the paper is as in the following:
Section 1 comprises some preliminary results. In Section 2, we introduce a definition
of intuitionistic fuzzy normed linear space. Some basic results on completeness and
compactness are established in finite dimensional intuitionistic fuzzy normed linear
spaces in Section 3.

2. Preliminaries

Definition 2.1 ([10]). A binary operation ∗ : [0 , 1]× [0 , 1] → [0 , 1] is a t-norm
if it satisfies the following conditions:

(1) ∗ is associative and commutative;
(2) a ∗ 1 = a ∀a ∈ [0 , 1];
(3) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0 , 1].
If ∗ is continuous then it is called continuous t-norm. Following are exam-

ples of some t-norms that are frequently used as fuzzy intersections defined for all
a, b ∈ [0, 1].
(i) Standard intersection: a ∗ b = min(a, b).
(ii) Algebraic product: a ∗ b = ab.
(iii) Bounded difference: a ∗ b = max(0, a + b− 1).
(iv) Drastic intersection:

a ∗ b =





a for b = 1
b for a = 1
0 for otherwise.

The relations among these t-norms are
a ∗ b(Drastic)≤ max(0, a + b− 1) ≤ ab ≤ min(a, b).

Definition 2.2 ([10]). A binary operation ♦ : [0 , 1]×[0 , 1] → [0 , 1] is a t-co-norm
if it satisfies the following conditions:

(1) ♦ is associative and commutative;
(2) a♦0 = a ∀a ∈ [0 , 1];
(3) a♦b ≤ c♦d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0 , 1].
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If ♦ is continuous then it is called continuous t-co-norm. Following are some
examples of t-co-norms.
(i) Standard union: a♦b = max(a, b).
(ii) Algebraic sum: a♦b = a + b− ab.
(iii) Bounded sum : a♦b = min(1 , a + b).
(iv) Drastic union:

a♦b =





a for b = 0
b for a = 0
1 for otherwise.

Relations among these t-co-norms are a♦b (Drastic)≥ min(1 , a + b) ≥ a + b −
ab ≥ max(a, b)

Definition 2.3 ([5]). Let U be a linear space over the field F (C or R). A fuzzy
subset N of U ×R (R- set of real numbers) is called a fuzzy norm on U if
(N1) ∀t ∈ R with t ≤ 0, N(x , t) = 0;
(N2) (∀t ∈ R, t > 0, N(x , t) = 1) iff x = 0;
(N3) ∀t ∈ R, t > 0, N(cx , t) = N(x , t

|c| ) if c 6= 0;
(N4) ∀s, t ∈ R; x, u ∈ U ;
N(x + u , s + t) ≥ N(x , s) ∗N(u , t);
(N5) N(x , .) is a non-decreasing function of R and lim

t→∞
N(x , t) = 1.

The pair (U , N) will be referred to as a fuzzy normed linear space. In [2], particular
t-norm ”min” is taken for ∗.
Definition 2.4 ([15]). The 5-tuple (V, µ, ν, ∗,♦) is said to be an intuitionistic fuzzy
normed linear space if V is a vector space, ∗ is continuous t-norm, ♦ is a continuous
t-conorm and µ, ν are fuzzy sets on V × (0 , ∞) satisfying the following conditions
for every x, y ∈ V and s, t > 0;

(a) µ(x, t) + ν(x, t) ≤ 1;
(b) µ(x , t) > 0;
(c) µ(x , t) = 1 if and only if x = 0;
(d) µ(cx , t) = µ(x , t

|c| ) if c 6= 0;
(e) µ(x + u , s + t) ≥ µ(x , s) ∗ µ(u , t);
(f) µ : (0,∞) → [0, 1] is continuous;
(g) lim

t→∞
µ(x , t) = 1 and lim

t→0
µ(x , t) = 0;

(h) ν(x , t) < 1;
(i) ν(x , t) = 0 iff x = 0;
(j) ν(cx , t) = ν(x , t

|c| ) if c 6= 0;
(k) ν(x + u , s + t) ≤ ν(x , s)♦ν(u , t);
(l) ν : (0,∞) → [0, 1] is continuous;
(m) lim

t→∞
ν(x , t) = 0 and lim

t→0
ν(x , t) = 1.

In this case (µ , ν) is called an intuitionistic fuzzy norm.

