
Annals of Fuzzy Mathematics and Informatics

Volume 8, No. 1, (July 2014), pp. 33–46

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Hesitant fuzzy rough sets through hesitant fuzzy
relations

D. Deepak D, Sunil Jacob John

Received 1 October 2013; Revised 15 November 2013; Accepted 19 December 2013

Abstract. Introducing rough sets in hesitant fuzzy set domain and
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1. Introduction

With the increase in data flowing through the internet and our management
systems, storage and extraction of valuable information has attained the utmost im-
portance when it comes to Information systems. Of the many techniques of knowl-
edge discovery, rough set based systems have emerged as a good alternative and
research in this area is booming. Rough sets were introduced by Zdzislaw Pawlak
[16]. When compared to Fuzzy set theory, Rough set theory approaches uncertainty
in a different manner. It characterizes a set with the help of its lower and upper
approximations which makes it suitable for its use in information systems.

Fuzzy Set Theory [30] added a new branch to set theory by allowing us to give
membership values to the elements in a set. This new idea gave fuzzy set theory
scope for application in a wide range of fields, opening new areas of research for
researchers all over the world. Atanassov’s intuitionistic fuzzy sets [1] took this
area one step further by allotting membership and non-membership values for the
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elements in a set. Equivalence relations in these cases have also been studied [3].
Yang Hai-long and Li Sheng-gang [10] discuss the intuitionistic fuzzy relations in
great detail.

One of the latest development to this area would be the introduction of “Hesitant
fuzzy sets” by Vicenc Torra [21, 22, 26]. As the name suggests this allows scope
for hesitancy. Hesitant fuzzy sets (HFS) allow us to give room for imprecision in
assigning the membership values by considering all the possible membership values.
Correlation coefficient formulas for HFSs [6] have been applied to clustering anal-
ysis under hesitant fuzzy environment. In [18] hesitant fuzzy sets are extended by
intuitionistic fuzzy sets and their application in decision support system are stud-
ied. Hesitant fuzzy sets are used in multiple attribute decision making problems
[24] in which the attributes are in different priority level. Verma and Sharma [23]
introduced new Operations over Hesitant Fuzzy Sets. New types of fuzzy preference
structures have been introduced to describe uncertain evaluation in group decision
making processes [5]. Xia et al. [27] have studied the aggregation of the hesitant
fuzzy information. Similarity measures for HFS and their applications are discussed
in [2, 28, 32] and Farhadinia [9] discusses information measures. Zhu and Xu [33]
gives a Hesitant fuzzy linguistic preference relation and its consistency measures
based on hesitant fuzzy linguistic terms. The geometric bonferroni mean is ex-
tended to Hesitant fuzzy environment in [36] and the bonferroni means in Hesitant
fuzzy environment for multi-criteria decision making is discussed in [34]. In [35] Zhu
et al. have introduced the dual hesitant fuzzy sets which consists of the membership
hesitancy function and the nonmembership hesitancy function. Ranking methods
with hesitant fuzzy preference relations in group decision making environments is
explored in [37].

Rough sets and their hybrid structures (including those with fuzzy sets) have
evolved into an area which has immense applications in diverse fields like decision-
making, pattern recognition, image processing, medical diagnosis, and data mining.
They deal with uncertainty arising from imprecision and ambiguity of information.
Dubois and Prade [8] introduced fuzzy rough sets as a fuzzy generalization of rough
sets. Wei et al. [25] have studied the relationship among the generalized rough set
models for hybrid data. Kandil et al. [13] constructed a new rough set structure
for a given ideal, with a topology finer than that of the earlier methods. Variable
precision fuzzy rough set model is one of the suitable tools for analyzing informa-
tion systems with crisp or fuzzy attributes [19]. Hassanien [11] introduced a hybrid
scheme that combines the advantages of fuzzy sets and rough sets in conjunction
with statistical feature extraction techniques and used them for breast cancer detec-
tion (by classifying the breast cancer images). Jensen and Shen [12] have presented
a fuzzy-rough method for attribute reduction which alleviates important problems
encountered by traditional rough set attribute reduction such as dealing with noise
and real-valued attributes. Intuitionistic fuzzy rough relations and their properties
have been studied in detail in [15]. Thomas and John [20] introduced the concept
of multi-fuzzy rough sets by combining the multi-fuzzy set and rough set models
thereby studying multi-fuzzy rough relations. Degang and Suyun [7] emphasised
the use of local reduction with fuzzy rough sets for decision systems. Petrosino and
Ferone [17] introduced a new coding/decoding scheme based on the properties and
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operations of rough fuzzy sets for image compression. Zhang et al. [31] defined a
basic vector H(X) and four cut matrices of H(X) which are used to derive the ap-
proximations, positive, boundary and negative regions intuitively. Kozae et al. [14]
have succeeded in reducing the boundary region by increasing the lower approxima-
tion and decreasing the upper approximation . They have studied the applications of
these current methods of rough set theory in network connectivity devices, network
cables, network topologies and viruses. Yang et al. [29] have further generalized the
multi-granulation rough set approach into fuzzy environment using a family of rela-
tions. Bhattacharya and Roy [4] introduced a new concept of IF-rough oscillatory
region and showed its application in the field of decision making.

