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1. Introduction

Inclines are the additively idempotent semirings in which products are less than
or equal to factors. Thus inclines are generalized Boolean algebra, fuzzy algebra and
distributive lattice. The Boolean matrices, the fuzzy matrices and the lattice matri-
ces are the prototypical examples of the incline matrices. Boolean algebra and fuzzy
algebra are applied to automata theory, design of switching circuits, logic of binary
relations, medical diagnosis, etc. Marcov chain, information system and clustering
are instances in which inclines can be applied. Also, inclines are applied to ner-
vous system, probable reasoning, finite state machines, psychological measurement,
dynamical programming, decision theory, etc.

In 1965, Zadeh [21] developed fuzzy set first, then in 1984 Cao et al. [4] developed
incline algebra and its applications. After that several researchers [8, 9, 13, 14, 17]
work on this topics. In 1986, Atanassov [1] introduced intuitionistic fuzzy sets (IFS)
which becomes a popular topics for investigation in the fuzzy sets community. With
max-min operation the fuzzy algebra and its matrix theory are considered by many
authors [3, 6, 15, 18, 19]. Determinant theory, powers and nilpotent conditions of
matrices over a distributive lattice are considered by Zhang [22] and Tan [20] and
the transitivity of matrices over path algebra (i.e., additively idempotent semiring)
is discussed by Hashimoto [10, 11, 12]. Generalized fuzzy matrices, matrices over an
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incline and some results about the transitive closer, determinant, adjoint matrices,
convergence of powers and conditions for nilpotency are considered by Duan [5] and
Lur et al. [16].

2. Preliminaries

In this section we recall some basic notions of incline and intuitionistic fuzzy sets.

Definition 2.1 (Semiring). A semiring is a set R equipped with two binary opera-
tions + and ·, called addition and multiplication, such that

(1) (R, +) is a commutative monoid with identity 0.
(2) (R, ·) is monoid with identity 1.
(3) Multiplication distributes over addition.
(4) 0 annihilates R, with respect to multiplication.

i.e., 0 · a = a · 0 = 0 for all a ∈ R.

An idempotent semiring (dioid) is one whose addition is idempotent: a + a = a
for all a ∈ R that is (R, +, ·) is a join-semilattice with zero.

Example 2.2. Any bounded distributive lattice is a commutative idempotent semir-
ing under join and meet.

Definition 2.3 (Incline). An incline (algebra) is a set R on which two binary
operations, denoted by + and · are defined, satisfying the following axioms. Let
a, b, c ∈ R

(A1). + is commutative: a + b = b + a.
(A2). + and · are associative: a + (b + c) = (a + b) + c, a(bc) = (ab)c.
(A3). · distributed over +: a(b + c) = ab + ac, (b + c)a = ba + ca.
(A4). + is idempotent: a + a = a.
(A5). The incline property holds: a + ac = a, c + ac = c.

Thus an incline is a semiring with idempotent addition in which the product with
a suitable ordering is less than or equal to either factor. Products reduce the value
of quantities and make them go down, which is why there structures were named
inclines.

Example 2.4. Let K = {0, a, b, c, d, 1} be a lattice ordered by the Hass graph
shown in Figure 1. Define R × R → R by x · y = d for all x, y ∈ {1, b, c, d} and
0 otherwise. Then (R,∨, ·) is an incline which is not a distributive lattice, where
x ∨ y = max{x, y}.

The Hass diagram Fig(1) shows that, it is a lattice. Incline property also holds
since

a ∨ (a · c) = a ∨ 0 = a
and c ∨ (a · c) = c ∨ 0 = c

Also b ∨ (c · d) = b ∨ d = b but (b ∨ c) · (b ∨ d) = 1 · b = d.
That is, b ∨ (c · d) 6= (b ∨ c) · (b ∨ d).
Hence it is not a distributive lattice.

