Fuzzy e-continuity and fuzzy e-open sets

V. Seenivasan, K. Kamala

Received 12 October 2013; Revised 13 December 2013; Accepted 10 January 2014

Abstract. In this paper the concept of fuzzy e-open set is introduced and its properties are studied in fuzzy topological spaces. Moreover, we introduce the fuzzy e-continuous mapping and other mapping and establish their various characteristic properties. Further fuzzy e-separation axioms have been introduced and investigated with the help of fuzzy e-open sets.

2010 AMS Classification: 54A40, 03E72

Keywords: Fuzzy e-open, Fuzzy e-closed, Fuzzy e-continuous, Fuzzy e-irresolute, Fuzzy e-connected.

Corresponding Author: K. Kamala (krsaut@gmail.com)

1. Introduction

The concept of fuzzy has invaded almost all branches of mathematics with the introduction of fuzzy sets by Zadeh [12] of 1965. The theory of fuzzy topological spaces was introduced and developed by Chang[5]. In 2008, Erdal Ekici[7], has introduced the concept of e-open sets in general topology. In this paper, we extend the notion of e-open sets to fuzzy topological space in the name fuzzy e-open sets and study some properties based on this new concept. We further study the relation between fuzzy e-open sets with other types of fuzzy open sets. We also introduce the concepts of fuzzy e-continuous mappings and study their nature with separation axioms.

2. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, γ) (or simply X, Y and Z) represent non-empty fuzzy topological spaces. Let A be a fuzzy subset of a space X. The fuzzy closure of A, fuzzy interior of A, fuzzy δ-closure of A and the fuzzy δ-interior of A are denoted by $cl(A)$, $int(A)$, $cl_\delta(A)$ and $int_\delta(A)$ respectively. A fuzzy subset A of space X is called fuzzy regular open [2] (resp. fuzzy regular closed) if $A = int(cl(A))$ (resp. $A = cl(int(A))$). The fuzzy δ-interior of fuzzy subset A of X is the union of all fuzzy regular open sets contained in A. A fuzzy subset A is called fuzzy δ-open[11]
if $A = \text{int}_\delta(A)$. The complement of fuzzy δ-open set is called fuzzy δ-closed (i.e., $A = \text{cl}_\delta(A)$).

A fuzzy subset A of a space X is called fuzzy semi open \[2\] (resp. fuzzy α-open set \[10\], fuzzy β-open set \[3\], fuzzy pre-open set \[1\], fuzzy γ-open \[9\], fuzzy δ-preopen \[1\], fuzzy δ-semi open)\[8\] if $A \leq \text{cl} \text{int} A$ (resp. $A \leq \text{int} \text{cl} (A)$), $A \leq \text{cl} (\text{int} A)$, $A \leq \text{int} (\text{cl} A)$, $A \leq \text{cl} (\text{int} (\text{cl} A))$, $A \leq \text{cl} (\text{int}_\delta A)$). The complement of a fuzzy δ-semiopen set (resp. fuzzy δ-preopen set) is called fuzzy δ-semiclosed (resp. fuzzy δ-preclosed). The union of all fuzzy δ-semi open (resp. fuzzy δ-preopen) sets contained in a fuzzy set A in a fuzzy topological space X is called the fuzzy δ-semi interior \[8\] (resp. fuzzy δ-pre interior \[1\]) of A and it is denoted by $\text{sint}_\delta(A)$ (resp. $\text{pint}_\delta(A)$). The intersection of all fuzzy δ-semi closed (resp. fuzzy δ-preclosed) sets containing a fuzzy set A in a fuzzy topological space X is called the fuzzy δ-semiclosure \[8\] (resp. fuzzy δ-preclosure \[1\]) of A and it is denoted by $\text{scl}_\delta(A)$ (resp. $\text{pcl}_\delta(A)$).

A function $f : X \rightarrow Y$ is called fuzzy δ-pre continuous \[1\] (resp. fuzzy δ-semi continuous \[6\]) if $f^{-1}(\lambda)$ is fuzzy δ-pre open (resp. fuzzy δ-semi open) in X for every fuzzy open set λ of Y.

3. Fuzzy e-open set

Definition 3.1. A fuzzy subset μ of a space X is called fuzzy e-open (briefly, fe-open) if

$$\mu \leq \text{cl}(\text{int}_\delta \mu) \vee \text{int}(\text{cl}_\delta \mu),$$

fuzzy e-closed (briefly, fe-closed) if

$$\mu \geq \text{cl}(\text{int}_\delta \mu) \wedge \text{int}(\text{cl}_\delta \mu).$$

From the definitions we obtain the following diagram

![Diagram of fuzzy topological properties](attachment:diagram.png)

None of these implications are reversible as shown in the following example.
Example 3.2. Let $X = \{a, b, c\}$ and v_1, v_2, v_3 be fuzzy sets of X defined as

\[v_1(a) = 0.2, \ v_2(a) = 0.1, \ v_3(a) = 0.2\]
\[v_1(b) = 0.3, \ v_2(b) = 0.1, \ v_3(b) = 0.4\]
\[v_1(c) = 0.4, \ v_2(c) = 0.4, \ v_3(c) = 0.4\]

Let $\tau = \{0, v_1, v_2, 1\}$, then the fuzzy set v_3 is fuzzy e-open set. But it is not fuzzy δ-preopen.

