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Abstract. In this paper, we discuss the properties of soft sets. We
introduce the concept of soft point and its existence is illustrated by suit-
able examples. Also, we characterize some of their properties. We prove
that the intersection of two soft topologies is a soft topology and justify
that union of two soft topologies need not be a soft topology. Further, we
characterize soft basis in terms of soft topology.
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1. Introduction

Molodtsov [14] introduced the concept of soft sets in 1999 as a mathematical
tool for dealing with uncertain objects. Then the properties and applications of
soft set theory have been studied increasingly in [3, 4, 7, 12, 23]. There are many
approaches to handle the manipulation of imperfect knowledge. The most successful
one is fuzzy set theory by Zadeh [22]. The aim of soft set theory is to provide a tool
with enough parameters to deal with uncertainty associated with the given data,
which is free of the difficulty, mainly inadequacy of parametrization. Soft set theory
has a large scope for application in many directions, some of which are decision mak-
ing, attribute reduction, smoothness of functions, game theory, operation research,
Riemann integration and so on [10, 11, 15, 21].

Recently, in [2], Aktas and Cagman introduced the notion of soft groups and
obtained some fundamental properties. Shabir and Ali [18], studied soft semigroups
and soft ideals which characterize (generalized) fuzzy ideals with entrance of a semi-
group. Further, in [1], Acar, et al. introduced the concept of soft ring over a ring.
In [5], soft subrings, soft ideals over a ring and soft subfield over a field has been
introduced. Celik, et. al [8] introduced a new binary relation and some new opera-
tions on soft sets, also they introduced the notion of a subrings (ideals) of a given
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ring. However, in [16], Nazmul and Samanta introduced the basic idea of a soft
topological group, its subsystem and morphism over a topological group.

In [6], Aygünoǧlu and Aygün studied soft continuity, soft product topology, soft
compactness and generalized Tychonoff theorem in soft topological spaces. Further,
Min [13] gave some properties. Also, in [9], Hussain and Ahmad discussed the prop-
erties of soft interior, closure and boundary on a soft topological spaces. The concept
of fuzzy topological spaces was introduced and studied by Tanay and Kandemir in
[19]. Varol and Aygün [20] introduced soft Hausdorff spaces. They proved that in a
soft Hausdorff space compact soft set is closed. In [23], Zorlutuna et.al introduced
new concepts in soft topological spaces such as interior point, interior, neighbor-
hood. In 2013, Nazmul and Samanta [17] discussed the neighborhood properties of
soft topological spaces.

In this paper, we study in detail about the theory and properties of soft sets and
soft topological spaces. The concept of soft point is introduced. Its existence is
verified with suitable examples and its properties are studied. Now we present the
basic definitions and results of soft set theory which are studied earlier in [3, 4, 7, 12,
23]. Throughout this work, U refers to an initial universe, E is a set of parameters,
℘(U) is the power set of U and A ⊆ E.

2. Preliminaries

A soft set FA [7] on the universe U is defined by the set FA = {(x, fA(x)) : x ∈
E, fA(x) ∈ ℘(U)} where A ⊆ E and fA : E → ℘(U) such that fA(x) = ∅ if x /∈ A.
Here fA is called an approximate function of the set FA. The set of all soft sets over
U will be denoted by S(U). fA(x) = ∅ means that there are no elements in U related
to the parameter x ∈ E. Therefore, we do not display such elements in the soft sets,
as it is meaningless to consider such parameters. Let FA ∈ S(U). If fA(x) = ∅ for
all x ∈ E, then FA is called an empty soft set [12], denoted by F∅. If fA(x) = U for
all x ∈ A, then FA is called an A-universal soft set [7], denoted by FÃ. If A = E,
then the A-universal soft set is called a universal soft set [7], denoted by FẼ . Let FA,

FB ∈ S(U). Then FA is a soft subset of FB , denoted by FA⊆̃FB , if fA(x) ⊆ fB(x)
for all x ∈ E. Also, FB is called the soft superset of FA [7]. Let FA, FB ∈ S(U).
Then FA is a soft equal of FB [7], denoted by FA = FB , if fA(x) = fB(x) for all
x ∈ E. The soft union [7], denoted by FA∪̃FB , the soft intersection [7], denoted by
FA∩̃FB and the soft difference [7], denoted by FA\̃FB of FA and FB are defined by
the approximate functions,
fA∪̃B(x) = fA(x) ∪ fB(x),
fA∩̃B(x) = fA(x) ∩ fB(x) and
f

A\̃B(x) = fA(x)\fB(x), respectively. The soft complement F c̃
A [3] of FA is defined

by the approximate function, fAc̃(x) = f c
A(x) where f c

A(x) is the complement of the
set fA(x), that is, f c

A(x) = U\fA(x) for all x ∈ E.
Let I be an arbitrary index set and FA ∈ S(U). The soft power set [7] of FA

is defined by, P̃ (FA) = {FAi : FAi⊆̃FA : i ∈ I ⊆ N}. Its cardinality is defined
by,

∣∣∣P̃ (FA)
∣∣∣ = 2

∑
x∈E |fA(x)|, where |fA(x)| is the cardinality of fA(x). Let {FAi}i∈I

be a subfamily of S(U). Then the soft union [23] of these soft sets is the soft set
8



V. Renukadevi et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 1, 7–17

FA = ∪̃i∈IFAi
where fA = ∪i∈IfAi

and the soft intersection [23] of these soft sets is
the soft set FA = ∩̃i∈IFAi where fA = ∩i∈IfAi .