Note 1. An incline algebra R is said to be commutative if xy = yx for all x, y ∈ R.
20
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Figure 1. Intuitionistic fuzzy incline

Definition 2.5 (Intuitionistic fuzzy set). An intuitionistic fuzzy set (IFS) A in E
(universe of discourse) is defined as an object of the following form

A = {〈x, µA(x), νA(x)〉|x ∈ E},
where the functions µA : E → [0, 1] and νA : E → [0, 1] define the degree of mem-
bership and the degree of non-membership of the element x ∈ E in A, respectively
and for every x ∈ E,

0 ≤ µA(x) + νA(x) ≤ 1.

Let I be the set of all real numbers lying between 0 and 1, i.e., I = {x : 0 ≤ x ≤
1}. Also let 〈F 〉 be the set of tuples 〈a, b〉, where a, b ∈ I and 0 ≤ a + b ≤ 1
i.e.,

〈F 〉 = {〈a, b〉 : 0 ≤ a + b ≤ 1, a, b ∈ I}.
The addition and multiplication between any two elements of 〈F 〉 are defined bellow.

Definition 2.6. Let x = 〈xµ, xν〉 and y = 〈yµ, yν〉 are any two elements of 〈F 〉.
The addition (+) and multiplication (·) between x and y are defined as

x + y = 〈xµ, xν〉+ 〈yµ, yν〉
= 〈max(xµ, yµ),min(xν , yν)〉
= 〈xµ ∨ yµ, xν ∧ yν〉

and x · y = 〈xµ, xν〉 · 〈yµ, yν〉
= 〈min(xµ, yµ),max(xν , yν)〉
= 〈xµ ∧ yµ, xν ∨ yν〉

In arithmetic operations (such as addition, multiplication etc.) only the values of
membership and nonmembership are needed. So from now we denote IFS as

A = {x = 〈xµ, xν〉|x ∈ E}.
3. Intuitionistic fuzzy incline (IFI)

In this section first we proved that an intuitionistic fuzzy set is incline.
To prove this we consider an intuitionistic fuzzy set R in E, and let x, y, z ∈ R

where x = 〈xµ, xν〉, y = 〈yµ, yν〉, z = 〈zµ, zν〉.
21
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(A1). x + y = 〈xµ, xν〉+ 〈yµ, yν〉
= 〈max(xµ, yµ),min(xν , yν)〉
= 〈max(yµ, xµ),min(yν , xν)〉
= 〈yµ, yν〉+ 〈xµ, xν〉
= y + x.

That is, commutative property under addition holds in R.
(A2). x · (y · z) = 〈xµ, xν〉 · (〈yµ, yν〉 · 〈zµ, zν〉)

= 〈xµ, xν〉 · 〈(yµ ∧ zµ), (yν ∨ zν)〉
= 〈xµ ∧ (yµ ∧ zµ), xν ∨ (yν ∨ zν)〉
= 〈(xµ ∧ yµ) ∧ zµ, (xν ∨ yν) ∨ zν〉
= 〈(xµ ∧ yµ), (xν ∨ yν)〉 · 〈zµ, zν〉
= (x · y) · z.

Similarly, we can proved that (x + y) + z = x + (y + z).
That is, associative properties under addition and multiplication hold in R.

(A3). x · (y + z) = 〈xµ, xν〉 · (〈yµ, yν〉+ 〈zµ, zν〉)
= 〈xµ, xν〉 · 〈(yµ ∨ zµ), (yν ∧ zν)〉
= 〈xµ ∧ (yµ ∨ zµ), xν ∨ (yν ∧ zν)〉
= 〈(xµ ∧ yµ) ∨ (xµ ∧ zµ), (xν ∨ yν) ∧ (xν ∨ zν)〉
= 〈(xµ ∧ yµ), (xν ∨ yν)〉+ 〈(xµ ∧ zµ), (xν ∨ zν)〉
= 〈xµ, xν〉 · 〈yµ, yν〉+ 〈xµ, xν〉 · 〈zµ, zν〉
= x · y + x · z.

Similarly, we can prove that (x + y) · z = x · z + y · z.
That is, multiplication is distributed over addition in R.

(A4). x + x = 〈xµ, xν〉+ 〈xµ, xν〉
= 〈max(xµ, xµ),min(xν , xν)〉
= 〈xµ, xν〉
= x.

