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Abstract. This paper proposes a new method based on fuzzy centre
for solving n-th order fuzzy linear differential equations. First the fuzzy
differential equation is solved in term of fuzzy centre and then this solution
is used to find the final solution of the original differential equation. The
method is illustrated by considering three cases with examples and one
application problem viz. circuit problem. We have compared the obtained
results with the exact solutions in order to demonstrate the validity and
applicability of the proposed method.
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1. Introduction

In recent years, the topic of Fuzzy Differential Equations (FDEs) play an impor-
tant role for modelling physical and engineering problems because those represent
a natural way to model the systems under uncertainty. Since, it is too difficult to
obtain the exact solutions of fuzzy differential equations, so one may need a reliable
and efficient numerical technique to obtain the solutions.

There exist a good number of papers dealing with fuzzy differential equations and
their applications in the open literature. Some of are reviewed and cited here for
better understanding of the present analysis. Chang and Zadeh [11] first introduced
the concept of a fuzzy derivative, followed by Dubois and Prade [12] who defined
and used the extension principle in their approach. The fuzzy differential equations
and fuzzy initial value problems are studied by Kaleva [23, 24] and Seikkala [45].
Mondal and Roy [33] described the solution procedure for a first order linear non
homogeneous ordinary differential equation in fuzzy environment. Existence and
uniqueness of fuzzy boundary value has been proved by Esfahani et al. [5].
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Various numerical methods for solving fuzzy differential equations are introduced
in [1, 3, 7, 8, 10, 13, 14, 16, 18, 19, 21, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 40,
42, 48, 50, 51, 52, 53]. Ma et al. [31] developed a scheme based on the classical Euler
method to solve fuzzy ordinary differential equations. A two-dimensional differen-
tial transform method for Fuzzy Partial Differential Equations (FPDEs) has been
studied by Mikaeilvand and Khakrangin [32]. Recently, Tapaswini and Chakraverty
[48, 50] proposed an improved Euler and homotopy perturbation method for the so-
lution of fuzzy differential equations. Jayakumar et al. [21] developed Runge-Kutta
method of order five for solving fuzzy differential equations and Palligkinis et al.
[38] applied the Runge-Kutta method for more general problems and proved the
convergence for s-stage Runge-Kutta methods. Extended Runge-Kutta-like formu-
lae of order 4 has been applied by Ghazanfari et al. [16] for the numerical solutions
of fuzzy differential equations. Generalized differentiability concept is used by Bede
et al. [7] to investigate first order linear fuzzy differential equations. Abbasbandy
et al. [1] developed a numerical method for solving fuzzy differential inclusions and
in their proposed method, fuzzy reachable set is used to approximate the solution.
Khastan et al. [27] used Nystrom method to solve fuzzy differential equations. Fard
and Ghal-Eh [47] proposed an iterative method to get the approximate solution for
the linear system of first-order fuzzy differential equations with fuzzy constant coef-
ficients. Variation of constant formula has been handled by Khastan et al. [28] to
solve first order fuzzy differential equations. Akin et al. [3] developed an algorithm
based on α−cut of a fuzzy set for the solution of second order fuzzy initial value
problems. A new approach has been developed by Gasilov et al. [14] to get the so-
lution of fuzzy initial value problem. Khastan and Nieto [29] investigated numerical
algorithms for the solution of first-order fuzzy differential equations and hybrid fuzzy
differential equations. Nieto et al. [37] obtained some interesting properties of the
diameter and midpoint of the solution of linear first-order fuzzy differential. Numer-
ical solution of second-order fuzzy differential equation is investigated by Rabiei et
al. [42] using improved Runge-Kutta nystrom method. Pederson and Sambandham
[40] used characterization theorem to obtain the numerical solution of hybrid fuzzy
differential equations.