Let FA ∈ S(U). Then the soft topology [7] on FA, denoted by τ̃ , is the collection
of soft subsets of FA having the following properties:

(a) F∅, FA ∈ τ̃ .

(b) If {FAi⊆̃FA | i ∈ I ⊆ τ̃ , then ∪̃i∈IFAi ∈ τ̃ .

(c) If {FAi⊆̃FA | 1 ≤ i ≤ n, n ∈ N} ⊆ τ̃ , then ∩̃n
i=1FAi

∈ τ̃ .
The pair (FA, τ̃) is called a soft topological space [7]. Every element of τ̃ is called

a soft open set [7]. From the definition of soft topological space, F∅ and FA are soft
open sets. Let (FA, τ̃) be a soft topological space and B̃ ⊆ τ̃ . If every element of τ̃

can be written as the soft union of elements of B̃, then B̃ is called a soft basis [7]
for the soft topology τ̃ . The following lemmas will be useful in the sequel. We use
some of the results in [7] and [4] without mentioning it, when the context is clear.

Lemma 2.1 ([3]). Let FA ∈ S(U). Then (F c̃
A)c̃ = FA.

Lemma 2.2 ([7]). Let FA ∈ S(U). Then the following hold.
(a) F c̃

∅ = FẼ .

(b) F c̃
Ẽ

= F∅.

Lemma 2.3 ([23], Proposition 3.3). Let I be an arbitrary index set and {FAi}i∈I

be a subfamily of S(U). Then the following hold.
(a) (∪̃i∈IFAi)

c̃ = ∩̃i∈IF
c̃
Ai

.

(b) (∩̃i∈IFAi)
c̃ = ∪̃i∈IF

c̃
Ai

.

Lemma 2.4 ([23], Proposition 3.5). Let FA, FB ∈ S(U). Then the following hold.
(a) FA⊆̃FB if and only if FA∩̃FB = FA.

(b) FA⊆̃FB if and only if FA∪̃FB = FB .

3. Properties on soft sets

The following Example 3.1 shows that for any soft sets FA and FB of U with
FA⊆̃FB , A need not be a subset of B. Example 3.2 below shows that for any soft
sets FA and FB of U with FA = FB , A need not be equal to B. Let FA ∈ S(U). Then
the approximate set, KA of the soft set FA is defined by KA = {x ∈ E | fA(x) 6= ∅}.
Example 3.1. Consider the sets U = {h1, h2, h3}, E = {x1, x2, x3, x4, x5}, A =
{x1, x2, x3, x5} and B = {x3, x4, x5}. Clearly, A * B. Suppose fA(x1) = fA(x2) =
∅, fA(x3) = {h1}, fA(x5) = {h2}, fB(x3) = {h1, h3}, fB(x4) = {h1} and fB(x5) =
{h1, h2}. Then fA(x) ⊆ fB(x) for all x ∈ E and so FA⊆̃FB .

Example 3.2. Consider the sets U = {h1, h2, h3}, E = {x1, x2, x3}, A = {x1, x2}
and B = {x2, x3}. Suppose fA(x1) = ∅, fA(x2) = {h1, h3} and fB(x2) = {h1, h3},
fB(x3) = ∅. Then FA = {(x2, {h1, h3}} and FB = {(x2, {h1, h3})}. Therefore,
FA = FB . But A 6= B.

Example 3.3. Let U = {h1, h2, h3, h4}, E = {x1, x2, x3, x4} and B = {x1, x2, x3} ⊆
E. Suppose that fB(x1) = {h1}, fB(x2) = {h2} and fB(x3) = ∅. Then KB =
{x1, x2}.

9
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Theorem 3.4. Let FA ∈ S(U). Then KA ⊆ A and KA ⊆ E.

Proof. By the definition of KA, KA ⊆ E. If x /∈ A, then fA(x) = ∅. Therefore,
x /∈ KA. Hence KA ⊆ A. ¤
Theorem 3.5. Let FA, FB ∈ S(U). Then the following hold.

(a) If FA⊆̃FB , then KA ⊆ KB .
(b) If FA = FB , then KA = KB .