That is, addition is idempotent.
(A5). x + x · z = 〈xµ, xν〉+ 〈xµ, xν〉 · 〈zµ, zν〉

= 〈xµ, xν〉+ 〈min(xµ, zµ), max(xν , zν)〉
= 〈max{xµ,min(xµ, zµ)},min{xν ,max(xν , zν)}〉
= 〈xµ, xν〉
= x.

Similarly, z + x · z = z.
Thus any intuitionistic fuzzy set is an incline. 2

Also x · y = 〈xµ, xν〉 · 〈yµ, yν〉
= 〈xµ ∧ yµ, xν ∨ yν〉
= 〈yµ ∧ xµ, yν ∨ xν〉
= y · x.

That is, the commutative property under multiplication is also hold in R.
Hence any intuitionistic fuzzy set is commutative incline.

Definition 3.1. Let R be an IFI and x, y ∈ R where x = 〈xµ, xν〉 and y = 〈yµ, yν〉
then x = y if and only if xµ = yµ and xν = yν .

Definition 3.2. Let R be an IFI and x, y ∈ R where x = 〈xµ, xν〉 and y = 〈yµ, yν〉
then x ≤ y if and only if xµ ≤ yµ and yν ≤ xν .
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Definition 3.3. Let R be an IFI and x, y ∈ R where x = 〈xµ, xν〉 and y = 〈yµ, yν〉
then x < y if and only if x ≤ y and x 6= y.

Theorem 3.4. The relation ’≤’ is partial order relation in an IFI.

Proof. Let R be an IFI and x, y, z ∈ R where x = 〈xµ, xν〉, y = 〈yµ, yν〉, z = 〈zµ, zν〉.
I. Since xµ ≤ xµ and xν ≤ xν then we write that x ≤ x for all x ∈ R

i.e., the relation ’≤’ is reflexive.
II. Let x ≤ y and y ≤ x for any x, y ∈ R. Then

xµ ≤ yµ, yν ≤ xν and yµ ≤ xµ, xν ≤ yν

⇒ xµ = yµ and xν = yν

⇒ x = y.

Thus x ≤ y and y ≤ x ⇒ x = y for any x, y ∈ R.
That is, the relation ’≤’ is antisymmetric.

III. Let x ≤ y and y ≤ z for any x, y, z ∈ R. Then

xµ ≤ yµ, yν ≤ xν and yµ ≤ zµ, zν ≤ yν

⇒ xµ ≤ yµ ≤ zµ and zν ≤ yν ≤ xν

⇒ xµ ≤ zµ and zν ≤ xν

⇒ x ≤ z.

Thus x ≤ y and y ≤ z ⇒ x ≤ z for any x, y, z ∈ R.
That is, the relation ’≤’ is transitive. Hence the relation ’≤’ in an IFI is a partial
order relation. ¤

Atanassov [2] proposed that an intuitionistic fuzzy set is a lattice with respect to
the operation ’⊂’ (inclusion) which is the same with the relation ’≤’ we defined.

Definition 3.5 (Zero element). The zero element of an IFI is denoted by ø and is
define by ø = 〈0, 1〉.
Definition 3.6 (Unit element). The unit element of an IFI is denoted by I and is
defined by I = 〈1, 0〉.

Cao et al. [4] and Golan [7] proved some propositions in incline algebra. In IFI
these are also true.

Proposition 3.7. Let R be an IFI and x, y, z ∈ R then
(a) ø ≤ x ≤ I.
(b) if x ≤ y then x + z ≤ y + z, xz ≤ yz and zx ≤ zy.
(c) x ≤ x + y and x + y is the least upper bound of x and y. In other words, if

there is an element z satisfying x ≤ z and y ≤ z then x + y ≤ z.
(d) xy ≤ x, xy ≤ y. That is, xy is a lower bound of x and y.
(e) xzy ≤ xy.
(f) x + y = ø if and only if x = ø = y.
(g) xy = I if and only if x = I = y.

Proof. (a) Here x = 〈xµ, xν〉, y = 〈yµ, yν〉 and z = 〈zµ, zν〉. Since 0 ≤ xµ, xν ≤ 1.
Therefore ø ≤ x ≤ I.