In an Information system [16] the attribute values pertaining to an element in
the universe can take multiple values. This can be scaled down to form a hesitant
fuzzy set pertaining to each element in the universe. This fact highlights the scope
of introducing Hesitant fuzzy rough sets(HFRS). HFRS’s would lay the foundations
for using Rough sets into information systems where there is hesitancy in the data
values. One of the main applications of HFRS’s would be to discover knowledge
from hybrid data using rough sets. In set valued information systems HFRS’s can
deal with decision tables with real valued conditional attributes taking multiple real
values for a single attribute. Moreover applications involving fuzzy rough sets can
be revisited with this new idea of HFRS’s giving them more flexibility.

Although the major aspect of this paper is the formulation of hesitant fuzzy
rough sets, the major part of the paper is about hesitant fuzzy relations as it is the
building block of hesitant fuzzy rough sets. So the paper first attempts at creating
a theoretical framework in Hesitant Fuzzy Relations. The core of the paper begins
with the section which discusses some preliminaries on Hesitant fuzzy sets and goes
on to basic operations on Hesitant fuzzy sets. The third section introduces relation
on hesitant fuzzy sets and gives the conditions for it to be an equivalence relation.
The paper then goes on to reflexive and symmetric kernel and gives the formulae to
find them. The last section introduces the notion of a hesitant fuzzy rough sets and
then moves on to prove that the Hesitant fuzzy rough approximation operators are
dual to each other.

2. Preliminaries

In this section we discuss some of the basic definitions regarding hesitant fuzzy
sets. Some new definitions of hesitant fuzzy subset and compliment are proposed.
Some properties of operations on Hesitant fuzzy sets are studied to lay the theoritical
framework for further studies in this area.

Definition 2.1 ([21]). Let X be a reference set then a Hesitant fuzzy set(HFS) on
X is defined in terms of a function h that when applied to X returns a subset of
[0, 1] h : X → P [0, 1] where P [0, 1] denotes power set of [0, 1].

The empty hesitant set, the full hesitant set, the set to represent complete igno-
rance for x and the nonsense set are defined as follows:
empty set :h0(x) = 0
full set : hX(x) = 1
complete ignorance h(x) = [0, 1]
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set for a nonsense x : h(x) = φ

Given an hesitant fuzzy set h, its lower and upper bound are defined as follows :
h−(x) = min h(x)
h+(x) = max h(x)

Remark 2.2. For convenience we call h(x) a hesitant fuzzy element (HFE) [26].
Let l(h(x)) be the number of values in h(x).

Example 2.3. X = {a, b, c}
h(a) = {0.8, 0.5, 0.3}
h(b) = {0.9, 0.6, 0.4, 0.1}
h(c) = {0.3, 0.5, 0.7}.

Definition 2.4 ([26]). Score for a HFE , s(h) =
1

l(h)
∑
γ∈h

γ is called the score function

of h.

Definition 2.5. Let h1 and h2 be two HFS’s on X. Then we say that h1 is a subset
of h2 denoted by, h1 ⊆ h2,⇔ h1 {x} ⊆ h2 {x} ∀x ∈ X .
h1 = h2 iff h1 ⊆ h2 and h2 ⊆ h1.

Definition 2.6. Proper subset : (h1 ⊂ h2)
if h1 (x) ⊆ h2 (x) ∀x ∈ X and h2 (x) 6= h1 (x) for some x ∈ X
i.e., h1 (x) ⊆ h2 (x)∀x ∈ X and h2 (x) ⊂ h1 (x) for some x ∈ X.

Definition 2.7. Hesitant Equality :
(h1 ≈ h2) iff s(h1(x)) = s(h2(x)∀x ∈ X.

Definition 2.8. Hesitant subset :
Let h1 and h2 be two hesitant fuzzy sets on X, then we say that h1 is a hesitant
subset of h2 (denoted by h1 ¹ h2) iff s(h1(x)) ≤ s(h2(x))∀x ∈ X.

Definition 2.9. Hesitant proper subset :
h1 ≺ h2 if s(h1(x)) ≤ s(h2(x)∀x ∈ X and s(h1(x)) < s(h2(x) for atleast one x ∈ X.

Remark 2.10. The usual or crisp subset notation defined above becomes a special
case of the hesitant subset case. h1 ⊆ h2 ⇒ h1 ¹ h2 but h1 ¹ h2 ; h1 ⊆ h2.

Definition 2.11 ([21]). Complement :
Given a hesitant fuzzy set represented by its membership function h, its complement
is defined as follows :
hC : X → P [0, 1]
hC(x) =

⋃
γ∈h(x)

{1− γ}

Definition 2.12. Relative complement :
Let h and h1 be two hesitant fuzzy sets on X, then the relative complement of h1

w.r.t h is defined as (h\h1)(x) =
⋃

γ∈h1(x)

{h+ − γ}.