Proof. (a) Assume that FA⊆̃FB . Let x ∈ KA. Then fA(x) 6= ∅. Since FA⊆̃FB ,
fA(y) ⊆ fB(y) for all y ∈ E. Since fA(x) 6= ∅, fB(x) 6= ∅. Thus, x ∈ KB . Therefore,
KA ⊆ KB .

(b) Assume that FA = FB . Then fA(x) = fB(x) for all x ∈ E. That is, fA(x) ⊆
fB(x) and fB(x) ⊆ fA(x) for all x ∈ E. Therefore, FA⊆̃FB and FB⊆̃FA. By (a),
KA ⊆ KB and KB ⊆ KA. Hence KA = KB . ¤

The following Example 3.6 shows that the converse of Theorem 3.5 need not be
true in general.

Example 3.6. (a) Consider U = {u1, u2, u3, u4}, E = {x1, x2, x3}, A = {x3} and
B = {x1, x2, x3}. Suppose FA = {(x3, {u2, u3})} and FB = {(x2, {u4}), (x3, {u1})}.
Then KA = {x3} and KB = {x2, x3}. Therefore, KA ⊆ KB . But FA*̃FB .

(b) Consider U = {u1, u2, u3, u4}, E = {x1, x2, x3, x4}, A = {x1, x2, x3} and B =
{x2, x3, x4}. Suppose that FA = {(x2, {u2}), (x3, {u3})} and FB = {(x2, {u4}), (x3,
{u1})}. Then KA = {x2, x3} = KB . Therefore, KA = KB . Clearly, FA 6= FB .

Theorem 3.7. Let FA, FB ∈ S(U). Then the following hold.
(a) If FA⊆̃FB and KA = A, then A ⊆ B.
(b) If FA = FB , KA = A and KB = B, then A = B.

Proof. (a) Assume that FA⊆̃FB and KA = A. Since FA⊆̃FB , by Theorem 3.5,
KA ⊆ KB and so A ⊆ KB . By Theorem 3.4, KB ⊆ B. Hence A ⊆ B.

(b) follows from Theorem 3.5(b). ¤
The following Example 3.8 shows that the converse of Theorem 3.7 need not be

true in general.

Example 3.8. (a) Consider U = {u1, u2}, E = {x1, x2, x3, x4}, A = {x1, x2, x3} and
B = E. Clearly, A ⊆ B. Suppose that FA = {(x1, {u1}), (x2, {u2})} and FB = FẼ .

Then KA = {x1, x2}. Here FA⊆̃FB . But KA 6= A.
(b) Consider U = {u1, u2, u3}, E = {x1, x2, x3, x4} and A = B = {x1, x2, x3}.

Suppose that FA = FB = {(x1, {u1}), (x2, {u2})}. Then KA = {x1, x2} = KB . Here
FA = FB and A = B. But KA 6= A and KB 6= B.

Theorem 3.9. Let FA, FB ∈ S(U) with FA⊆̃FB . Then the following hold.
(a) If A ∩B = ∅, then fA(x) = ∅ for all x ∈ A.
(b) If A ∩B 6= ∅, then fA(x) = ∅ for all x 6∈ A ∩B.

Proof. If FA⊆̃FB , then fA(x) ⊆ fB(x) for all x ∈ E.
(a) Assume that A ∩ B = ∅. If x ∈ A, then x 6∈ B which implies fB(x) = ∅

and so fA(x) = ∅, since fA(x) ⊆ fB(x) for all x ∈ E. Since x ∈ A is arbitrary,
fA(x) = ∅ for all x ∈ A.

10
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(b) Suppose that A ∩ B 6= ∅. Let x 6∈ A ∩ B. Then x 6∈ A or x 6∈ B. If x 6∈ A,
then fA(x) = ∅. If x 6∈ B, then fB(x) = ∅. Since fA(x) ⊆ fB(x) for all x ∈ E,
fA(x) = ∅ for all x ∈ E. Therefore, fA(x) = ∅ for all x 6∈ A ∩B. ¤
Theorem 3.10. Let FA ∈ S(U). If A = ∅, then FA = F∅.

Proof. Let FA ∈ S(U). Since A = ∅, fA(x) = ∅ for all x 6∈ A. That is, fA(x) = ∅
for all x ∈ E = Ac, since A = ∅ and A ⊆ E. Therefore, by definition, FA = F∅. ¤

The converse of Theorem 3.10 need not be true as shown by the following Example
3.11.

Example 3.11. Consider U = {h1, h2, h3, h4}, E = {x1, x2, x3} and A = {x1, x2} ⊆
E. Suppose that fA(x1) = fA(x2) = ∅. Then fA(x) = ∅ for all x ∈ E. By definition,
FA = F∅. But here A 6= ∅.

Theorem 3.12. Let S(U) be the collection of all soft sets over U. Then the following
hold.

(a) F∅ is the soft subset of every soft set in S(U).
(b) FẼ is the soft superset of every soft set in S(U).