The concept of generalized H-differentiability is studied by Chalco-Cano and Ro-
man Flores [10] to solve fuzzy differential equations. Lupulescu [30] developed a
new concept of inner product on the fuzzy space for the solution of fuzzy initial
value problems. Prakash and Kalaiselvi [41] implemented hybrid methods to obtain
the numerical solution of fuzzy differential equations. Very Recently, Mosleh [34],
Mosleh et al. [35] and Effati et al. [13] applied fuzzy neural network for the solution
of fuzzy differential equations. Recently, Behera and Chakraverty [8] obtained un-
certain impulse response of imprecisely defined half order mechanical system. Also
homotopy perturbation method has been used by Tapaswini and Chakraverty [51]
to obtain the solution of arbitrary order predator-prey equations and fuzzy qua-
dratic Riccati differential equation [53]. A new double parametric form of fuzzy
number has been developed by Tapaswini and Chakraverty [52] and using homotopy
perturbation method, numerical solution of uncertain beam equations has been ob-
tained. Hashemi et al. [18, 19] studied homotopy analysis method for the solution
of system of fuzzy differential equations and obtained analytical solution of fuzzy
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wave-like equations with variable coefficients. Kanagarajan and Muthukumar [25]
implemented extended Runge-Kutta method of order four for solving hybrid fuzzy
differential equations. Variation iteration method is implemented by Narayanamoor-
thy and Murugan [36] for the solution of Fuzzy heat-like equations.

As regards, methods to solve n−th order fuzzy differential equations are discussed
in [4, 15, 20, 26, 39, 44, 46, 49, 54]. However the Variational Iteration Method (VIM)
was successfully applied by Jafari et al. [20] for solving n−th order fuzzy differential
equations. A new result on multiple solutions for n−th order fuzzy differential equa-
tions under generalized differentiability has been proposed by Khastan et al. [26].
The existence and uniqueness of n− th order fuzzy differential equations is proved
by Georgiou et al.[15]. Based on the idea of collocation method , Allahviranloo et
al.[4] solved n−th order fuzzy linear differential equations. Yue and Guangyuan
[54] utilized time domain methods for the solutions of n−th order fuzzy differential
equations. Parandin [39] discussed Runge-Kutta method for the numerical solution
of fuzzy differential equations of n−th order. Integral form of n−th order fuzzy
differential equations has been developed by Salahshour [44] under generalized dif-
ferentiability. Mansouri and Ahmady [46] implemented characterization theorem for
solving n−th order fuzzy differential equations. Also, Tapaswini and Chakraverty
[49] implemented homotopy perturbation method for the solution of n−th order
fuzzy linear differential equations.

Bede [6] described the exact solutions of fuzzy differential equations in his note
in an excellent way. Ahmad et al. [2] studied analytical and numerical solutions of
fuzzy differential equations based on the extension principle. Buckley and Feuring
[9] applied two analytical methods for solving n−th order linear differential equa-
tions with fuzzy initial conditions. In the first method, they simply fuzzify the crisp
solution to obtain a fuzzy function and then checked whether it satisfies the differen-
tial equation or not, and the second method was just the reverse of the first method.
In the present study, we have to developed a new analytical approach using fuzzy
centre to solve n−th order fuzzy differential equations.

This paper is organized as follows. In Section 2, we give some basic preliminaries
related to the present investigation. The proposed technique has been discussed in
Section 3. In Section 4, numerical examples are solved. Finally, in the last section
conclusions are drawn.

2. Preliminaries

In this section, we present some notations, definitions and preliminaries which are
used further in this paper [17, 22, 43, 55].

Definition 2.1. Fuzzy number
A fuzzy number Ũ is convex normalised fuzzy set Ũ of the real line R such that

{µŨ (x) : R → [0, 1], ∀x ∈ R} where, µŨ is called the membership function of the
fuzzy set and it is piecewise continuous.

Definition 2.2. Fuzzy Centre
Fuzzy centre of an arbitrary fuzzy number u = [u(r), ū(r)] is defined as uc =

u(r)+ū(r)
2 for all 0 ≤ r ≤ 1.
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Definition 2.3. Triangular fuzzy number
A triangular fuzzy number Ũ is a convex normalized fuzzy set Ũ of the real line

R such that
i: there exists exactly one x0 ∈ R with µŨ (x0) = 1 (x0 is called the mean value

of Ũ), where µŨ is called the memebership function of the fuzzy set.
ii: µŨ (x) is piecewise continuous.

Let us consider an arbitrary triangular fuzzy number Ũ = (a, b, c) as depicted in
Fig. 1(i). The membership function µŨ of Ũ is defined as follows

µŨ (x) =





0, x ≤ a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c

0, x ≥ c

Definition 2.4. Single parametric form of fuzzy numbers
A triangular fuzzy number Ũ = (a, b, c) can be represented by an ordered pair of

functions through r− cut approach viz. [u(r), ū(r)] = [(b − a)r + a, − (c − b)r + c]
where, r ∈ [0, 1]

For all the above type of fuzzy numbers the left and right bound of the fuzzy
numbers satisfy the following requirements

i: u(r) is a bounded left continuous non-decreasing function over [0, 1].
ii: ū(r) is a bounded right continuous non-increasing function over [0, 1].
iii: u(r) ≤ ū(r),0 ≤ r ≤ 1.