T.K.Samanta et al. [16] consider the above definition by omitting the conditions
(f) and (l) as in the following.
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Definition 2.5 ([16]). Let ∗ be a continuous t-norm, ♦ be a continuous t-conorm
and V be a linear space over the field F(R/C). An intuitionistic fuzzy norm ( IFN )
on V is an object of the form A = {((x , t), N(x , t), M(x , t)) : (x , t) ∈ V ×R+}
where N,M are fuzzy sets on V ×R+, N denotes the degree of membership and M
denotes the degree of non-membership

(i) N(x, t) + M(x, t) ≤ 1 ∀(x , t) ∈ V ×R+;
(ii) N(x , t) > 0;
(iii) N(x , t) = 1 if and only if x = 0;
(iv) N(cx , t) = N(x , t

|c| ) if c 6= 0, c ∈ F;
(v) ∀s, t ∈ R+; x, u ∈ V ;
N(x + u , s + t) ≥ N(x , s) ∗N(u , t);
(vi) N(x , .) is a non-decreasing function of R+ and lim

t→∞
N(x , t) = 1;

(vii) M(x , t) > 0;
(viii) (∀t ∈ R, t > 0,M(x , t) = 0) iff x = 0;
(ix) M(cx , t) = M(x , t

|c| ) if c 6= 0, c ∈ F;
(x) ∀s, t ∈ R+; x, u ∈ V ;
M(x + u , s + t) ≤ M(x , s)♦M(u , t);
(xi) M(x , .) is a non-increasing function of R+ and lim

t→∞
M(x , t) = 0.

Then we say (V , A) is an intuitionistic fuzzy normed linear space.

Definition 2.6 ([16]). A sequence {xn} in an IFNLS (V , A) is said to converge to
x ∈ V if given r > 0, t > 0, 0 < r < 1 there exists a positive integer n0 such that
N(xn − x , t) > 1− r and M(xn − x , t) < r ∀n ≥ n0.

Theorem 2.7 ([16]). In an IFNLS (V , A), a sequence {xn} converges to x iff
lim

n→∞
N(xn − x , t) = 1 and lim

n→∞
M(xn − x , t) = 0.

Theorem 2.8 ([16]). If a sequence {xn} in an IFNLS (V , A), is convergent, its
limit is unique.

Definition 2.9 ([16]). A sequence {xn} in an IFNLS (V , A) is said to be a Cauchy
sequence if lim

n→∞
N(xn+p − xn , t) = 1 and lim

n→∞
M(xn+p − xn , t) = 0 uniformly

on p = 1, 2, ...., t > 0.

Definition 2.10 ([16]). Let (V , A) be an IFNLS. A subset P of V is said to be
closed if for any sequence {xn} in P converges to x ∈ P.

Definition 2.11 ([16]). Let (V , A) be an IFNLS and P ⊂ V. Then the closure of
P denoted by P̄ , is defined by P̄ = {x ∈ V : ∃ a sequence {xn} in P converging to
x}.
Definition 2.12 ([16] ). Let (V , A) be an IFNLS. A subset P of V is said to
be compact if any sequence {xn} in P has a subsequence which converges to some
element in P.

3. Intuitionistic fuzzy normed linear spaces

Following is our modified definition of intuitionistic fuzzy normed linear space.
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Definition 3.1. Let ∗ be a t-norm, ♦ be a t-conorm and V be a linear space over
the field F(R or C). An intuitionistic fuzzy norm ( IFN ) on V is an object of the
form
A = {((x , t), N(x , t), M(x , t)) : (x , t) ∈ V × R} where N,M are fuzzy
sets on V ×R, N denotes the degree of membership and M denotes the degree of
non-membership (x , t) ∈ V ×R satisfying the following conditions:

(IFN1) ∀t ∈ R with t ≤ 0, N(x , t) = 0;
(IFN2) (∀t ∈ R, t > 0, N(x , t) = 1) iff x = 0;
(IFN3) ∀t ∈ R, t > 0, N(cx , t) = N(x , t

|c| ) if c 6= 0;
(IFN4) ∀s, t ∈ R; x, u ∈ U ;
N(x + u , s + t) ≥ N(x , s) ∗N(u , t);
(IFN5) lim

t→∞
N(x , t) = 1.