Proof. (a) Let FA be any soft set in S(U). Let fA and fB be the approximate
functions of FA and F∅, respectively. Then fB(x) = ∅ for all x ∈ E. Since empty
set is a subset of every set, fB(x) ⊆ fA(x) for all x ∈ E. Therefore, F∅⊆̃FA. Since
FA ∈ S(U) is arbitrary, F∅ is the soft subset of every soft set in S(U).

(b) Let FA be any soft set in S(U) and fA be its approximate function. Since
fA(x) ∈ ℘(U), fA(x) ⊆ U for all x ∈ E. Let fE be the approximate function of FẼ .
Then fE(x) = U for all x ∈ E. This implies that fA(x) ⊆ fE(x) for all x ∈ E. Hence
FA⊆̃FẼ . Since FA ∈ S(U) is arbitrary, FẼ is the soft superset of every soft set in
S(U). ¤

Theorem 3.13. Let FÃ, FB ∈ S(U) where B ⊂ A. Then FB⊆̃FÃ.

Proof. Suppose that fA and fB are the approximate functions for the soft sets FÃ
and FB , respectively. Then fA(x) = U for all x ∈ A. Let (x, fB(x)) ∈ FB . Then
x ∈ E and fB(x) ∈ ℘(U). If x ∈ B, then x ∈ A and hence fA(x) = U ⊇ fB(x).
Therefore, fB(x) ⊆ fA(x) for all x ∈ B. Suppose that x 6∈ B. Then fB(x) = ∅ ⊆
U = fA(x). Therefore, fB(x) ⊆ fA(x) for all x 6∈ B. Hence fB(x) ⊆ fA(x) for all
x ∈ B ∪Bc = E. Therefore, FB⊆̃FÃ. ¤
Theorem 3.14. Let FA be any soft set in S(U). Then the following hold.

(a) If FA = F∅, then every soft subset of FA is also empty.
(b) If FA 6= F∅, then every soft superset of FA is also non-empty.

Proof. (a) Suppose that FA = F∅. Then fA(x) = ∅ for all x ∈ E. Let FB be any
soft subset of FA. Then fB(x) ⊆ fA(x) for all x ∈ E. Since fA(x) = ∅ for all x ∈ E,
fB(x) = ∅ for all x ∈ E. Therefore, by definition, FB = F∅. Hence every soft subset
of FA is also empty.

(b) Suppose that FA 6= F∅. Then fA(x) 6= ∅ for some x ∈ E. Let FB be any soft
superset of FA. Then fA(x) ⊆ fB(x) for all x ∈ E. Since fA(x) 6= ∅ for some x ∈ E,
fB(x) 6= ∅ for those x ∈ E. Therefore, by definition, FB 6= F∅. Hence every soft
superset of FA is also non-empty. ¤

11
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Theorem 3.15. Let FA ∈ S(U). Then the following hold.
(a) FA\̃F∅ = FA

(b) F∅\̃FA = F∅
(c) FẼ \̃FA = F c̃

A

(d) FA\̃FẼ= F∅

(e) FA\̃FA = F∅
(f) FA\̃F c̃

A = FA

(g) F c̃
A\̃FA = F c̃

A.

Proof. Let FA ∈ S(U) and fA be the approximate function of FA.
(a) Let fB be the approximate function of F∅. Then fB(x) = ∅ for all x ∈ E. For

every x ∈ E, f
A\̃B(x) = fA(x)\fB(x) = fA(x)\∅ = fA(x). Therefore, FA\̃F∅ = FA.

(b) For every x ∈ E, f
B\̃A(x) = fB(x)\fA(x) = ∅\fA(x) = ∅. Therefore,

F∅\̃FA = F∅.
(c) Let fE be the approximate function of FẼ . Then fE(x) = U for all x ∈ E.

For every x ∈ E, f
E\̃A(x) = fE(x)\fA(x) = U\fA(x) = fc

A(x) = fAc̃(x). Therefore,

FẼ \̃FA = F c̃
A.

(d) For every x ∈ E, f
A\̃E(x) = fA(x)\fE(x) = fA(x)\U = ∅, since fA(x) ⊆ U.

Therefore, FA\̃FẼ = F∅.

(e) For every x ∈ E, f
A\̃A(x) = fA(x)\fA(x) = ∅. Therefore, FA\̃FA = F∅.

(f) For every x ∈ E, f
A\̃Ac̃(x) = fA(x)\fAc̃(x) = fA(x)\f c

A(x) = fA(x). There-

fore, FA\̃F c̃
A = FA.

(g) For every x ∈ E, f
Ac̃\̃A(x) = fAc̃(x)\fA(x) = f c

A(x)\fA(x) = f c
A(x) = fAc̃(x).

Therefore, F c̃
A\̃FA = F c̃

A. ¤

Theorem 3.16. Let FA, FB ∈ S(U). Then the following hold.
(a) FA∩̃FB = F∅ if and only if FA\̃FB = FA.