(b) Let x ≤ y then xµ ≤ yµ and yν ≤ xν .
Therefore max(xµ, zµ) ≤ max(yµ, zµ) and min(yν , zν) ≤ min(xν , zν). Thus x+ z ≤
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y + z.
Also min(xµ, zµ) ≤ min(yµ, zµ) and max(yν , zν) ≤ max(xν , zν). Thus xz ≤ yz.
Similarly, zx ≤ zy.

(c) We know that xµ ≤ max(xµ, yµ) and min(xν , yν) ≤ xν . So x ≤ x + y.
Similarly, y ≤ x + y.
Thus x + y is the upper bound of x and y.
If possible let z 6= x + y be the least upper bound of x and y then

x ≤ z and y ≤ z
i.e., xµ ≤ zµ, zν ≤ xν and yµ ≤ zµ, zν ≤ yν .

Therefore max(xµ, yµ) ≤ zµ and zν ≤ min(xν , yν).
Thus

(3.1) x + y ≤ z.

Also, since x + y is the upper bound of x, y; and z is the least upper bound so

(3.2) z ≤ x + y

From equation (3.1) and (3.2) it can be written as x + y = z
i.e., x + y is the least upper bound of x and y.

(d) Similarly, we can prove that xy is the greatest lower bound of x and y.
(e) We know that min(xµ, zµ, yµ) ≤ min(xµ, yµ) and max(xµ, yµ) ≤ max(xν , zν , yν).

Therefore xzy ≤ xy.
(f) Let x + y = ø

i.e., 〈max(xµ, yµ),min(xν , yν)〉 = 〈0, 1〉.
Therefore, max(xµ, yµ) = 0 and min(xν , yν) = 1.
Also 0 ≤ xµ, yµ, xν , yν ≤ 1.
Hence xµ = 0 = yµ and xν = 1 = yν .
Therefore x = 〈xµ, xν〉 = 〈0, 1〉 = ø and
y = 〈yµ, yν〉 = 〈0, 1〉 = ø.

(g) Let xy = I
i.e., 〈min(xµ, yµ),max(xν , yν)〉 = 〈1, 0〉.
Therefore, min(xµ, yµ) = 1 and max(xν , yν) = 0.
Also 0 ≤ xµ, yµ, xν , yν ≤ 1.
Hence xµ = 1 = yµ and xν = 0 = yν .
Therefore x = 〈xµ, xν〉 = 〈1, 0〉 = I and y = 〈yµ, yν〉 = 〈1, 0〉 = I.

Thus under the relation ’≤’ an IFI is a partial order set, every pair of which has
a least upper bound and greatest lower bound in IFI. So an IFI is a lattice. ¤

Definition 3.8 (Inverse element). Let R be an IFI and x ∈ R where x = 〈xµ, xν〉
the inverse element x is denoted by x− ∈ R and defined by

x + x− = ø for addition (max-min)
and x · x− = I for multiplication (min-max).

The following theorem says that the inverse of any element of an IFI dose not
exist under max-min and min-max operations.

Theorem 3.9. The inverse of the elements of IFI does not exist under ’+’ and ’·’,
except the unit elements.
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Proof. Let R be an IFI and let x = 〈xµ, xν〉 6= ø be any element of R. If possible let
y = 〈yµ, yν〉 be the inverse of x in R under +.
i.e., x + y = ø.
Then by using Proposition 3.7(f) we get x = ø = y, which contradict that x 6= ø.
Thus inverse element does not exist except the additive identity ø.

Similarly, we can prove that the inverse element does not exist except the multi-
plicative identity I for multiplication. ¤

4. Intuitionistic fuzzy incline matrix (IFIM)

The set of square matrix of order n over an IFI R is denoted by Mn(R). The zero
matrix On = [〈0, 1〉] and the identity matrix In (whose main diagonal elements are
all I and all other elements are ø) of order n are defined as if R were a field. For
matrix A = [aij ] = [〈aijµ, aijν〉] and B = [bij ] = [〈bijµ, bijν〉] in Mn(R), define the
operations A + B = [aij + bij ] = [〈aijµ ∨ bijµ, aijν ∧ bijν〉]
and AB =

[
n∑

k=1

aikbkj

]
=

[
〈∨

k

(aikµ ∧ bkjµ),
∧
k

(aikν ∨ bkjν)〉
]
.