Example 3.3. Let $X = \{a, b, c\}$ and $\nu_1, \nu_2, \nu_3, \nu_4$ be fuzzy sets of X defined as

\[\nu_1(a) = 0.3, \ \nu_2(a) = 0.4, \ \nu_3(a) = 0.4, \ \nu_4(a) = 0.3\]
\[\nu_1(b) = 0.5, \ \nu_2(b) = 0.2, \ \nu_3(b) = 0.5, \ \nu_4(b) = 0.5\]
\[\nu_1(c) = 0.5, \ \nu_2(c) = 0.6, \ \nu_3(c) = 0.6, \ \nu_4(c) = 0.4\]

Let $\tau = \{0, \nu_1, \nu_2, \nu_3, \nu_1 \land \nu_2, 1\}$. Then the fuzzy set ν_4 is fuzzy e-open but not fuzzy δ-semi open and also not a fuzzy β-open, fuzzy γ-open and fuzzy semi open.

Example 3.4. Let $X = \{a, b, c\}$ and u_1, u_2, u_3, u_4 be fuzzy sets of X defined as

\[u_1(a) = 0.3, \ u_2(a) = 0.6, \ u_3(a) = 0.6, \ u_4(a) = 0.3\]
\[u_1(b) = 0.4, \ u_2(b) = 0.5, \ u_3(b) = 0.5, \ u_4(b) = 0.4\]
\[u_1(c) = 0.5, \ u_2(c) = 0.5, \ u_3(c) = 0.4, \ u_4(c) = 0.4\]

Let $\tau = \{0, u_1, u_2, u_3, u_4, 1\}$ and let λ be fuzzy set defined as $\lambda(a) = 0.7, \ \lambda(b) = 0.6, \ \lambda(c) = 0.4$. Then λ is not fuzzy e-open set but it is fuzzy β-open, fuzzy γ-open and fuzzy semi open.

Lemma 3.5. [18] Let μ be a fuzzy subset of X, then

(i) $pcl_{\delta}(\mu) = \mu \lor cl(int_{\delta}(\mu))$ and $pint_{\delta}(\mu) = \mu \land cl(int_{\delta}(\mu))$

(ii) $sc_{\delta}(\mu) = \mu \lor int(cl_{\delta}(\mu))$ and $sint_{\delta}(\mu) = \mu \land cl(int_{\delta}(\mu))$

Theorem 3.6. For any fuzzy subset μ of a space X, μ is fuzzy e-open if and only if $\mu = pint_{\delta}(\mu) \lor sint_{\delta}(\mu)$.

Proof. Let μ be fuzzy e-open. Then $\mu \leq cl(int_{\delta}(\mu)) \lor int(cl_{\delta}(\mu))$. By lemma [3.5], we have

\[pint_{\delta}(\mu) \lor sint_{\delta}(\mu) = (\mu \land int(cl_{\delta}(\mu))) \lor (\mu \land cl(int_{\delta}(\mu))) = \mu \land (int(cl_{\delta}(\mu)) \lor cl(int_{\delta}(\mu))) = \mu\]

Conversely, if $\mu = pint_{\delta}(\mu) \lor sint_{\delta}(\mu)$ then, by lemma [3.5], $\mu = pint_{\delta}(\mu) \lor sint_{\delta}(\mu) = \mu \land int(cl_{\delta}(\mu)) \lor \mu \land cl(int_{\delta}(\mu)) = \mu \land (int(cl_{\delta}(\mu)) \lor cl(int_{\delta}(\mu))) \leq int(cl_{\delta}(\mu)) \lor cl(int_{\delta}(\mu))$ and hence μ is fuzzy e-open.

Theorem 3.7. In a fuzzy topological space X,

(i) Any union of fuzzy e-open sets is a fuzzy e-open set, and

(ii) Any intersection of fuzzy e-closed sets is a fuzzy e-closed set.

Proof. (i) Let λ_α be a collection of fuzzy e-open sets. Then for each α, $\lambda_\alpha \leq (cl(int_{\delta}(\lambda_\alpha))) \lor (int(cl_{\delta}(\lambda_\alpha))) \leq (cl(int_{\delta}(\lor \lambda_\alpha))) \lor (int(cl_{\delta}(\lor \lambda_\alpha)))$. Thus $\lor \lambda_\alpha$ is a fuzzy e-open set.