(b) FA∩̃FB = F∅ if and only if FB \̃FA = FB .

(c) FA⊆̃FB if and only if FA\̃FB = F∅.

Proof. Let FA, FB ∈ S(U). Let fA and fB be the approximate functions for the soft
sets FA and FB , respectively.

(a) FA∩̃FB = F∅ ⇔ fA∩̃B(x) = ∅ for all x ∈ E ⇔ fA(x) ∩ fB(x) = ∅ for
all x ∈ E ⇔ fA(x)\fB(x) = fA(x) for all x ∈ E ⇔ f

A\̃B(x) = fA(x) for all

x ∈ E ⇔ FA\̃FB = FA.
(b) FA∩̃FB = F∅ ⇔ fA∩̃B(x) = ∅ for all x ∈ E ⇔ fA(x) ∩ fB(x) = ∅ for

all x ∈ E ⇔ fB(x)\fA(x) = fB(x) for all x ∈ E ⇔ f
B\̃A(x) = fB(x) for all

x ∈ E ⇔ FB \̃FA = FB .

(c) FA⊆̃FB ⇔ fA(x) ⊆ fB(x) for all x ∈ E ⇔ fA(x)\fB(x) = ∅ for all x ∈ E ⇔
f

A\̃B(x) = ∅ for all x ∈ E ⇔ FA\̃FB = F∅. ¤

Theorem 3.17. Let FA, FB ∈ S(U). Then the following hold.
12
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(a) FA\̃FB = FA∩̃F c̃
B

(b) FA = (FA∩̃FB)∪̃(FA\̃FB).

Proof. Let FA, FB ∈ S(U). Let fA and fB be the approximate functions for the soft
sets FA and FB , respectively.

(a) For every x ∈ E, f
A\̃B(x) = fA(x)\fB(x) = fA(x)∩f c

B(x) = fA(x)∩fBc̃(x) =

fA∩̃Bc̃(x). Therefore, FA\̃FB = FA∩̃F c̃
B .

(b) For every x ∈ E, f
(A∩̃B)∪̃(A\̃B)

(x) = f(A∩̃B)(x)∪ f
A\̃B(x) = [fA(x)∩ fB(x)]∪

[fA(x)\fB(x)] = fA(x). Therefore, FA = (FA∩̃FB)∪̃(FA\̃FB). ¤

Theorem 3.18. Let FA, FB , FC ∈ S(U). Then the following hold.
(a) FA∩̃(FB \̃FC) = (FA∩̃FB)\̃(FA∩̃FC)
(b) FA\̃(FB∪̃FC) = (FA\̃FB)∩̃(FA\̃FC)
(c) FA\̃(FB∩̃FC) = (FA\̃FB)∪̃(FA\̃FC).

Proof. Let FA, FB , FC ∈ S(U). Let fA, fB and fC be the approximate functions
for the soft sets FA, FB and FC , respectively.

(a) For every x ∈ E, f
A∩̃(B\̃C)

(x) = fA(x) ∩ f
B\̃C(x) = fA(x) ∩ [fB(x)\fC(x)] =

[fA(x) ∩ fB(x)]\[fA(x) ∩ fC(x)] = fA∩̃B(x)\fA∩̃C(x) = f
(A∩̃B)\̃(A∩̃C)

(x). Therefore,

FA∩̃(FB \̃FC) = (FA∩̃FB)\̃(FA∩̃FC).
(b) For every x ∈ E, f

A\̃(B∪̃C)
(x) = fA(x)\fB∪̃C(x) = fA(x)\[fB(x) ∪ fC(x)] =

[fA(x)\fB(x)] ∩ [fA(x)\fC(x)] = f
A\̃B(x) ∩ f

A\̃C(x) = f
(A\̃B)∩̃(A\̃C)

(x). Therefore,

FA\̃(FB∪̃FC) = (FA\̃FB)∩̃(FA\̃FC).
(c) For every x ∈ E, f

A\̃(B∩̃C)
(x) = fA(x)\fB∩̃C(x) = fA(x)\[fB(x) ∩ fC(x)] =

[fA(x)\fB(x)] ∪ [fA(x)\fC(x)] = f
A\̃B(x) ∪ fA\C(x) = f

(A\B)∪̃(A\̃C)
(x). Therefore,

FA\̃(FB∩̃FC) = (FA\̃FB)∪̃(FA\̃FC). ¤

A soft set P on the universe U is called a soft point if and only if its approximate
function p takes the value ∅ for all y ∈ E except one, say x ∈ E. That is, p(x) ={ {u} if x = y
∅ if x 6= y

where p : E → ℘(U), x ∈ E, and {u} ∈ ℘(U). Therefore, P =

{(x, {u})}. The class of all soft points in U is denoted by P̃ . Clearly, P 6= F∅. A soft
point P is said to be in FA, denoted by, P ∈̃FA if and only if p(x) ⊆ fA(x) for all
x ∈ E. The following Example 3.19 shows the existence of a soft point.