Theorem 4.1. Mn(R) is an additively idempotent semiring under matrix addition
and multiplication with additive identity On and multiplicative identity In. But no
longer an incline.

Proof. Let A,B,C ∈ Mn(R) where A = [aij ], B = [bij ] and C = [cij ] also aij , bij , cij ∈
R for all i, j ∈ {1, 2, 3, · · · , n}.

(A1). Now A + B = [aij + bij ]
= [bij + aij ] [By commutative property of IFI]
= B + A.

That is, commutative property holds under addition.

(A2). A(BC) = [aij ]
[

n∑
k=1

bikckj

]

=
[

n∑
l=1

aildlj

]
[where dij =

n∑
k=1

bikckj ]

=
[

n∑
l=1

ail(
n∑

k=1

blkckj)
]

=
[

n∑
l=1

n∑
k=1

ailblkckj

]

=
[

n∑
k=1

(
n∑

l=1

ailblk)ckj

]

=
[

n∑
k=1

eikckj

]
[where eik =

n∑
l=1

ailblk]

= [eij ] [cij ]

=
[

n∑
l=1

ailblj

]
[cij ]

= (AB)C.

Also A + (B + C) = [aij + (bij + cij)]
= [(aij + bij) + cij ] [By associative property of IFI]
= (A + B) + C.

That is, associative properties hold for the addition and multiplication.
25
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(A3). A(B + C) = [aij ][bij + cij ]

=
[

n∑
k=1

aik(bkj + ckj)
]

=
[

n∑
k=1

(aikbkj + aikckj)
]

[By distributive property of IFI]

=
[

n∑
k=1

aikbkj

]
+

[
n∑

k=1

aikckj

]

= AB + AC.
Similarly, we can prove that (A + B)C = AC + BC. That is, multiplication is

distributive over addition.
(A4). A + A = [aij + aij ]

= [aij ] [By idempotent property of IFI]
= A.

That is, addition is idempotent.
Hence the set of square matrices of order n over an IFI R i.e., Mn(R) is a semiring

under matrix addition and multiplication.
To show that Mn(R) is not an incline we follow:

(A5). A + AC = [aij ] +
[

n∑
k=1

aikckj

]

=
[
aij +

n∑
k=1

aikckj

]

6= [aij ] = A.

¤

Definition 4.2. The partial order relation ’≤’ over Mn(R) is defined as A ≤ B if
and only if aij ≤ bij for all i, j ∈ {1, 2, 3, · · · , n}.

That is A ≤ B if and only if A + B = B. A < B denotes A ≤ B and A 6= B.

Definition 4.3. Let R be an IFI and A ∈ Mn(R). The ij-th entry of square matrix
Am is denoted by a

(m)
ij , and obviously

(4.1) a
(m)
ij =

∑

1≤j1,j2,··· ,jm−1≤n

aij1aj1j2aj2j3 · · · ajm−1j .

A matrix A is said to be nilpotent if Ak = On for some k ∈ N , A is idempotent if
A2 = A.

Lemma 4.4. Let R be an IFI and A ∈ Mn(R). If m ≥ n, then

Am ≤
n−1∑

k=0

Ak. (Here A0 = In.)

Proof. Let B =
n−1∑
k=0

Ak.

Now a
(m)
ii ≤ I = bii. [Since a

(0)
ii = I.]

If i 6= j we consider an arbitrary summand of right hand side of equality (4.1),
aij1aj1j2aj2j3 · · · ajm−1j .

26
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Since i, j1, j2, j3, · · · , jm−1, j ∈ {1, 2, 3, · · · , n} and m + 1 > n, there are r, s such
that jr = js (0 ≤ r < s ≤ m, j0 = i, jn = j). Deleting ajrjr+1ajr+1jr+2ajr+2jr+3 · · ·
ajs−1js

from the summand aij1aj1j2aj2j3 · · · ajm−1j , we obtain

aij1aj1j2aj2j3 · · · ajm−1j ≤ aij1aj1j2aj2j3 · · · ajr−1jrajsjs+1 · · · ajm−1j .