Definition 2.13 ([21]). Given two hesitant fuzzy sets represented by their mem-
bership functions h1 and h2, their union represented by h1

⋃
h2 is defined as

(h1

⋃
h2)(x) =

{
γ ∈ (h1(x)

⋃
h2(x)/γ ≥ max(h−1 , h−2 )

}
=

⋃
γ1∈h1,γ2∈h2

max {γ1, γ2} .
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Definition 2.14 ([21]). Given two hesitant fuzzy sets represented by their mem-
bership functions h1 and h2, their intersection represented by h1

⋂
h2 is defined as

(h1

⋂
h2)(x) =

{
γ ∈ (h1(x)

⋃
h2(x)/γ ≤ min(h+

1 , h+
2 )

}
. =

⋃
γ1∈h1,γ2∈h2

min {γ1, γ2} .

The following lemma studies the properties of Operations on Hesitant Fuzzy Sets.

Lemma 2.15. Let h be a HFS on X. hX denotes the full set and h0 denotes the
empty set.

(1) (h
⋃

hX)(x) = hX(x)
(2) (h

⋃
h0)(x) = h(x)

(3) (a) (h
⋃

hC(x)) 6= hX(x)
(b) (h

⋂
hC(x)) 6= h0(x)

(4) (a) (h
⋂

hX(x)) = h(x)
(b) (h

⋃
h0(x)) = h0(x)

(5) (hC)C = h (Involution)
(6) (a) h1

⋃
h2 = h2

⋃
h1 (Commutativity)

(b) h1

⋂
h2 = h2

⋂
h1

(7) (a) (h1

⋃
h2)

⋃
h3 = h1

⋃
(h2

⋃
h3) (Associativity)

(b) (h1

⋂
h2)

⋂
h3 = h1

⋂
(h2

⋂
h3)

(8) h1

⋂
(h2

⋃
h3) = (h1

⋂
h2)

⋃
(h1

⋂
h3) (Distributivity)

(9) (a) (h1

⋃
h2)C = hC

1

⋂
hC

2

(b) (h1

⋂
h2)C = hC

1

⋃
hC

2

Proof. (1)

(h
⋃

hX(x)) =
{

γ ∈
{

h(x)
⋃

hX(x)
}

/γ ≥ max(h−, h−X)
}

=
{

γ ∈
{

h(x)
⋃
{1}

}
/γ ≥ max(h−, 1)

}

=
{

γ ∈
{

h(x)
⋃
{1}

}
/γ ≥ 1

}

= {1}
= hX(x)

(2) Similar to (1)
(3) Eg : Consider a hesitant fuzzy set with a hesitant fuzzy element h(x) =

{0.5, 0.9} Then, hC(x) = {0.5, 0.1}
(a) (h

⋃
hC(x)) = {0.5, 0.9} 6= hX(x)

(b) (h
⋂

hC(x)) = {0.1, 0.5} 6= h0(x)
(4) (a)

(h
⋂

hX(x)) =
{

γ ∈
{

h(x)
⋃

hX(x)
}

/γ ≤ min(h+, h+
X)

}

=
{

γ ∈
{

h(x)
⋃
{1}

}
/γ ≤ min(h+, 1)

}

=
{

γ ∈
{

h(x)
⋃
{1}

}
/γ ≤ h+

}

= h(x)

(b) Similar to (a)
(5) Clearly 1− (1− γ) = γ ∀γ ∈ h(x)

37



D. Deepak et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 1, 33–46

(6) Follows from the definition of hesitant union and hesitant intersection.
(7) Proof follows because

max(max(h−1 , h−2 ), h−3 ) = max(h−1 , max(h−2 , h−3 ))

= max(h−1 , h−2 , h−3 )

(8) Let hL = (h1

⋂
(h2

⋃
h3))(x) for any x ∈ X and hR = ((h1

⋂
h2)

⋃
(h1

⋂
h3))(x)

for any x ∈ X
(a) Let γ ∈ hL (i.e., h ∈ (h1

⋂
(h2

⋃
h3))(x)

⇒ γ ≥ max(h−2 , h−3 ) [∵ h ∈ (h2

⋃
h3)] and

γ ≤ min(h+
1 ,max(h+

2 , h+
3 ))[∵ h ∈ h1

⋂
(h2

⋃
h3)]

h−L = min(h−1 ,max(h−2 , h−3 )) and h+
L = min(h+

1 ,max(h+
2 , h+

3 ))
and above all this by the definition of hesitant fuzzy union and intersection we have
γ ∈ hL ⇒ h ∈ (h1

⋃
h2

⋃
h3)(x)

(b) Let γ ∈ hR (i.e., h ∈ ((h1

⋂
h2)

⋃
(h1

⋂
h3))(x)

γ ∈ h1

⋂
h2 ⇒ h ≤ min(h+

1 , h+
2 ) and h ∈ h1

⋂
h3 ⇒ h ≤ min(h+

1 , h+
3 )

((h ∈ h1

⋂
h2))

⋃
((h1

⋂
h3))(x) ⇒ h ≥ max(min(h−1 , h−2 ),min(h−1 , h−3 ))

⇒ h−R = max(min(h−1 , h−2 ),min(h−1 , h−3 )) and h+
R = max(min(h+

1 , h+
2 ),min(h+

1 , h+
3 ))

Clearly, h ∈ hR ⇒ h ∈ (h1

⋃
h2

⋃
h3)(x) by the definition of hesitant union.