Example 3.19. Let U = {u1, u2} and E = {x1, x2}. Then the soft points are
{(x1, {u1})}, {(x1, {u2})}, {(x2, {u1})} and {(x2, {u2})}.
Example 3.20. Let U = {u1, u2, u3} and E = {x1, x2}. Then the soft points are
{(x1, {u1})}, {(x1, {u2})}, {(x1, {u3})}, {(x2, {u1})}, {(x2, {u2})} and {(x2, {u3})}.
Let FA = {(x1, {u1, u2}), (x2, {u3})}. Then the soft points of FA are {(x1, {u1})},
{(x1, {u2})} and {(x2, {u3})}.
Theorem 3.21. Every soft set FA in S(U) can be expressed as the soft union of all
soft points which belongs to FA. That is, if FA 6= F∅, then FA = ∪̃P ∈̃FA

P.

13
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Proof. Let FA be any soft set in S(U) and fA be its approximate function. Assume
that FA 6= F∅. Then for every x ∈ E, fA(x) = ∪ui∈fA(x){ui}. That is, fA(x) =

∪{ui}⊆fA(x){ui} = ∪pi(x)⊆fA(x)pi(x) for all x ∈ E, where pi(x) =
{ {ui} if x = y
∅ if x 6= y

and pi’s are the approximate function of the soft set Pi. Therefore, Pi’ s are the soft
points in FA. Hence FA = ∪̃Pi∈̃FA

Pi. That is, FA = ∪̃P ∈̃FA
P. ¤

Theorem 3.22. Let FA, FB ∈ S(U). Then FA⊆̃FB if and only if P ∈̃FA ⇒ P ∈̃FB

for every P ∈ P̃ .

Proof. Let FA, FB ∈ S(U). Assume that FA⊆̃FB . Let P ∈ P̃ be arbitrary such that
P ∈̃FA. Then P ⊆̃FA. Since FA⊆̃FB and P ⊆̃FA, P ⊆̃FB . This implies that P ∈̃FB .

Since P ∈ P̃ is arbitrary, P ∈̃FA implies that P ∈̃FB for every P ∈ P̃ . Conversely,

let x ∈ E and u ∈ fA(x). Then {u} ⊆ fA(x). If p(y) =
{ {u} if y = x
∅ if y 6= x

is the

approximate function for the soft point P̃ , then p(x) ⊆ fA(x) for all x ∈ E and
hence P ∈̃FA which implies P ∈̃FB , by hypothesis. Then p(x) ⊆ fB(x) for all x ∈ E.
Thus, {u} ⊆ fB(x) for x = y and so u ∈ fB(x). Hence fA(x) ⊆ fB(x). Since x ∈ E

is arbitrary, fA(x) ⊆ fB(x) for every x ∈ E. Therefore, FA⊆̃FB . ¤

Corollary 3.23. Let FA, FB ∈ S(U). Then FA = FB if and only if P ∈̃FA ⇔ P ∈̃FB

for every P ∈ P̃ .

Theorem 3.24. Let FA, FB ∈ S(U). Then FA⊆̃FB if and only if P /̃∈FB ⇒ P /̃∈FA

for every P ∈ P̃ .

Proof. Let FA, FB ∈ S(U). Assume that FA⊆̃FB . Let P ∈ P̃ be arbitrary such

that P /̃∈FB . Then p(x) * fB(x) for some x ∈ E. Now p(x) =
{ {u} if x = y
∅ if x 6= y.

Since empty set is a subset of every set, {u} * fB(x) for x = y in E which implies
u /∈ fB(x) for x = y in E which in turn implies that u /∈ fA(x) for x = y in E, since
fA(x) ⊆ fB(x) for all x ∈ E. Hence {u} * fA(x) for x = y in E so that p(x) * fA(x)
for x = y in E. Hence P /̃∈FA. Since P ∈ P̃ is arbitrary, P /̃∈FB implies that P /̃∈FA

for every P ∈ P̃ . Conversely, assume that P /̃∈FB implies P /̃∈FA for every P ∈ P̃ . Let

x ∈ E and suppose that u /∈ fB(x). Then {u} * fB(x). If p(y) =
{ {u} if y = x
∅ if y 6= x

is the approximate function for the soft point P̃ , then p(x) * fB(x) for all x ∈ E

and hence P /̃∈FB which implies that P ˜6∈FA, by hypothesis. Then p(x) * fA(x) for
all x ∈ E. Thus, {u} * fA(x) for x = y and so u /∈ fA(x). Hence fA(x) ⊆ fB(x).
Since x ∈ E is arbitrary, fA(x) ⊆ fB(x) for every x ∈ E. Therefore, FA⊆̃FB . ¤

Theorem 3.25. Let FA ∈ S(U). If P /̃∈FA, then P ∈̃F c̃
A for every P ∈ P̃ .