(IFN6) ∀t ∈ R with t ≤ 0, M(x , t) = 1;
(IFN7) (∀t ∈ R, t > 0,M(x , t) = 0) iff x = 0;
(IFN8) ∀t ∈ R, t > 0, M(cx , t) = M(x , t

|c| ) if c 6= 0;
(IFN9) ∀s, t ∈ R; x, u ∈ V ;
M(x + u , s + t) ≤ M(x , s)♦M(u , t);
(IFN10) lim

t→∞
M(x , t) = 0.

Then we say (V , A) is an intuitionistic fuzzy normed linear space.

Remark 3.2. From (IFN2) and (IFN4), it follows that N(x , .) is a non-decreasing
function of R. From (IFN7) and (IFN9), it follows that M(x , .) is a non-increasing
function of R.

Example 3.3. Let (V , || ||) be a normed linear space. Define two fuzzy subsets N
and M :V ×R → [0 , 1] by

N(x , t) =
{ t

t+||x|| for t > ||x||
0 t ≤ ||x||

M(x , t) =

{
||x||
||x||+t for t > ||x||

1 for t ≤ ||x||
Take a ∗ b = ab and a♦b = min{1, a + b}. Then (V , A) is an intuitionistic fuzzy
normed linear space.

Proof. All the conditions except (IFN4) and (IFN9) are easily verified.
First we verify (IFN4); i.e., N(x + y , s + t) ≥ N(x , s) ∗N(y , t).
Let x, y ∈ V and s, t ∈ R.
Suppose s, t > 0 (Since in other cases (IFN4) is obvious).
We have,

s+t
s+t+||x+y|| − st

(s+||x||)(t+||y||) ≥ s+t
s+t+||x||+||y|| − st

(s+||x||)(t+||y||)
= s+t

s+t+||x||+||y|| − st
st+t||x||+s||y||+||x||||y|| = s2||y||+(s+t)||x||||y||+t2||x||

A ≥ 0.

where A = (s + t + ||x||+ ||y||)(st + t||x||+ s||y||+ ||x||||y||).
So N(x + u , s + t) ≥ N(x , s) ∗N(u , t).
Next we verify M(x + u , s + t) ≤ M(x , s)♦M(u , t).
We only consider the case when s > ||x|| and t > ||y|| (since in other cases (IFN9)
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is obvious).
We have, M(x , s)♦M(y , t)−M(x + y , s + t) = ||x||

||x||+s + ||y||
||y||+s − ||x+y||

||x+y||+s+t

= [{||x||(t + ||y||) + ||y||(s + ||x||)}{||x + y||+ s + t} − ||x + y||(s + ||x||)(t + ||y||)]/A
where A = (||x||+ s)(t + ||y||){||x + y||+ s + t}.
= [(s+ t)||x||(t+ ||y||)+(s+ t)||y||(s+ ||x||)+ ||x||||x+y||(t+ ||y||)+ ||x+y||||y||(s+
||x||)− ||x + y||(s + ||x||)(t + ||y||)]/A
= [(s + t)||x||(t + ||y||) + (s + t)||y||(s + ||x||) + ||x||||x + y||(t + ||y||) + ||x + y||(s +
||x||){||y|| − t− ||y||}]/A.
= [(s+t)||x||(t+ ||y||)+(s+t)||y||(s+ ||x||)+ ||x+y||(t||x||+ ||x||||y||−st−t||x||)]/A.
= [(s + t)||x||(t + ||y||) + (s + t)||y||(s + ||x||) + ||x||||y||||x + y|| − st||x + y||]/A.
≥ [(s + t)||x||(t + ||y||) + (s + t)||y||(s + ||x||) + ||x||||y||||x + y|| − st||x|| − st||y||]/A.
i.e. M(x , s)♦M(y , t)−M(x + y , s + t) ≥ 0.
i.e. M(x , s)♦M(y , t) ≥ M(x + y , s + t). ¤

Note 3.4. In the context of modified Definition 3.1, we consider the same Definition
2.6, Definition 2.9, Definition 2.10, Definition 2.11, Definition 2.12 and it is easy
to verify that the Theorem 2.7 and Theorem 2.8 are valid in respect of modified
definition.

4. Finite dimensional intuitionistic fuzzy normed linear spaces

In this section we study completeness and compactness properties of finite dimen-
sional intuitionistic fuzzy normed linear spaces. Firstly consider the following Lemma
which plays the key role in studying properties of finite dimensional intuitionistic
fuzzy normed linear spaces.