Now from (a) and (b) it is enough to show that h−L = h−R and h+
L = h+

R

∵ ∀h ∈ hL, hR;h is taken from (h1

⋃
h2

⋃
h3)(x)

There are 6 possibilities:
(1) h1 ≤ h2 ≤ h3 (2) h1 ≤ h3 ≤ h2

(3) h2 ≤ h1 ≤ h3 (4) h2 ≤ h3 ≤ h1

(5) h3 ≤ h1 ≤ h2 (6) h3 ≤ h2 ≤ h1

Here h1, h2, h3 signifies either h−i or h+
i . But it is enough to prove that h−L = h−R

and h+
L = h+

R when h−1 , h−2 , h−3 and h+
1 , h+

2 , h+
3 takes these six possibilities.

(i) h1 ≤ h2 ≤ h3

h−L = min(h−1 , h−3 ) = h−1 , h−R = max(h−1 , h−1 ) = h−1 . Hence h−L = h−R.
h+

L = min(h+
1 , h+

3 ) = h+
1 , h+

R = max(h+
1 , h+

1 ) = h+
1 . Hence h+

L = h+
R.

(vi) h3 ≤ h2 ≤ h1

h−L = min(h−1 , h−2 ) = h−2 , h−R = max(h−2 , h−3 ) = h−2 . Hence h−L = h−R.
h+

L = min(h+
1 , h+

2 ) = h+
2 , h+

R = max(h+
2 , h+

3 ) = h+
2 . Hence h+

L = h+
R.

All the other cases can also be proved similarly.
(9) (a) To prove (h1

⋃
h2)C = hC

1

⋂
hC

2

(h1

⋃
h2)(x) =

⋃
γ1∈h1,γ2∈h2

{γ1, γ2}
LHS= (h1

⋃
h2)C =

⋃
γ1∈h1,γ2∈h2

(1−max {γ1, γ2}).
RHS= hC

1

⋂
hC

2 =
⋃

γ1∈h1,γ2∈h2

min {1− γ1, 1− γ2}
=

⋃
γ1∈h1,γ2∈h2

(1−max {γ1, γ2}) Hence proved.

(b) Proof similar to (a) ¤
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3. Hesitant fuzzy relations

This section introduces the notion of a hesitant fuzzy relation and studies some
of its theoretical properties. We propose the definition of the complement and com-
postion of Hesitant fuzzy relations, moving on to the definition of an equivalence
hesitant fuzzy relation. Some properties of hesitant fuzzy relations are discussed.
Some results to arrive at the anti-reflexive kernel and symmetric kernel of any hes-
itant fuzzy relation is proved. The definition of the α− level cut set of a hesitant
fuzzy set is proposed and some of its properties are proved. The α− level cut set of
a hesitant fuzzy relation is also stated.

Definition 3.1. (Relation) : A Hesitant fuzzy subset R of X × Y is called a
Hesitant fuzzy relation R from X to Y. i.e.,

R : X × Y → P [0, 1]

Note: HF (X,Y ) denotes the family of all Hesitant fuzzy relations from X to Y .
Here X and Y are crisp sets.

Definition 3.2. Let I be a hesitant fuzzy relation from X to X.
i.e., I : X ×X → P [0, 1]. If I satisfies

I(x, y) =

{
{1} , for x = y

{0} , for x 6= y

Then I is called a Identity hesitant fuzzy relation.

Definition 3.3. Let R be a hesitant fuzzy relation from X to Y . Then complement
of R is a hesitant fuzzy relation satisfying RC(x, y) = [R(x, y)]C =

⋃
γ∈R(x,y)

{1− γ}
and inverse of R is a hesitant fuzzy relation from Y to X satisfying
R−1(x, y) = R(x, y).

Definition 3.4. Composition : Let R1 ∈ HF (X, Y ) and R2 ∈ HF (Y, Z) then
R1 ◦R2 ∈ HF (X, Z) is defined as R1 ◦R2(x, z) =

⋃
y∈Y

(R1(x, y)
⋂

R2(y, z)) . Clearly

this will be a subset of [0, 1] ∀(x, z) ∈ X×Z , Hence R1 ◦R2 will be a hesitant fuzzy
relation.

Definition 3.5. Let R ∈ HF (X, X), then
(1) R is reflexive iff R(x, x) = {1} ∀x ∈ X
(2) R is symmetric iff R(x, y) = R(y, x) ∀x ∈ X
(3) R is transitive iff h+

R(x,z) ≥ sup
y∈X

min(h+
R(x,y), h

+
R(y,z)) and

h−R(x,z) ≥ sup
y∈X

max(h−R(x,y), h
−
R(y,z))

(4) R is anti reflexive iff R(x, x) = {0} ∀x ∈ X

Definition 3.6. R is an Equivalence Hesitant Fuzzy relation iff it is reflexive,
symmetric and transitive.