Proof. Let FA ∈ S(U). Let P ∈ P̃ be arbitrary such that P /̃∈FA. Then p(x) * fA(x)

for some x ∈ E where p(x) =
{ {u} if x = y
∅ if x 6= y.

Since empty set is a subset of every

set, {u} * fA(x) for x = y in E. This implies u /∈ fA(x) for x = y in E which
14
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implies u ∈ f c
A(x) for x = y in E which in turn implies that u ∈ fAc̃(x) for x = y

in E. Hence {u} ⊆ fAc̃(x), for x = y in E. That is, p(x) ⊆ fAc̃(x) for x = y in E.
Also, since empty set is a subset of every set, p(x) ⊆ fAc̃(x) for all x ∈ E. Therefore,
P ∈̃F c̃

A. Since P ∈ P̃ is arbitrary, if P /̃∈FA, then P ∈̃F c̃
A for every P ∈ P̃ . ¤

Theorem 3.26. Let I be an arbitrary index set and let {FAi | i ∈ I} be a family of
soft sets in S(U). Then P ∈̃∪̃{FAi

| i ∈ I} if and only if there exists i ∈ I such that
P ∈̃FAi

.

Proof. Assume that P ∈̃∪̃{FAi
| i ∈ I}. Then p(x) ⊆ ∪{fAi

(x) | i ∈ I} for every

x ∈ E. Now p(x) =
{ {u} if x = y
∅ if x 6= y.

Thus, for x = y, {u} ⊆ ∪{fAi(x) | i ∈ I}
which implies u ∈ ∪{fAi

(x) | i ∈ I} so that u ∈ fAi
(x) for some i ∈ I. Therefore, for

x = y, p(x) ⊆ fAi(x) for some i ∈ I. If x 6= y, then p(x) = ∅ and so p(x) ⊆ fAi(x)
for every i ∈ I. Hence p(x) ⊆ fAi

(x) for some i ∈ I and for all x ∈ E. Therefore,
P ∈̃FAi

for some i ∈ I. Converse follows from the fact that FAi
⊆̃∪̃FAi

for every
i ∈ I. ¤
Theorem 3.27. Let I be an arbitrary index set. Let {FAi | i ∈ I} be a family of
soft sets in S(U). Then P ∈̃∩̃{FAi | i ∈ I} if and only if P ∈̃FAi for every i ∈ I.

Proof. Let P ∈̃FAi for every i ∈ I. Then p(x) ⊆ fAi(x) for every i ∈ I and for all
x ∈ E. Thus, for x = y, {u} ⊆ fAi(x) for every i ∈ I so that {u} ⊆ ∩{fAi(x) | i ∈ I}
and so p(x) ⊆ ∩{fAi(x) | i ∈ I}. Also, p(x) ⊆ ∩{fAi(x) | i ∈ I} for x 6= y. Hence
p(x) ⊆ ∩{fAi(x) | i ∈ I} for all x ∈ E. Therefore, P ∈̃∩̃{FAi | i ∈ I}. Converse
follows from the fact ∩̃FAi

⊆̃FAi for every i ∈ I. ¤
Theorem 3.28. If (FA, τ̃1) and (FA, τ̃2) are two soft topological spaces, then (FA, τ̃1∩
τ̃2) is a soft topology.

Proof. Let (FA, τ̃1) and (FA, τ̃2) be two soft topological spaces. Since τ̃1 and τ̃2 are
soft topologies on FA, FA ∈ τ̃1 and FA ∈ τ̃2 and so FA ∈ τ̃1 ∩ τ̃2. Let {FAi

⊆̃FA | i ∈
I ⊆ N} be arbitrary family of soft sets in τ̃1 ∩ τ̃2. Then for every i ∈ I ⊆ N, FAi ∈ τ̃1

and FAi ∈ τ̃2. Since τ̃1 and τ̃2 are soft topologies, ∪̃i∈IFAi ∈ τ̃1 and ∪̃i∈IFAi ∈ τ̃2

and so ∪̃i∈IFAi ∈ τ̃1 ∩ τ̃2. Let {FAi⊆̃FA | 1 ≤ i ≤ n, n ∈ N} be a finite family of soft
sets in τ̃1 ∩ τ̃2. Since τ̃1 and τ̃2 are soft topologies, ∩̃n

i=1FAi ∈ τ̃1 and ∩̃n
i=1FAi ∈ τ̃2.

Thus, ∩̃n
i=1FAi ∈ τ̃1 ∩ τ̃2. Therefore, τ̃1 ∩ τ̃2 is a soft topology on FA. ¤

The following Example 3.29 shows that union of two soft topologies on FA need
not be a soft topology on FA.