Lemma 4.1. Let (V , A) be an intuitionistic fuzzy normed linear space with the
underlying t-norm ∗ continuous at (1 , 1) and the underlying t-conorm ♦ continuous
at (0 , 0) and {x1, x2, ......., xn} be a linearly independent set of vectors in V. Then
∃c1, c2 > 0 and ∃δ1, δ2 ∈ (0 , 1) such that for any set of scalars {α1, α2, ........, αn};
N(α1x1 +α2x2 + .......+αnxn, c1

n∑

j=1

|αj |) < 1− δ1. (4.1.1a)

M(α1x1 +α2x2 + .......+αnxn, c2

n∑

j=1

|αj |) > δ2. (4.1.1b)

Proof. Let s = |α1|+ |α2|+ ...... + |αn|.
If s = 0 then αj = 0 ∀j = 1, 2, ....., n and the relation (4.1.1a) holds for any c > 0
and δ ∈ (0 , 1).
Next we suppose that s > 0. Then (4.1.1a) is equivalent to
N(β1x1+β2x2+.......+βnxn, c1) < 1−δ1 (4.1.2a)

for some c1 > 0 and δ1 ∈ (0 , 1), and for all scalars β’s with
n∑

j=1

|βj | = 1.

If possible suppose that (4.1.2a) does not hold. Thus for each c > 0 and δ ∈ (0 , 1), ∃
a set of scalars {β1, β2, ......., βn} with

n∑

j=1

|βj | = 1 for which

N(β1x1 + β2x2 + ....... + βnxn, c) ≥ 1− δ.
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Then for c = δ = 1
m , m = 1, 2, ....., ∃ a set of scalars {β(m)

1 , β
(m)
2 , ......., β

(m)
n } with

n∑

j=1

|β(m)
j | = 1 such that N(ym , 1

m ) ≥ 1− 1
m where ym = β

(m)
1 x1 +β

(m)
2 x2 + .....+

β
(m)
n xn.

Since
n∑

j=1

|β(m)
j | = 1, we have 0 ≤ |β(m)

j | ≤ 1 for j = 1, 2, ......, n.

So for each fixed j the sequence {β(m)
j } is bounded and hence {β(m)

1 } has a convergent
subsequence. Let β1 denote the limit of that subsequence and let {y1,m} denote the
corresponding subsequence of {ym}. By the same argument {y1,m} has a subsequence
{y2,m} for which the corresponding subsequence of scalars {β(m)

2 } converges to β2 (
say ). Continuing in this way, after n steps we obtain a subsequence {yn,m} where

yn,m =
n∑

j=1

γ
(m)
j xj with

n∑

j=1

|γ(m)
j | = 1 and γ

(m)
j → βj as m →∞.

Let y = β1x1 + β2x2 + ....... + βnxn.
Now we show that lim

m→∞
N(yn,m − y , t) = 1 ∀t > 0. We have

N(yn,m − y , t) = N(
n∑

i=1

(γ(m)
j − βj}xj , t)

≥ N(x1,
t

n|γ(m)
1 −β1|

) ∗ ....... ∗N(xn, t

n|γ(m)
n −βn|

).

So,

lim
m→∞

N(yn,m−y , t) ≥ lim
m→∞

N(x1,
t

n|γ(m)
1 − β1|

)∗.......∗ lim
m→∞

N(xn,
t

n|γ(m)
n − βn|

).

⇒ lim
m→∞

N(yn,m − y , t) ≥ 1 ∗ ....... ∗ 1 ( by the continuity of t-norm ∗ at (1 , 1)).

⇒ lim
m→∞

N(yn,m−y , t) = 1 ∀t > 0 (4.1.3a).

Now for k > 0, choose m such that 1
m < k.

We have N(yn,m , k) = N(yn,m + 0 , 1
m + k − 1

m ) ≥ N(yn,m , 1
m ) ∗N(0 , k − 1

m )
≥ (1− 1

m ) ∗N(0 , k − 1
m ).

i.e. N(yn,m , k) ≥ (1− 1
m ) ∗N(0 , k − 1

m ) = (1− 1
m ) ∗ 1 = 1− 1

m ).
i.e. lim

m→∞
N(yn,m , k) ≥ 1.

i.e. lim
m→∞

N(yn,m , k) = 1. (4.1.4a)

Now N(y , 2k) = N(y − yn,m + yn,m , k + k) ≥ N(y − yn,m , k) ∗N(yn,m , k)
⇒ N(y , 2k) ≥ lim

m→∞
N(y − yn,m , k) ∗ lim

m→∞
N(yn,m , k) ( by the continuity of

t-norm ∗ at (1 , 1)).
⇒ N(y , 2k) ≥ 1 ∗ 1 by (4.1.3a)&(4.1.4a)
⇒ N(y , 2k) = 1 ∗ 1 = 1.
Since k > 0 is arbitrary, by (IFN2) it follows that y = 0.