Definition 2.5. Fuzzy arithmetic
For any two arbitrary fuzzy numbers x̃ = [x(r), x̄(r)], ỹ = [y(r), ȳ(r)] and scalar

k , the fuzzy arithmetic is defined as follows,
i: x̃ = ỹ if and only if x(r) = y(r) and x̄(r) = ȳ(r)
ii: x̃ + ỹ = [x(r) + y(r), x̄(r) + ȳ(r)]
iii: x̃− ỹ = [x(r)− y(r), x(r)− y(r)]

iv: x̃× ỹ =
[

min
(
x(r)× y(r), x(r)× ȳ(r), x̄(r)× y(r), x̄(r)× ȳ(r)

)
,

max
(
x(r)× y(r), x(r)× ȳ(r), x̄(r)× y(r), x̄(r)× ȳ(r)

)
]

v: kx̃ =
{

[kx(r), kx(r)] , k < 0
[kx(r), kx(r)] , k ≥ 0

]

3. Proposed method

In this section, we propose a new method based on fuzzy centre to solve the n−th
order fuzzy differential equation. To compare the results obtained by the proposed
method we have also applied the method of Bede [6] to find the exact solution.

Accordingly we consider the n−th order fuzzy differential equation in general
form as

(3.1) ỹ(n)(t; r) + an−1(t)ỹ(n−1)(t; r) + · · ·+ a1(t)ỹ′(t; r) + a0(t)ỹ(t; r) = g̃(t; r),

where ai(t), 0 ≤ i ≤ n − 1. continuous on some interval subject to fuzzy initial
conditions

ỹ(0) = b̃0, ỹ
′(0) = b̃1, . . . ,ỹ(n−1)(0) = b̃n−1.
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where b̃i, 0 ≤ i ≤ n− 1 are fuzzy numbers. Here, ỹ(t; r) is the solution to be deter-
mined. Now three cases as below may arise,

Case 1: Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all positive.
Case 2: Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all negative.
Case 3: Coefficients an−1(t), · · · , an−m(t) are positive and
an−m−1(t), an−m−2(t), · · · , a1(t), a0(t) are negative.
Now we will discuss the above three cases in detail as follows,

Case 1: Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all positive.
First we will write Eq. (3.1) in terms of fuzzy centre as

(3.2) yc(n)
(t; r) + an−1(t)yc(n−1)

(t; r) + · · ·+ a1(t)yc
′
(t; r) + a0(t)yc(t; r) = gc(t; r),

with initial conditions
yc(0) = bc

0, y
c
′
(0) = bc

1, . . . ,yc(n−1)
(0) = bc

n−1.
Eq. (3.2) may easily be solved to obtain yc by any standard method.
As per the single parametric form we may write the above fuzzy differential equation
(3.1) and fuzzy initial condition as

(3.3)
[
y(n)(t; r), ȳ(n)(t; r)

]
+ an−1(t)

[
y(n−1)(t; r), ȳ(n−1)(t; r)

]
+ · · ·

+a1(t)
[
y′(t; r), ȳ′(t; r)

]
+ a0(t)

[
y(t; r), ȳ(t; r)

]
=

[
g(t; r), ḡ(t; r)

]
,

subject to fuzzy initial conditions[
y(0;r), ȳ(0; r)

]
=

[
b0(r), b̄0(r)

]
,
[
y′(0;r), ȳ′(0;r)

]
=

[
b1(r), b̄1(r)

]
, . . . ,[

y(n−1)(0;r), ȳ(n−1)(0;r)
]

=
[
bn−1(r), b̄n−1(r)

]
, where r ∈ [0, 1].

By using the definition of Hukuhara derivative one may write Eq. (3.3) as

(3.4) y(n)(t; r) + an−1(t)y(n−1)(t; r) + · · ·+ a1(t)y′(t; r) + a0(t)y(t; r) = g(t; r),

and

(3.5) ȳ(n)(t; r) + an−1(t)ȳ(n−1)(t; r) + · · ·+ a1(t)ȳ′(t; r) + a0(t)ȳ(t; r) = ḡ(t; r).