Example 3.29. Consider U = {u1, u2, u3}, E = {x1, x2, x3}, A = {x1, x2}, FA =
{(x1, {u1, u2}), (x2, {u2})}, FA1 = {(x1, {u2})}, FA2 = {(x2, {u2})} and FA3 =
{(x1, {u1, u2})}. If τ̃1 = {F∅, FA, FA2} and τ̃2 = {F∅, FA, FA1 , FA3}, then (FA, τ̃1)
and (FA, τ̃2) are soft topological spaces on FA. But τ̃1∪ τ̃2 = {F∅, FA, FA1 , FA2 , FA3}
is not a soft topology, since FA1 ∪̃FA2 = {(x1, {u2}), (x2, {u2})} /∈ τ̃1 ∪ τ̃2.

Theorem 3.30. Let (FA, τ̃) be a soft topological space. Then B̃ be its soft basis if
and only if for every FG ∈ τ̃ and for each P ∈̃FG, there is some FB ∈ B̃ such that
P ∈̃FB⊆̃FG.

15
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Proof. Assume that B̃ is a soft basis. Then for every FG ∈ τ̃ , there exists {FBi
}i∈I

in B̃ such that ∪̃i∈IFBi = FG. If P ∈̃FG, then P ∈̃∪̃i∈IFBi and so P ∈̃FBi for some
i ∈ I. Since ∪̃i∈IFBi = FG, FBi⊆̃FG for every i ∈ I. Thus, for every FG ∈ τ̃

with P ∈̃FG, there is some FBi ∈ B̃ such that P ∈̃FBi⊆̃FG. Conversely, let FG ∈ τ̃

and P ∈̃FG. Then by hypothesis, there exists some FBi
∈ B̃ such that P ∈̃FBi

⊆̃FG.

Hence P ∈̃∪̃i∈IFBi
⊆̃FG. Since P ∈̃FG is arbitrary, FG⊆̃∪̃i∈IFBi

⊆̃FG. Thus, FG =
∪̃i∈IFBi . ¤

Theorem 3.31. Let FA be a non-empty soft set. A family B̃ of soft subsets of
FA is a soft base for a soft topology τ̃ on FA if and only if (a)FA = ∪̃B̃ and (b)
for every FC , FD in B̃ and for each P in FC∩̃FD, there exists FH in B̃ such that
P ∈̃FH⊆̃FC∩̃FD.

Proof. Suppose the family B̃ is a soft base for the soft topology τ̃ on FA. Since
FA ∈ τ̃ , we have FA = ∪̃B̃. This establishes (a). Let FC , FD ∈ B̃ and P ∈̃FC∩̃FD.

Since B̃ ⊆ τ̃ , FC , FD ∈ τ̃ . Hence FC∩̃FD ∈ τ̃ , since τ̃ is a soft topology. By
Theorem 3.30, there exists P in B̃ such that P ∈̃FH⊆̃FC∩̃FD. This establishes (b).
Conversely, suppose that conditions (a) and (b) hold. By (a) FA ∈ τ̃ and clearly,
F∅ ∈ τ̃ . Let FC , FD ∈ τ̃ and P ∈̃FC∩̃FD. Then FC = ∪̃FG∈B̃FG so that FG⊆̃FC

for every FG ∈ B̃. Since P ∈̃FC , P ∈̃∪̃FG∈B̃FG and so P ∈̃FG for some FG ∈ B̃.

Hence there exists some FG ∈ B̃ such that P ∈̃FG⊆̃FC . Similarly, there exists some
FH ∈ B̃ such that P ∈̃FH⊆̃FD. Hence P ∈̃FG∩̃FH⊆̃FC∩̃FD. By (b), we can find
FWP in B̃ such that P ∈̃FWP

⊆̃FG∩̃FH . Thus, P ∈̃FWP
⊆̃FC∩̃FD for all P ∈̃FC∩̃FD.

Let P ∈̃∪̃P ∈̃FC ∩̃FD
FWP . Then P ∈̃FWP with P ∈̃FC∩̃FD. Hence ∪̃P ∈̃FC ∩̃FD

FWP
⊆̃FC

∩̃FD. Now P ∈̃FWP
for P ∈̃FC∩̃FD implies that P ⊆̃FWP

for P ∈̃FC∩̃FD which implies
that ∪̃P ∈̃FC ∩̃FD

P ⊆̃∪̃P ∈̃FC ∩̃FD
FWP

. Hence by Theorem 3.21, FC∩̃FD⊆̃∪̃P ∈̃FC ∩̃FD

FWP
. Hence FC∩̃FD = ∪̃P ∈̃FC ∩̃FD

FWP
and so FC∩̃FD ∈ τ̃ . Suppose {FAi | i ∈ I}

be an arbitrary subfamily of elements in τ̃ . Then for every i ∈ I, FAi ∈ τ̃ and so
FAi can be expressed as a soft union of members of B̃. Hence ∪̃i∈IFAi ∈ τ̃ . Thus,
τ̃ satisfies the condition for being a soft topology on FA. Hence B̃ is a soft base for
the soft topology τ̃ . ¤
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