Note : When R is a fuzzy relation our definitions are consistent with those of
the fuzzy case, only the set notation has to be dropped.
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Lemma 3.7. Let P, Q, R be three hesitant fuzzy relations from X to Y then,
(1) P 4 Q ⇒ P−1 4 Q−1

(2) (P−1)−1 = P
(3) (a) h+

P ≤ h+
P

⋃
Q

(b) h+
Q ≤ h+

P
⋃

Q

(4) (a) h−P ⋂
Q ≤ h−P

(b) h−P ⋂
Q ≤ h−Q

(5) (a) (R
⋃

Q)−1 = R−1
⋃

Q−1

(b) (R
⋂

Q)−1 = R−1
⋂

Q−1

(6) (R−1)C = (RC)−1

Proof. (1)

P 4 Q ⇒ s(P (x, y)) ≤ s(Q(x, y)) ∀x, y ∈ X

⇒ s(P (y, x)) ≤ s(Q(y, x)) as x and y are arbitrary
⇒ s(P−1(x, y)) ≤ s(Q−1(x, y)) [∵ P−1(x, y) = P (x, y)]
⇒ P−1 4 Q−1

(2) (P−1)−1(x, y) = P−1(y, x) = P (x, y) ⇒ (P−1)−1 = P

(3) (a) (P
⋃

Q)(x, y) =
{

h ∈ (P (x, y)
⋃

Q(x, y))/h ≥ max(h−P , h−Q)
}

where h−P = h−P (x,y)

h+
P

⋃
Q = max

γ∈(P (x,y)
⋃

Q(x,y))

{
γ/γ ≥ max(h−P , h−Q)

}

now, h+
P ∈ (P

⋃
Q)(x, y) and h+

Q ∈ (P
⋃

Q)(x, y) and
γ ∈ (P

⋃
Q)(x, y) ⇒ γ ∈ P (x, y)

⋃
Q(x, y)

⇒ h+
P

⋃
Q = max(h+

P , h+
Q)

⇒ h+
P ≤ h+

P
⋃

Q

(b) Similar to (a)
(4) (a) (P

⋂
Q)(x, y) =

{
h ∈ (P (x, y)

⋃
Q(x, y))/h ≤ min(h+

P , h+
Q)

}

⇒ h−P ⋂
Q = min

γ∈P
⋃

Q

{
γ/γ ≤ min(h+

P , h+
Q)

}

⇒ h−P ∈ (P
⋂

Q)(x, y) and ⇒ h−Q ∈ (P
⋂

Q)(x, y)
⇒ h−P ⋂

Q ≤ h−P
(b) similar to (a)

(5) (a)

(R
⋃

Q)−1(x, y) = (R
⋃

Q)(y, x)

=
{

h ∈ ((R(y, x)
⋃

Q(y, x))/h ≥ max(h−R(y,x), h
−
Q(y,x))

}(3.1)

R−1
⋃

Q−1(x, y)

=
{

h ∈ ((R−1(x, y)
⋃

Q−1(x, y))/h ≥ max(h−R−1(x,y), h
−
Q−1(x,y))

}

=
{

h ∈ ((R(y, x)
⋃

Q(y, x))/h ≥ max(h−R(y,x), h
−
Q(y,x))

}
(3.2)
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From (3.1) and (3.2) we have (R
⋃

Q)−1 = R−1
⋃

Q−1

(b) Similar to (a)
(6)

(R−1(x, y))C = (R(y, x))C = {1− γ/γ ∈ R(y, x)}(3.3)

(RC(x, y))−1 = (RC(y, x)) = {1− γ/γ ∈ R(y, x)}(3.4)

From (3.3) and (3.4) we have (R−1)C = (RC)−1

¤
Definition 3.8. Let R be a Hesitant fuzzy relation on X. The maximal anti-
reflexive hesitant fuzzy relation contained in R is called anti-reflexive kernel of
R, denoted by ar(R).

Definition 3.9. Let R be a Hesitant fuzzy relation on X. If R = R−1 then R is
called a symmetric hesitant fuzzy relation.

Theorem 3.10. Let R be a Hesitant fuzzy relation on X. Then ar(R) = R
⋂

IC .

Proof. ∀x, y ∈ X ×X

(R
⋂

IC)(x, x) =
{

h ∈ R(x, x)
⋃

IC(x, x)/h ≤ min(R+, (IC)+)
}

=
{

h ∈ R(x, x)
⋃

IC(x, x)/h ≤ min(R+, 0)
}

=
{

h ∈ R(x, x)
⋃
{0} /h ≤ 0

}

= {0}
so clearly R

⋂
IC is anti-reflexive.Now

(R
⋂

IC)(x, y) =

{
{0} , for x = y

R(x, y), for x 6= y
(3.5)

s(R
⋂

IC) ≤ s(R) ∀x, y ∈ X.
Now let T be an anti-reflexive relation and T 4 R.
To prove s(T (x, y)) ≤ s(R

⋂
IC(x, y))

when x = y ;

T (x, x) = 0 and (R
⋂

IC)(x, x) = 0.(3.6)

(3.7)

when x 6= y

T (x, y) 4 R(x, y) (by assumption)

= R
⋂

IC(x, y) (by (3.5))(3.8)

⇒ T 4 R
⋂

IC (from 3.6 and 3.7)
So R

⋂
IC is maximal. Hence ar(R) = R

⋂
IC . ¤

Definition 3.11. Let R be a Hesitant fuzzy relation from X to X. The maximal
symmetric hesitant fuzzy relation contained in R is called symmetric kernel of R,
denoted by sy(R).
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Theorem 3.12. Let R be a Hesitant fuzzy relation from X to X. Then
sy(R) = R̃+

⋂
(R̃−1)+, where R̃+(x, y) = {R+(x, y)} ∀x, y ∈ X and

(R̃−1)+(x, y) =
{
(R−1)+(x, y)

} ∀x, y ∈ X.