Now solving Eq. (3.4) and (3.5) separately one may have y(t; r) and ȳ(t; r) respec-
tively. On the other hand one may solve either Eq. (3.4) or (3.5) to have the lower
and upper bound solution respectively. Next, we may substitute the above values of
yc and y(t; r) or (ȳ(t; r)) with the fuzzy centre solution in the expression ȳ = 2yc−y
or y = 2yc − ȳ to get the solution bound.

Case 2: Coefficients an−1(t), an−2(t), · · · , a1(t), a0(t) are all negative.
Eq. (3.1) may be written in term of fuzzy centre as

(3.6) yc(n)
(t; r)− an−1(t)yc(n−1)

(t; r)− · · · − a1(t)yc
′
(t; r)− a0(t)yc(t; r) = gc(t; r),

with initial conditions
yc(0) = bc

0, y
c
′
(0) = bc

1, . . . ,yc(n−1)(0) = bc
n−1

Again yc(t; r) may be obtained by solving Eq. (3.6) and by using the definition of
Hukuhara derivative we have,

(3.7) y(n)(t; r) + an−1(t)ȳ(n−1)(t; r) + · · ·+ a1(t)ȳ′(t; r) + a0(t)ȳ(t; r) = g(t),
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(3.8) ȳ(n)(t; r) + an−1(t)y(n−1)(t; r) + · · ·+ a1(t)y′(t; r) + a0(t)y(t; r) = ⇀
g (t),

Using definition of fuzzy centre one may write Eq. (3.7) and Eq. (3.8) as
(3.9)

y(n)(t; r) + an−1(t)
(
2yc(t; r)− y(t; r)

)(n−1) + · · ·+ a1(t)
(
2yc(t; r)− y(t; r)

)′

+ a0(t)
(
2yc(t; r)− y(t; r)

)
= g(t),

(3.10)
ȳ(n)(t; r) + an−1(t) (2yc(t; r)− ȳ(t; r))(n−1) + · · ·+ a1(t) (2yc(t; r)− ȳ(t; r))

′

+ a0(t) (2yc(t; r)− ȳ(t; r)) = ⇀
g (t),

It may be seen that the above differential equations are now crisp differential equa-
tions. Solving Eqs. (3.9) and (3.10) one may get bounds of the solution as y(t; r)
and ȳ(t; r) respectively. Otherwise one may solve only Eq. (3.9) to obtain the lower
y(t; r) of the solution. Next, using the expression obtained from the fuzzy centre
ȳ(t; r) =

(
2yc − y

)
, we may have the upper bounds ȳ(t; r) of the solution. Similarly

one may also solve Eq. (3.10) to have the solution bounds accordingly.

Case 3: Coefficients an−1(t), · · · , an−m(t) are positive
and an−m−1(t), an−m−2(t), · · · , a1(t), a0(t) are negative.
In this case we may write Eq. (3.1) in term of fuzzy centre as

(3.11)
yc(n)

(t; r) + an−1(t)yc(n−1)
(t; r) + · · ·+ an−m(t)yc(n−m)

(t; r)
−an−m−1(t)yc(n−m−1)

(t; r) + · · · − a0(t)yc(t; r) = gc(t; r),

with initial conditions
yc(0) = bc

0, y
c
′
(0) = bc

1, . . . ,yc(n−1)
(0) = bc

n−1.
As in previous cases, we may solve for yc(t; r).
From Eq. (3.1) we have,

(3.12)
y(n)(t; r) + an−1(t)y(n−1)(t; r) + · · ·+ an−m(t)y(n−m)(t; r)
+an−m−1(t)ȳ(n−m−1)(t; r) + · · ·+ a0(t)ȳ(t; r) = g(t; r),

(3.13)
ȳ(n)(t; r) + an−1(t)ȳ(n−1)(t; r) + · · ·+ an−m(t)ȳ(n−m)(t; r)
+an−m−1(t)y(n−m−1)(t; r) + · · ·+ a0(t)y(t; r) = ḡ(t; r).

Eqs. (3.12) and (3.13) are written as

(3.14)
y(n)(t; r) + an−1(t)y(n−1)(t; r) + · · ·+ an−m(t)y(n−m)(t; r)
+an−m−1(t)

(
2yc(t; r)− y(t; r)

)(n−m−1) + · · ·
+a0(t)

(
2yc(t; r)− y(t; r)

)
= g(t; r),

(3.15)
ȳ(n)(t; r) + an−1(t)ȳ(n−1)(t; r) + · · ·+ an−m(t)ȳ(n−m)(t; r)
+an−m−1(t) (2yc(t; r)− ȳ(t; r))(n−m−1) + · · ·
+a0(t) (2yc(t; r)− ȳ(t; r)) = ḡ(t; r).