[By Proposition 3.7(e).] If the number r + m − s + 2 of the subscripts in the right
hand side of the above inequality still more than n, the same deleting method is
used.

Therefore, there is a positive integer t ≤ n− 1 such that

aij1aj1j2aj2j3 · · · ajm−1j ≤ ail1al1l2al2l3 · · · alt−1j .

Hence by the definition of Am we have

a
(m)
ij ≤

n−1∑
k=1

ak
ij = bij

i.e., Am ≤
n−1∑
k=0

Ak

¤

Remark 4.5. From the above lemma we conclude that Am+1 ≤
n∑

k=1

Ak.

Definition 4.6 (Transitive closure). Let R be an IFI and A,B ∈ Mn(R). Matrix
A is said to be transitive, if A2 ≤ A. Matrix B is said to be transitive closure of
matrix A, if B is transitive, A ≤ B and B ≤ C for any transitive matrix C, satisfying
A ≤ C. The transitive closure of matrix A is denoted by t(A).

Theorem 4.7. Let R be an IFI and A ∈ Mn(R). Then the transitive closure of

matrix A is given by t(A) =
n∑

k=1

Ak.

Proof. Let B =
n∑

k=1

Ak, obviously A ≤ B.

Since Mn(R) is additively idempotent, we have

B2 =
2n∑

k=2

Ak ≤
2n∑

k=1

Ak

or B2 ≤ B +
2n∑

k=n+1

Ak.

By the Lemma 4.4, Ak ≤
n∑

l=1

Al = B as k > n.

Hence B2 ≤ B.
If there is a matrix C such that A ≤ C and C2 ≤ C, then A2 ≤ AC ≤ C2 ≤ C,

and by induction we have Ak ≤ Ck < C for all positive integers k.
Hence B ≤ C.

Thus by the definition of transitive closure, we obtain B = t(A) =
n∑

k=1

Ak. ¤
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Example 4.8. Let

A =
[ 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.4〉

]
.

That is A ∈ M2(R). Now

A2 =
[ 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.4〉

] [ 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.4〉

]
=

[ 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.4〉

]

Therefore

t(A) = A + A2

=
[ 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.4〉

]
+

[ 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.4〉

]

=
[ 〈0.8, 0.1〉 〈0.7, 0.3〉
〈0.5, 0.4〉 〈0.6, 0.4〉

]

= A.

Definition 4.9. Let R be an IFI and A ∈ Mn(R). A is said to be power-convergent
if Ap = Ap+1 for some positive integer p. If A is power-convergent the least positive
integer p such that Ap = Ap+1 is called the index of A and is denoted by i(A).

Definition 4.10. Let R be an IFI and A ∈ Mn(R). A is said to be row-diagonally
dominant if aij ≤ aii (1 ≤ i, j ≤ n). A is column-diagonally dominant if aji ≤
aii (1 ≤ i, j ≤ n).

Bhowmik and Pal [3] introduced the max-min and min-max compositions over
intuitionistic fuzzy matrices (IFMs). They also investigated the conditions for con-
vergence of IFM.

Theorem 4.11 ([3]). Let A be an IFM.
(a) If Aq ≤ Ap where q < p then A converges.
(b) If for all i, j ≤ n there exists k ≤ n such that aijµ ≤ aikµakjµ and aijν ≥

aikν + akjν then A converges to Ac where c ≤ (n− 1).

From the above theorems we conclude the following result.

Theorem 4.12. Let R be an IFI and A ∈ Mn(R). If Aq ≤ Ap where q < p and A
is row or column diagonally dominant, then A is power convergent and converges to
t(A) i.e., transitive closure of A.

Proof. From above theorem if Aq ≤ Ap where q < p then A converges, taking
q = 1, p = 2 we get A ≤ A2. Similarly A2 ≤ A3 ≤ A4 ≤ · · · .

Now t(A) =
n∑

k=1

Ak = A + A2 + A3 + · · ·+ An.