Proof. By lemma 3.7(5) (R
⋂

Q)−1 = R−1
⋂

Q−1

Now,

(R
⋂

R−1)−1 = (R−1)
⋂

(R−1)−1

= R−1
⋂

R

= R
⋂

R−1

⇒ R
⋂

R−1 is a symmetric hesitant fuzzy relation.
R+

⋂
(R−1)+ 4 R+ If T is a symmetric hesitant fuzzy relation on X and T 4 R

then by lemma 3.7(1) T−1 4 R−1. To prove T 4 R̃+
⋂

(R̃−1)+

(R̃+
⋂

(R̃−1)+)(x, y) = max(R+, (R−1)+)(3.9)

T 4 R+ and T−1 4 R−

T (x, y) = T−1(x, y) (∵ T is symmetric)
⇒ T 4 R−1

T (x, y) 4 R(x, y) ∀x, y
⇒ T (x, y) 4 R+(x, y)

⇒ s(T (x, y)) 4 s(R+(x, y))(3.10)

T (x, y) 4 R−1(x, y) ∀x, y
T (x, y) 4 (R−1)+(x, y)

⇒ s(T (x, y)) 4 s((R−1)+)(x, y)(3.11)

from (3.9), (3.10) and (3.11) we have
∴ s(T (x, y)) 4 s((R̃+

⋂
(R̃−1)+)(x, y)) ¤

Definition 3.13. A ∈ HF (U) and α ∈ [0, 1] the α− level cut set of hesitant fuzzy
set A , denoted by hAα is hAα = {x ∈ U/s(hA(x)) ≥ α} .
hAα+ = {x ∈ U/s(hA(x)) > α} is called strong α− level cut set of A.
We can define

h1
Aα =

{
x ∈ U/h+

A(x) ≥ α
}

and

h2
Aα =

{
x ∈ U/h−A(x) ≥ α

}
.

Then clearly h2
Aα ⊆ hAα ⊆ h1

Aα ∀α ∈ [0, 1].

Theorem 3.14. The cut sets of hesitant fuzzy sets satisfy the following properties
∀hA, hB ∈ HF (U), α ∈ [0, 1]

(1) hA 4 hB ⇒ hAα ⊆ hBα

(2) (hA

⋂
hB)α ⊆ hAα

⋂
hBα

(3) (hA

⋃
hB)α ⊆ hAα

⋃
hBα

(4) α1 ≥ α2 ⇒ hAα1 ⊆ hAα2
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Proof. (1) To prove

hA 4 hB ⇒ hAα ⊆ hBα

we have, hA 4 hB ⇒ s(hA(x)) ≤ s(hB(x)) ∀x ∈ U.(3.12)
x ∈ hAα ⇒ s(hA(x)) ≥ α(3.13)

i.e., α ≤ s(hA(x)) ≤ s(hB(x)) from (3.12) and (3.13)
⇒ s(hB(x)) ≥ α
⇒ x ∈ hAα

⇒ hAα ⊆ hBα

(2) x ∈ (hA

⋂
hB)α ⇒ s(hA

⋂
hB)(x) ≥ α

α ≤ s((hA

⋂
hB)(x)) ≤ s(hA(x)) ⇒ x ∈ hAα

α ≤ s((hA

⋂
hB)(x)) ≤ s(hB(x)) ⇒ x ∈ hBα

⇒ x ∈ hAα

⋂
hBα

Hence proved.
(3) Similar to (2)
(4) x ∈ hAα1 ⇒ s(hAα1(x)) ≥ α1 ≥ α2

α2 ≤ α1 ⇒ x ∈ hAα2

⇒ hAα1 ⊆ hAα2 ¤

Corollary 3.15. R is a HF relation on U then
Rα = {(x, y) ∈ U × U/s(hR(x, y)) ≥ α}
Rα(x) = {y ∈ U/s(hR(x, y)) ≥ α} , ∀α ∈ [0, 1]
Rα+ = {(x, y) ∈ U × U/s(hR(x, y)) > α}
Rα+(x) = {y ∈ U/s(hR(x, y)) > α} , ∀α ∈ [0, 1]

4. Hesitant fuzzy rough sets

In this section we introduce the notion of hesitant fuzzy rough sets. The main
challenge in introducing this notion is that the hesitancy factor in the membership
is involved . We thus have to deal with a set of possible membership values.