The lower and upper bounds of the solutions are obtained by solving Eqs. (3.14)
and (3.15) respectively using the value of fuzzy centre (yc(t; r)) in similar fashion as
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before. Otherwise, only one equation viz. Eq. (3.14) or (3.15) may be solved and
using the expression ȳ(t; r) =

(
2yc(t; r)− y(t; r)

)
(or y(t; r) = (2yc(t; r)− ȳ(t; r)))

one may have the solution bounds.

4. Numerical implementation of the proposed method

In the following paragraphs example problems are solved using the proposed
method with different cases and are also compared with exact solutions. We also
obtain the exact solution by following the method of Bede [6].

Example 4.1. Let us consider the following second order fuzzy linear differential
equation (Case 1)

(4.1) ỹ′′ + 6ỹ′ + 9ỹ = 0

subject to the fuzzy initial conditions

ỹ(0; r) = [0.2r + 1.8, 2.2− 0.2r], ỹ′(0; r) = [0.2r − 3.2,−2.8− 0.2r].

The exact fuzzy solution are obtained by the method of Bede [6] as

Y (t; r) =
(

1
5r + 9

5

)
e−3t +

(
4
5r + 11

5

)
te−3t,

Ȳ (t; r) =
(

11
5 − 1

5r
)
e−3t +

(
19
5 − 4

5r
)
te−3t.

According to Eq. (3.2), the differential equation (Eq. (4.1)) can be written as

(4.2) yc
′′

+ 6yc′ + 9yc = 0

Solving Eq. (4.2) one may obtain yc = (2 + 3t) e−3t

As disused in Case 1, with the above value of yc it gives the value of y(t) =(
1
5r + 9

5

)
e−3t +

(
4
5r + 11

5

)
te−3t and ȳ(t) =

(
11
5 − 1

5r
)
e−3t +

(
19
5 − 4

5r
)
te−3t. Hence

one may have the final solution as ỹ(t; r) = [y(t; r), ȳ(t; r)].
One may note that the results obtained by the proposed method are exactly same
as that of the exact solution obtained by the method of Bede [6]. Corresponding
fuzzy plot is given in Fig. 1.

Example 4.2. Next, we consider the following second order fuzzy linear differential
equation (case 2)

(4.3) ỹ′′ − 3ỹ′ − 4ỹ = 0

subject to the fuzzy initial conditions

ỹ(0) = [0.2r + 0.8, 1.2− 0.2r], ỹ′(0) = [0.2r + 1.8, 2.2− 0.2r].

Exact fuzzy solution are obtained again by following the method of Bede [6] as

Y (t;r) =
3
5
e4t +

2
5
e−t +

√
7

7
e−3t/2 sin

(√
7

2
t

)
(−1 + r)+

(
−1

5
+

1
5
r

)
e−3t/2 cos

(√
7

2
t

)
,

(4.4)
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Fig.1 Fuzzy solution of Example 4.1 using the proposed method.

Y (t;r) =
3
5
e4t +

2
5
e−t −

√
7

7
e−3t/2 sin

(√
7

2
t

)
(−1 + r)−

(
−1

5
+

1
5
r

)
e−3t/2 cos

(√
7

2
t

)
.

(4.5)

By using the proposed method we have,
yc = 2

5e−t + 3
5e4t.

Subsequently, we get the solution

y(t;r) =
3
5
e4t +

2
5
e−t +

√
7

7
e−3t/2 sin

(√
7

2
t

)
(−1 + r)+

(
−1

5
+

1
5
r

)
e−3t/2 cos

(√
7

2
t

)
,

(4.6)

ȳ(t;r) =
3
5
e4t +

2
5
e−t −

√
7

7
e−3t/2 sin

(√
7

2
t

)
(−1 + r)−

(
−1

5
+

1
5
r

)
e−3t/2 cos

(√
7

2
t

)
.

(4.7)

Again, it may be worth mentioning that the results obtained by proposed method
exactly agree with exact solution. Plot for Example 2 is depicted in Fig. 2.
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Fig.2 Fuzzy solution of Example 4.2 using the proposed method.