Again since
n∑

j=1

|β(m)
j | = 1 and {x1, x2, ......., xn} are linearly independent set of

vectors, so y = β1x1 + β2x2 + ....... + βnxn 6= 0. Thus we arrive at a contradiction.
Now we prove the relation (4.1.1b).
If s = 0 then αj = 0 ∀j = 1, 2, ....., n and the relation (4.1.1b) holds for any c > 0
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and δ ∈ (0 , 1).
Next we suppose that s > 0. Then (4.1.1b) is equivalent to
M(β1x1+β2x2+.......+βnxn, c2) > δ2 (4.1.2b)

for some c2 > 0 and δ2 ∈ (0 , 1), and for all scalars βj ’s with
n∑

j=1

|βj | = 1.

If possible suppose that (4.1.2b) does not hold. Thus for each c > 0 and δ ∈ (0 , 1), ∃
a set of scalars {β1, β2, ......., βn} with

n∑

j=1

|βj | = 1 for which

M(β1x1 + β2x2 + ....... + βnxn, c) ≤ δ.

Then for c = δ = 1
m , m = 1, 2, ....., ∃ a set of scalars {γ(m)

1 , γ
(m)
2 , ......., γ

(m)
n } with

n∑

j=1

|γ(m)
j | = 1 such that M(zm , 1

m ) ≤ 1
m where zm = γ

(m)
1 x1 + γ

(m)
2 x2 + ..... +

γ
(m)
n xn.

Since
n∑

j=1

|γ(m)
j | = 1, we have 0 ≤ |γ(m)

j | ≤ 1 for j = 1, 2, ......, n.

Then by same argument as above, we obtain a subsequence {zn,m} where

zn,m =
n∑

j=1

η
(m)
j xj with

n∑

j=1

|η(m)
j | = 1 and η

(m)
j → ηj as m →∞.

Thus
n∑

j=1

|ηj | = 1

Let z = η1x1 + η2x2 + ....... + ηnxn.
Then we have lim

m→∞
M(zn,m−z , t) = 0 ∀t > 0. (4.1.3b)

Now for k > 0, choose m such that 1
m < k.

We have M(zn,m , k) = M(zn,m + 0 , 1
m + k − 1

m ) ≤ M(zn,m , 1
m ) ∗M(0 , k − 1

m )
≤ 1

m ∗M(0 , k − 1
m ).

i.e. M(zn,m , k) ≤ 1
m♦M(0 , k − 1

m ) = 1
m♦0 = 1

m .
i.e. lim

m→∞
M(zn,m , k) ≤ 0.

i.e. lim
m→∞

M(zn,m , k) = 0. (4.1.4b)

Now M(z , 2k) = M(z − zn,m + zn,m , k + k) ≤ M(z − zn,m , k)♦M(zn,m , k)
⇒ M(z , 2k) ≤ lim

m→∞
M(z − zn,m , k)♦ lim

m→∞
M(zn,m , k) ( by the continuity of

t-conorm ♦ at (0 , 0)).
⇒ M(z , 2k) ≤ 0♦0 by (4.1.3b)&(4.1.4b)
⇒ M(z , 2k) = 0♦0 = 0.
Since k > 0 is arbitrary, by (IFN7) it follows that z = 0.

Again since
n∑

j=1

|η(m)
j | = 1 and {x1, x2, ......., xn} are linearly independent set of

vectors, so z = η1x1 + η2x2 + ....... + ηnxn 6= 0. Thus we arrive at a contradiction.
This completes the lemma. ¤
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Theorem 4.2. Every finite dimensional intuitionistic fuzzy normed linear space
(V , A) with the continuity of the underlying t-norm ∗ at (1 , 1) and t-co-norm ♦
at (0 , 0) is complete.