Definition 4.1. Let U be a non-empty and finite universe of discourse and R ∈
HF (U × U) . The pair (U,R) is called a Hesitant Fuzzy approximation space. For
any F ∈ HF (U) , the upper and lower approximations of F w.r.t (U,R) denoted by
R∗(F ) and R∗(F ) , are two Hesitant Fuzzy sets as defined below
R∗(F )(x) =

⋃
yx

δ(x, yx) s.t s(δ(x, yx)) ≤ s(δ(x, y)) ∀y ∈ U

where δ(x, y) =
⋃

γ∈RC(x,y),φ∈F (y)

max {γ, φ} and

R∗(F )(x) =
⋃
yx

∆(x, yx) s.t s(∆(x, yx)) ≥ s(∆(x, y)) ∀y ∈ U

where ∆(x, y) =
⋃

γ∈R(x,y),φ∈F (y)

min {γ, φ}

Here δ(x, y) and ∆(x, y) forms hesitant fuzzy sets when taken over different values
of y.

R∗(F )(x)(orR∗(F )(x)) assigns those hesitant fuzzy elements among δ(x, y) ( or
∆(x, y) resp) which has least (or highest) scores.
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R∗(F )(x) and R∗(F )(x) are respectively called the upper and lower approxima-
tions of F w.r.t (U,R). The pair (R∗(F )(x), R∗(F )(x)) is called the Hesitant Fuzzy
Rough Set of F w.r.t (U,R) and R∗, R∗ : HF (U) → HF (U) are referred to as upper
and lower Hesitant fuzzy rough approximation operators respectively.

Theorem 4.2. Let U be a nonempty and finite universe of discourse and R ∈
HF (U × U) . Then the Hesitant fuzzy rough approximation operators R∗(F ) and
R∗(F ) are dual to each other. i.e.,R∗(F ) = (R∗(FC))C and R∗(F ) = (R∗(FC))C

Proof. R∗(F )(x) =
⋃
yx

∆(x, yx) s.t s(∆(x, yx)) ≥ s(∆(x, y)) ∀y ∈ U

where ∆(x, y) =
⋃

γ∈R(x,y),φ∈F (y)

min {γ, φ}.

(R∗(FC))C(x) =
⋃

µ∈∆(x,yx)

{1− µ}
Now let µi ∈

⋃
∆(x, yx)

⇒ µi ∈
⋃

γ∈R(x,yx),φ∈F C(yx)

min {γ, φ}
⇒ 1− µi ∈

⋃
γ∈R(x,yx),φ∈F C(yx)

1−min {γ, φ}

=
⋃

γ∈R(x,yx),φ∈F C(yx)

max {1− γ, 1− φ}

=
⋃

γ∈R(x,yx),φ∈F C(yx)

max {1− γ, 1− φ}

=
⋃

γ′∈RC(x,yx),φ′∈F (yx)

max
{

γ
′
, φ

′}
where γ

′
= 1− γ and φ

′
= 1− φ.

= δ(x, yx)

⇒ 1− µi ∈ δ(x, yx)
⇒ (R∗(FC))C(x) =

⋃
δ(x, yx)

Because if s({µi}) is maximum then s({1− µi}) will be minimum which guarantees
that s(δ(x, yx)) ≤ s(∆(x, y)) ∀y ∈ U . Hence proved.
Similarly R∗(F ) = (R∗(FC))C . ¤

5. Conclusions

The introduction of Hesitant Fuzzy sets will greatly help decision making problems
and will further develop other areas in which fuzzy set theory and intuitionistic fuzzy
sets have already been used with great success. The study of relations on Hesitant
fuzzy sets will set a theoretical base for the further development of this area. Hesitant
fuzzy rough sets can be further developed in the case of information systems to widen
its scope.

Relations on Hesitant fuzzy sets will enable us to introduce new hybrid structures
in this framework. This will enhance scope for further research in this area.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their insightful and constructive comments and suggestions that have led to an
improved version of this paper. The first author acknowledge the financial assistance

44



D. Deepak et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 1, 33–46

given by Ministry of Human Resource Development, Government of India and the
National Institute of Technology Calicut throughout the preparation of this paper.

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems 20 (1986) 87–96.
[2] Z. Bai, Distance similarity measures for interval-valued hesitant fuzzy sets and their application

in multicriteria decision making, Journal of Decision Systems 22 (2013) 190–201.
[3] D. K. Basnet and N. K. Sarma, A note on intuitionistic fuzzy equivalence relation, Int. Math.