Example 4.3. Now, we take the following third order fuzzy differential equation
(Case 3)

(4.8) ỹ′′′ − 6ỹ′′ + 11ỹ′ − 6ỹ = 0

subject to the fuzzy initial conditions
ỹ(0; r) = [0.2r + 0.8, 1.2− 0.2r], ỹ′(0; r) = [0.2r + 0.8, 1.2− 0.2r] and

ỹ′′(0; r) = [0.2r + 1.8, 2.2− 0.2r].
The exact fuzzy solution may be obtained as [6],

Y (t;r) = 3
2et + 1

2e3t − e2t +
(

3
5r − 3

5

)
e−3t +

(− 8
5r + 8

5

)
e−2t +

(
6
5r − 6

5

)
e−t,

Ȳ (t;r) = 3
2et + 1

2e3t − e2t − (
3
5r − 3

5

)
e−3t − (− 8

5r + 8
5

)
e−2t − (

6
5r − 6

5

)
e−t

Following the proposed method we have the solution as
y(t;r) = 3

2et + 1
2e3t − e2t +

(
3
5r − 3

5

)
e−3t +

(− 8
5r + 8

5

)
e−2t +

(
6
5r − 6

5

)
e−t,

ȳ(t;r) = 3
2et + 1

2e3t − e2t − (
3
5r − 3

5

)
e−3t − (− 8

5r + 8
5

)
e−2t − (

6
5r − 6

5

)
e−t.

Again one may see that the solution obtained by proposed method exactly matches
with the exact solution. Plot for this example is also shown in Fig. 3

Example 4.4. Finally, Let us consider the electrical circuit shown in Fig. 4 [9]
where L = 1h, R = 2Ω, C = 0.25f and E(t) = 20 cos t. If Q is the charge on the
capacitor at time t > 0, then we have the second order fuzzy differential equation

(4.9) Q̃′′(t) + 2Q̃′(t) + 4Q̃(t) = 50 cos t

subject to the fuzzy initial conditions
Q̃(0; r) = [4 + r, 6− r], Q̃′(0; r) = [r, 2− r]

Exact fuzzy solution for this problem may be obtained as
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Fig.3 Fuzzy solution of Example 4.3 for Case 3 using the proposed method.

Fig.4 Electrical circuit in Example 4.4 [9]

Q(t; r) =
2
39e−t sin(

√
3t)(13r − 99)

√
3 + e−t cos(

√
3t)

(
r − 98

13

)
+

(
150
13

)
cos(t) +

(
100
13

)
sin(t),

Q̄(t; r) =
− 2

39e−t sin(
√

3t)(73 + 13r)
√

3 + e−t cos(
√

3t)
(−r − 72

13

)
+

(
150
13

)
cos(t) +

(
100
13

)
sin(t).

By following the proposed method, we get the solution for Eq. (4.9) as
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Fig.5 Fuzzy solution of Example 4.4 using the proposed method.

q(t; r) =
2
39e−t sin(

√
3t)(13r − 99)

√
3 + e−t cos(

√
3t)

(
r − 98

13

)
+

(
150
13

)
cos(t) +

(
100
13

)
sin(t),

q̄(t; r) =
− 2

39e−t sin(
√

3t)(73 + 13r)
√

3 + e−t cos(
√

3t)
(−r − 72

13

)
+

(
150
13

)
cos(t) +

(
100
13

)
sin(t).

Here also, results from the proposed method are same as that of the exact solution
and corresponding plot for this example is also cited in Fig. 5. The main value
of the paper is not the example problems as discussed above. But here the main
contribution is the new analytical method to handle n−th order fuzzy differential
equation giving all the possible cases. As such the known differential equations
are solved as test problems to have the confidence of the proposed method. The
solutions by the proposed method in all the test problems exactly matches with
the exact solution. The proposed method gives us a straightforward, alternate and
computationally efficient way to handle n−th order fuzzy differential equations.

5. Conclusions

In this paper, a new method has been proposed to solve general n−th order
fuzzy differential equations. First, the fuzzy differential equation is solved in term of
fuzzy centre then this solution is used to get the final solution of the original n−th
order fuzzy differential equation. The proposed method has been applied to three
numerical example problems and an application problem viz. Circuit problem. Also,
the obtained results are compared with the exact solutions to show the efficiency
and powerfulness of the methodology. The solutions obtained are shown graphically
too.
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