Proof. Let (V, A) be an intuitionistic fuzzy normed linear space and dimV =k (say
). Let {e1, e2, ......., ek} be a basis for V and {xn} be a Cauchy sequence in V.
Let xn = β

(n)
1 e1 + β

(n)
2 e2 + ..... + β

(n)
k ek where β

(n)
1 , β

(n)
2 , ....., β

(n)
k are suitable

scalars.
So lim

m,n→∞
N(xm − xn , t) = 1∀t > 0 (4.2.1a)

and lim
m,n→∞

M(xm − xn , t) = 0 ∀t > 0 (4.2.1b)

Now from Lemma 4.1, it follows that ∃c1, c2 > 0 and δ1, δ2 ∈ (0, 1) such that

N(
k∑

i=1

(β(m)
i −β

(n)
i )ei , c1

k∑

i=1

|β(m)
i −β

(n)
i |) < 1−δ1. (4.2.2a)

M(
k∑

i=1

(β(m)
i − β

(n)
i )ei , c2

k∑

i=1

|β(m)
i − β

(n)
i |) > δ2 (4.2.2b)

Again for 1 > δ1 > 0, from (4.2.1a), it follows that ∃ a positive integer n0(δ1, t) such
that,

N(
k∑

i=1

(β(m)
i −β

(n)
i )ei , t) > 1−δ1 ∀m,n ≥ n0(δ1, t). (4.2.3a)

Now from (4.2.2a) and (4.2.3a), we have,

N(
k∑

i=1

(β(m)
i − β

(n)
i )ei , t) > 1 − δ1 > N(

k∑

i=1

(β(m)
i − β

(n)
i )ei , c1

k∑

i=1

|β(m)
i −

β
(n)
i |) ∀m,n ≥ n0(δ1, t)

⇒ c1

k∑

i=1

|β(m)
i − β

(n)
i | < t ∀m,n ≥ n0(δ1, t) ( since N(x, .) is nondecreasing in t ).

⇒
k∑

i=1

|β(m)
i − β

(n)
i | <

t

c1
∀m, n ≥ n0(δ1, t)

⇒ |β(m)
i − β

(n)
i | < t

c1
∀m,n ≥ n0(δ1, t) and i = 1, 2, ...., k.

Since t > 0 is arbitrary, from above we have,
lim

m,n→∞
|β(m)

i − β
(n)
i | = 0 for i = 1, 2, ....., k.

⇒ {β(n)
i } is a Cauchy sequence of scalars for each i = 1, 2, ....., k.

So each sequence {β(n)
i } converges.

Let lim
n→∞

β
(n)
i = βi for i = 1, 2, ....., k. and x =

k∑

i=1

βiei. Clearly x ∈ V

Now ∀t > 0,

N(xn − x , t) = N(
k∑

i=1

β
(n)
i ei −

k∑

i=1

βiei , t) = N(
k∑

i=1

(β(n)
i − βi)ei , t).

i.e. N(xn − x , t) ≥ N(e1 , t

k|β(n)
1 −β1|

) ∗N(e2 , t

k|β(n)
2 −β2|

) ∗ ....

.... ∗N(ek , t

k|β(n)
k −βk|

). (4.2.4a)
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When n →∞ then t

k|β(n)
i −βi|

→∞ ( since β
(n)
i → βi) for i = 1, 2, ...., k and ∀t > 0.

From (4.2.4a) we get, using the continuity of t-norm ∗ at (1 , 1),
lim

n→∞
N(xn − x , t) ≥ 1 ∗ 1 ∗ ........ ∗ 1 ∀t > 0

⇒ lim
n→∞

N(xn−x , t) = 1 ∀t > 0. (4.2.5a)

Now from (4.2.2b) and (4.2.3b), we have,

M(
k∑

i=1

(β(m)
i −β

(n)
i )ei , t) < δ2 < M(

k∑

i=1

(β(m)
i −β

(n)
i )ei , c2

k∑

i=1

|β(m)
i −β

(n)
i |) ∀m,n ≥

m0(δ, t)

⇒ c2

k∑

i=1

|β(m)
i − β

(n)
i | < t ∀m,n ≥ n0(δ2, t) ( since M(x, .) is non-increasing in t )

⇒
k∑

i=1

|β(m)
i − β

(n)
i | <

t

c2
∀m, n ≥ n0(δ2, t)

⇒ |β(m)
i − β

(n)
i | < t

c2
∀m,n ≥ n0(δ2, t) and i = 1, 2, ...., k.