Forum 5(65-68) (2010) 3301–3307.
[4] S. Bhattacharya and S. Roy, On IF-rough oscillatory region and its application in decision

making, Ann. Fuzzy Math. Inform. 5(1) (2013) 241–267.
[5] N. Chen, Z. Xu and M. Xia, Interval-valued hesitant preference relations and their applications

to group decision making, Knowledge-Based Systems 37 (2012) 528–540.
[6] N. Chen, Z. Xu and M. Xia, Correlation coefficients of hesitant fuzzy sets and their applications

to clustering analysis, Appl. Math. Model. 37(4) (2013) 2197–2211.
[7] C. Degang and Z. Suyun, Local reduction of decision system with fuzzy rough sets, Fuzzy Sets

and Systems 161 (2010) 1871–1883.
[8] D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (1990)

191–209.
[9] B. Farhadinia, Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy

sets, Inform. Sci. 240 (2013), 129–144.
[10] Y. Hai-long and L. Sheng-gang, Restudy of intuitionistic fuzzy relations, Systems Engineering-

Theory & Practice 29 (2009) 114–120.
[11] A. Hassanien, Fuzzy rough sets hybrid scheme for breast cancer detection, Image and Vision

Computing 25 (2007) 172–183.
[12] R. Jensen and Q. Shen, Fuzzy-rough attribute reduction with application to web categoriza-

tion, Fuzzy Sets and Systems 141(3) (2004) 469–485.
[13] A. Kandil, M. M. Yakout and A. Zakaria, Generalized rough sets via ideals, Ann. Fuzzy Math.

Inform. 5(3) (2013) 525–532.
[14] A. M. Kozae, S. A. El-Sheikh, E. H. Aly and M. Hosny, Rough sets and its applications in a

computer network, Ann. Fuzzy Math. Inform. 6(3) (2013) 605–624.
[15] A. Mukherjee and A. K. Das, Intuitionistic fuzzy rough relations, Ann. Fuzzy Math. Inform.

6(1) (2013) 115–126.
[16] Z. Pawlak, Some issues on rough sets, Transactions on Rough Sets I (2004) 1–58.
[17] A. Petrosino and A. Ferone, Rough fuzzy set-based image compression, Fuzzy Sets and Systems

160 (2009) 1485–1506.
[18] G. Qian, H. Wanga and X. Feng, Generalized hesitant fuzzy sets and their application in

decision support system, Knowledge-Based Systems 37 (2013) 357–365.
[19] A. M. Rolka and L. Rolka, Fuzzy rough approximations of process data, Internat. J. Approx.

Reason. 49(2) (2008) 301–315.
[20] A. S. Thomas and S. J. John, Multi-fuzzy rough sets and relations, Ann. Fuzzy Math. Inform.

7(5) (2014) 807–815.
[21] V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems 25 (2010) 529–539.
[22] V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, IEEE International Conference

on Fuzzy Systems (2009) 1378–1382.
[23] R. Verma and B. D. Sharma, New operations over hesitant fuzzy sets, Fuzzy Inf. Eng. 5(2)

(2013) 129–146.
[24] G. Wei, Hesitant fuzzy prioritized operators and their application to multiple attribute decision

making, Knowledge-Based Systems 31 (2012) 176–182.
[25] W. Wei, J. Liang and Y. Qian, A comparative study of rough sets for hybrid data, Inform.

Sci. 190 (2012) 1–16.
[26] M. Xia and Z. Xu, Hesitant fuzzy information aggregation in decision making, Internat. J.

Approx. Reason. 52(3) (2011) 395–407.

45



D. Deepak et al./Ann. Fuzzy Math. Inform. 8 (2014), No. 1, 33–46

[27] M. Xia, Z. Xu and N. Chen, Some hesitant fuzzy aggregation operators with their application
in group decision making, Group Decision and Negotiation 22 (2013) 259–279.

[28] Z. Xu and M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci. 181
(2011) 2128–2138.

[29] X. Yang, X. Song, H. Dou and J. Yang, Multi-granulation rough set: from crisp to fuzzy case,
Ann. Fuzzy Math. Inform. 1(1) (2011) 55–70.

[30] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
[31] J. Zhang, T. Li, D. Ruan and D. Liu, Rough sets based matrix approaches with dynamic

attribute variation in set-valued information systems, Internat. J. Approx. Reason. 53(4) (2012)
620–635.

[32] X. Zhou and Q. Li, Some new similarity measures for hesitant fuzzy sets and their applications
in multiple attribute decision making, arXiv preprint arXiv:1211.4125.

[33] B. Zhu and Z. Xu, Consistency measures for hesitant fuzzy linguistic preference relations,
IEEE Transactions on Fuzzy Systems 22 (2013) 35–45.

[34] B. Zhu and Z. S. Xu, Hesitant fuzzy Bonferroni means for multi-criteria decision making,
Journal of the Operational Research Society 64 (2013) 1–10.

[35] B. Zhu and Z. Xu and M. Xia, Dual hesitant fuzzy sets, J. Appl. Math. 2012, Art. ID 879629,
13 pp.

[36] B. Zhu, Z. Xu and M. Xia, Hesitant fuzzy geometric Bonferroni means, Inform. Sci. 205 (2012)
72–85.

[37] B. Zhu, Z. Xu and J. Xu, Deriving a ranking from hesitant fuzzy preference relations under
group decision making, IEEE Transactions on Systems, Man and Cybernetics,(Accepted) DOI
: 10.1109/TCYB.2013.2283021 (2013).

D. Deepak (deepakdiv@nitc.ac.in)
Department of Mathematics, National Institute of Technology, Calicut-673601, Ker-
ala, India

Sunil Jacob John (sunil@nitc.ac.in)
Department of Mathematics, National Institute of Technology, Calicut-673601, Ker-
ala, India

46