Also since A is row or column diagonally dominant then A converges to Ac for
some c ≤ n− 1 (see Corollaries 5.3 and 5.4 of [3]), then we get

A ≤ A2 ≤ A3 ≤ · · · ≤ Ac = Ac+1 = Ac+2 = · · · = An.
Therefore t(A) = Ac.
Thus A is converge to t(A). ¤
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5. Determinant of IFIM

The determinant theory of intuitionistic fuzzy matrix (IFM) was introduced by
Pal [18] is important in IFI. He define some terms related to determinant theory in
IFM and proved some results. Here we introduce these with respect to IFIM.

Definition 5.1. Let R be an IFI and A ∈ Mn(R). The determinant |A| (or perma-
nent) of the matrix A is defined as follows:

|A| =
∑

σ∈Sn

a1σ(1)a2σ(2)a3σ(3) · · · anσ(n)

where Sn denotes the symmetric group of all permutations of the indices {1, 2, 3, · · · ,
n}.
Definition 5.2 (Adjoint of IFIM). Let R be an IFI and A ∈ Mn(R) (n ≥ 2). A
matrix B is said to be adjoint of the matrix A if bij = |Aji| (1 ≤ i, j ≤ n) where Aji

is the matrix of order n − 1 formed by deleting row j and column i from A. The
adjoint of the matrix A is denoted by adj(A).

Proposition 5.3. Let R be an IFI and A, B ∈ Mn(R) then
(a) |A′| = |A|, where A′ denote the transpose of A.
(b) |rA| = r|A|, where r ∈ (0, 1] and rA = [raij ] = [〈raijµ, raijν〉].
(c) |EijA| = |AEij | = |A|, where Eij (elementary matrix) is the matrix obtain

from the identity matrix In by interchanging row i and row j.

(d) |A| =
n∑

j=1

aij |Aij |, where Aij is the matrix of order n − 1 formed by deleting

row i and column j from A.

Proof. The proposition (a) and (c) are proved by Khan and Pal [15].
(b) Let |A| = 〈xµ, yν〉.

Now |rA| =
∑

σ∈Sn

ra1σ(1)ra2σ(2)ra3σ(3) · · · ranσ(n)

=
∑

σ∈Sn

〈ra1σ(1)µ, ra1σ(1)ν〉〈ra2σ(2)µ, ra2σ(2)ν〉 · · · 〈ranσ(n)µ, ranσ(n)ν〉.

Also after calculating the value of the above determinant, the value must belongs to
〈F 〉, whose both the membership and non-membership values are multiplied by r.
Therefore the value must be 〈rxµ, rxν〉.

Therefore |rA| = 〈rxµ, rxν〉
= r〈xµ, xν〉
= r|A|.

(d) We know that

|A| =
∑

σ∈Sn

a1σ(1)a2σ(2)a3σ(3) · · · anσ(n)

=
n∑

j=1

∑
σ∈Sn,σ(i)=j

a1σ(1)a2σ(2)a3σ(3) · · · anσ(n)

=
n∑

j=1

aij

∑
Π∈Sninj

a1Π(1)a2Π(2) · · · ai−1Π(i−1)ai+1Π(i+1) · · · anΠ(n)
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where ni = {1, 2, 3, · · · , n}\{i} and Sninj
is the set of all bijections from the set ni

to the set nj . Now by the definition of determinant we see that

|Aij | =
∑

Π∈Sninj

a1Π(1)a2Π(2) · · · ai−1Π(i−1)ai+1Π(i+1) · · · anΠ(n).

Hence |A| =
n∑

j=1

aij |Aij |.

¤

Definition 5.4. Let R be an IFI and A ∈ Mn(R). We define A(p ⇒ q) be the
matrix obtain from A by replacing row q of A by row p of A.

Proposition 5.5. Let R be an IFI and A, B ∈ Mn(R), then
(a) |A||B| ≤ |AB|
(b) |A|n + |A||adj(A)| ≤ |A adj(A)|
(c) |A|n + |A||adj(A)| ≤ |adj(A)A|.

Proof. (a) We Know that if A = [aij ] and B = [bij ] then AB =
[

n∑
k=1

aikbkj

]
.