Since t > 0 is arbitrary, from above we have,
lim

m,n→∞
|β(m)

i − β
(n)
i | = 0 for i = 1, 2, ....., k.

⇒ {β(n)
i } is a Cauchy sequence of scalars for each i = 1, 2, ....., k.

So each sequence {β(n)
i } converges.

Let lim
n→∞

β
(n)
i = βi for i = 1, 2, ....., k. and x =

k∑

i=1

βiei. Clearly x ∈ V.

Now ∀t > 0,

M(xn − x , t) = M(
k∑

i=1

β
(n)
i ei −

k∑

i=1

βiei , t) = M(
k∑

i=1

(β(n)
i − βi)ei , t).

i.e. M(xn − x , t) ≤ M(e1 , t

k|β(n)
1 −β1|

)♦M(e2 , t

k|β(n)
2 −β2|

)♦....

....♦M(ek , t

k|β(n)
k −βk|

). (4.2.4b)

When n →∞ then t

k|β(n)
i −βi|

→∞ ( since β
(n)
i → βi) for i = 1, 2, ...., k and ∀t > 0.

From (4.2.4b) we get, using the continuity of t-co norm ♦ at (0 , 0),
lim

n→∞
M(xn − x , t) ≤ 0 ∗ 0 ∗ ........ ∗ 0 ∀t > 0

⇒ lim
n→∞

M(xn−x , t) = 0 ∀t > 0. (4.2.5b)

From (4.2.5a) and (4.2.5b), we have xn → x as n → ∞. Hence (V , A) is com-
plete. ¤

Definition 4.3. Let (V , A) be an intuitionistic fuzzy normed linear space and
F ⊂ V . F is said to be bounded if for each r, 0 < r < 1, ∃t1, t2 > 0 such that
N(x , t1) > 1− r and M(x , t2) < r ∀x ∈ F.

Theorem 4.4. In a finite dimensional intuitionistic fuzzy normed linear space
(V , A) in which the underlying t-norm ∗ is continuous at (1 , 1) and t-co-norm ♦
is continuous at (0 , 0), a subset F is compact iff it is closed and bounded.

Proof. First we suppose that F is compact. We have to show that F is closed
and bounded.
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Let x ∈ F̄ . Then ∃ a sequence {xn} in F such that lim
n→∞

xn = x.

Since F is compact, ∃ a subsequence {xnk
} of {xn} converges to a point in F.

Again {xn} → x so {xnk
} → x and hence x ∈ F. So F is closed.

If possible suppose that F is not bounded. Then ∃r0 with 0 < r0 < 1 such that for
each positive integer n, ∃xn ∈ F such that N(xn , n) ≤ 1− r0 or M(xn , n) ≥ r0.
So there exists a subsequence of {xn} ( without loss of generality we assume {xn}
to be that subsequence ) for which at least one of the relations
N(xnk

, nk) ≤ 1− r0 ∀n ∈ N (4.4.1a)
M(xnk

, nk) ≥ r0 ∀n ∈ N (4.4.1b)
holds.
First we assume that (4.4.1a) holds.
Now for t > 0,
1− r0 ≥ N(xnk

, nk) = N(xnk
− x + x , nk − t + t) where t > 0

⇒ 1− r0 ≥ N(xnk
− x , t) ∗N(x , nk − t)

⇒ 1− r0 ≥ lim
k→∞

N(xnk
− x , t) ∗ lim

k→∞
N(x , nk − t)

⇒ 1− r0 ≥ 1 ∗ 1 = 1 ( using the continuity of t-norm at (1 , 1))
⇒ r0 ≤ 0 which is a contradiction.
In case (4.4.1b) holds, by considering the function M(x , t), proceeding as above,
we arrive at a contradiction. Hence F is bounded.
Conversely suppose that F is closed and bounded and we have to show that F is
compact.
Let dim V=n and {e1, , e2, ......., en} be a basis for V.
Choose a sequence {xk} in F and suppose xk = β

(k)
1 e1 +β

(k)
2 e2 + .....+β

(k)
n en where

β
(k)
1 , β

(k)
2 , ....., β

(k)
n are scalars.

Now from Lemma 4.1, ∃c1, c2 > 0 and ∃δ1, δ2 ∈ (0, 1) such that

N(
n∑

i=1

β
(k)
i ei , c1

n∑

i=1

|β(k)
i |) < 1−δ1 (4.4.2a)

and

M(
n∑

i=1

β
(k)
i ei , c2

n∑

i=1

|β(k)
i |) > δ2 (4.4.2b)

Again since F is bounded, for δ1 ∈ (0 , 1), ∃t1 > 0 such that N(x , t1) > 1 − δ1

and ∃t2 > 0 such thatM(x , t2) < δ1 ∀x ∈ F.

So N(
n∑

i=1

β
(k)
i ei , t1) > 1−δ1 (4.4.3a)

and

M(
n∑

i=1

β
(k)
i ei , t2) < δ1 (4.4.3b)

From (4.4.2a) and (4.4.3a) we get,

N(
n∑

i=1

β
(k)
i ei , c1

n∑

i=1

|β(k)
i |) < 1− δ1 < N(

n∑

i=1

β
(k)
i ei , t1)

⇒ N(
n∑

i=1

β
(k)
i ei , c1

n∑

i=1

|β(k)
i |) < N(

n∑

i=1

β
(k)
i ei , t1)
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⇒ c1

n∑

i=1

|β(k)
i | < t1 ( since N(x , .) is non-decreasing )

⇒ |β(k)
i | ≤ t1

c1
for k = 1, 2, ..... and i = 1, 2, ....., n.

So each sequence {β(k)
i } (i = 1, 2, ..., n) is bounded. By repeated applications of

Bolzano-Weierstrass theorem, it follows that each of the sequences {β(k)
i } has a con-

vergent subsequence say {βkl
i }, ∀i = 1, 2, ..., n.

Let xkl
= β

(kl)
1 e1 +β

(kl)
2 e2 + .....+β

(kl)
n en and {β(kl)

1 }, {β(kl)
2 }, ......., {β(kl)

n } are all
convergent.
Let βi = lim

l→∞
β

(kl)
i , i = 1, 2, ....., n. and x = β1e1 + β2e2 + ..... + βnen.

Now for t > 0 we have,
N(xkl

− x , t) = N(
∑n

i=1(β
kl
i − βi)ei , t)

≥ N(e1 , t

n|βkl
1 −β1|

) ∗ ........ ∗N(en , t

n|βkl
n −βn|

)

⇒ lim
l→∞

N(xkl
− x , t) ≥ 1 ∗ 1 ∗ .... ∗ 1 (βkl

i → βi as l → ∞) ( using the continuity

of t-norm ∗ at (1 , 1))
⇒ lim

l→∞
N(xkl

−x , t) = 1. (4.4.4a)

Now for t > 0 we get,
M(xkl

− x , t) = M(
∑n

i=1(β
kl
i − βi)ei , t)

≤ M(e1 , t

n|βkl
1 −β1|

)♦........♦M(en , t

n|βkl
n −βn|

)

⇒ lim
l→∞

M(xkl
− x , t) ≤ 0♦0♦....♦0 (βkl

i → βi as l → ∞) (since βkl
i → βi as

l →∞ and using the continuity of t-co-norm ♦ at (0 , 0))
⇒ lim

l→∞
M(xkl

−x , t) = 0. (4.4.4b)

From (4.4.4a ) and (4.4.4b), it follows that xkl
→ x. Thus x ∈ F (since F is closed).

Hence F is compact. This completes the proof.

5. Conclusion

In this paper, the definition of intuitionistic fuzzy normed linear space (IFNLS)
introduced by T.K.Samanta et al. is generalized. In the new definition of IFNLS,
the underlying t-norm and t-conorm are considered in general setting in the sense
that only continuity of t-norm and t-conorm at (1 , 1) and (0 , 0) respectively are
used. We are able to establish some basic theorems in finite dimensional IFNLS in
this setting and our approach is fundamentally different because we have not used
the decomposition theorem of intuitionistic fuzzy norm whose validity require a
stringent restriction that t-norm is min and t-conorm is max. Also we have only use
the implicit intuitionistic properties among N(x, t) and M(x, t) functions and skip
the explicit restriction N(x, t)+M(x, t) ≤ 1 for which in several definitions involving
convergence, boundeness both the functions N(x, t) and M(x, t) have equal role. We
think that there is a scope of further work in this setting.
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