Therefore,

|AB| =
∑

σ∈Sn

(
n∑

k=1

a1kbkσ(1)

n∑
k=1

a2kbkσ(2)

n∑
k=1

a3kbkσ(3) · · ·
n∑

k=1

ankbkσ(n)

)

=
∑

k1,k2,··· ,kn

( ∑
σ∈Sn

a1k1a2k2a3k3 · · · anknbk1σ(1)bk2σ(2)bk3σ(3) · · · bknσ(n)

)
.

Now,

|A||B| =
∑

Π∈Sn

(a1Π(1)a2Π(2)a3Π(3) · · · anΠ(n)|B|)

=
∑

Π∈Sn

(
a1Π(1)a2Π(2)a3Π(3) · · · anΠ(n)

∑
σ∈Sn

(b1σ(1)b2σ(2)b3σ(3) · · · bnσ(n))

)
.

Also we know that for x, y, z ∈ R (an IFI) xzy ≤ xy. So from the above two we
conclude that |A||B| ≤ |AB|.

(b) Let B = A adj(A). Then bij =
n∑

k=1

aik|Ajk| = |A(i ⇒ j)|.
Thus |A adj(A)| = ∑

σ∈Sn

|A(1 ⇒ σ(1))||A(2 ⇒ σ(2))||A(3 ⇒ σ(3))| · · · |A(n ⇒ σ(n))|
∴ |A|n = |A(1 ⇒ σ(1))||A(2 ⇒ σ(2))||A(3 ⇒ σ(3))| · · · |A(n ⇒ σ(n))| ≤ |A adj(A)|.
Here |A(i ⇒ σ(i))| = |Eiσ(i)A| = |A|.

Also we have |A||adj(A)| ≤ |A adj(A)| [by Proposition 5.5(a)]. Therefore

|A|n + |A||adj(A)| ≤ |A adj(A)|.
(c) Similarly, we can proved that |A|n + |adj(A)||A| ≤ |adj(A)A|. ¤

Definition 5.6 (Triangular IFIM). Let R be an IFI. A matrix A ∈ Mn(R) is called
an upper triangular if aij = ø = 〈0, 1〉 for all j > i. A is called lower triangular if
aij = ø = 〈0, 1〉 for all j < i. The matrix which is either upper triangular or lower
triangular is called triangular matrix.
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Pal [18] proved that for a triangular IFM A, |A| =
n∏

i=1

〈aiiµ, aiiν〉 =
n∏

i=1

aii.

Proposition 5.7. Let R be an IFI and A,B ∈ Mn(R) are either both upper trian-
gular or both lower triangular then |AB| = |A||B|.
Proof. Let A and B be both upper triangular and let D = AB = [dij ]. Then

dij =
n∑

k=1

aikbkj .

Now for j > i, i > k ⇒ j > k then bkj = ø = 〈0, 1〉
and if i < k then aik = ø = 〈0, 1〉.

Therefore dij =
n∑

k=1

aikbkj

=
∑

k,i>k

〈aikµ, aikν〉〈0, 1〉+
∑

k,i<k

〈0, 1〉〈bkjµ, bkjν〉
= 〈0, 1〉.

Hence D = AB is upper triangular.

Therefore |AB| = |D| =
n∏

i=1

dii

= d11d22d33 · · · dnn

=
n∑

k=1

a1kbk1

n∑
k=1

a2kbk2

n∑
k=1

a3kbk3 · · ·
n∑

k=1

ankbkn.

Now aikbki = 〈aikµ, aikν〉〈bkiµ, bkiν〉

=




〈aikµ, aikν〉〈0, 1〉, if i > k
〈0, 1〉〈bkiµ, bkiν〉, if i < k
〈aiiµ, aiiν〉〈biiµ, biiν〉, if i = k

Therefore
n∑

k=1

aikbki = 〈aiiµ, aiiν〉〈biiµ, biiν〉
= aiibii.

Hence |AB| = a11b11 a22b22 a33b33 · · · annbnn

= (a11a22a33 · · · ann)(b11b22b33 · · · bnn)
= |A||B|.

Similarly, we can prove the proposition for lower triangular matrices. ¤

Remark 5.8. Let R be an IFI and A,B ∈ Mn(R) both are lower (or upper)
triangular IFIMs, then AB is lower (or upper) triangular IFIM.
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