(ii) Since $\mu_\alpha = 1 - \lambda_\alpha$ is fuzzy closed set, from (i) we have $\mu_\alpha = 1 - \lambda_\alpha \geq 1 - [(cl(int_{\delta}(\lor \lambda_\alpha))) \lor (int(cl_{\delta}(\lor \lambda_\alpha)))]$. From this we have $\mu_\alpha \geq [1 - (cl(int_{\delta}(\lor \lambda_\alpha))) \land [1 - (int(cl_{\delta}(\lor \lambda_\alpha)))].$ This implies $\mu_\alpha \geq [(int(cl_{\delta}(1-(\lor \lambda_\alpha))))\land[cl(int_{\delta}(1-(\lor \lambda_\alpha)))].$
As 1 - (∨λα) = ∧(1 - λα) we get μα ≥ [(int(clδ(∧(μα))))] ∧ [(cl(intδ(∧(μα))))]. Thus ∧μα is a fuzzy e-closed set.

Definition 3.8. Let μ be any fuzzy set. Then
(i) fe-cl(μ) = ∧{λ : λ ≥ μ, λ is a fuzzy e-closed set of X}
(ii) fe-cl(μ) = ∨{λ : λ ≤ μ, λ is a fuzzy e-open set of X}

Theorem 3.9. In a fuzzy topological space X, λ be a fuzzy e-closed (resp. fuzzy e-open) if and only if λ = fe-cl(λ) (resp. λ = fe-int(λ)).

Proof. Suppose λ = fe-cl(λ) = ∧{μ : μ is a fuzzy e-closed set and μ ≥ λ}. This means λ ∈ ∧{μ : μ is a fuzzy e-closed set and μ ≥ λ} and hence λ is fuzzy e-closed set.

Conversely, suppose λ be a fuzzy e-closed in X. Then we have λ ∈ {μ : μ is a fuzzy e-closed set and μ ≥ λ}. Hence, λ ≤ μ implies λ = ∧{μ : μ is a fuzzy e-closed set and μ ≥ λ}= fe-cl(λ).

Similarly for λ = fe-int(λ).

Theorem 3.10. In a fuzzy topological space X the following holds for fuzzy e-closure sets.
(i) fe-cl(0) = 0.
(ii) fe-cl(λ) is a fuzzy e-closed set in X.
(iii) fe-cl(λ) ≤ fe-cl(μ) if λ ≤ μ.
(iv) fe-cl(fe-cl(λ)) = fe-cl(λ).

Similar results hold for fuzzy e-interiors.

Theorem 3.11. In a fuzzy topological space X, we have
(i) fe-cl(λ ∨ μ) ≥ fe-cl(λ) ∨ fe-cl(μ)
(ii) fe-cl(λ ∧ μ) ≤ fe-cl(λ) ∧ fe-cl(μ).

Proof. (i) λ ≤ λ ∨ μ or μ ≤ λ ∨ μ this implies fe-clλ ≤ fe-cl(λ ∨ μ) or fe-clμ ≤ fe-cl(λ ∨ μ). Therefore fe-cl(λ ∨ μ) ≥ fe-cl(λ) ∨ fe-cl(μ).

(ii) Similar proof of (i).

Theorem 3.12. In a fuzzy topological space X, we have
(i) fe-int(λ ∨ μ) ≥ fe-int(λ) ∨ fe-int(μ) and
(ii) fe-int(λ ∧ μ) ≤ fe-int(λ) ∧ fe-int(μ).

Theorem 3.13. Let u be fuzzy e-open set, we have
(i) If intδ(u) = 0, then u is fuzzy δ-preopen.
(ii) If clδ(u) = 0, then u is fuzzy δ-semiopen.

Theorem 3.14. Let μ be a fuzzy subset of a space X, then, fe-cl(μ) = fpclδ(μ) ∧ fscfδ(μ).

Proof. It is obvious that, fe-cl(μ) ≤ fpclδ(μ) ∧ fscfδ(μ).

Conversely, from definition we have fe-cl(μ) ≥ cl(intδ(e-cl(μ))) ∧ int(clδ(e-cl(μ))) ≥ cl(intδ(μ)) ∧ int(clδ(μ)). Since fe-cl(μ) is fuzzy e-closed, by lemma [3,5] we have fpclδ(μ) ∧ fscfδ(μ) = (μ ∨ cl(intδ(μ))) ∧ (μ ∨ int(clδ(μ))) = μ ∨ (cl(intδ(μ)) ∧ int(clδ(μ))) = μ ≤ fe-cl(μ).
Theorem 3.15. Let μ be a fuzzy subset of a space X, then $fe \text{-int}(\mu) = fpint_{\delta}(\mu) \wedge fsint_{\delta}(\mu)$.

Proof is similar to the above theorem.

Theorem 3.16. Let λ be any fuzzy set in X, then

(i) $fe \text{-cl}(1 - \lambda) = 1 - fe \text{-int}(\lambda)$

(ii) $fe \text{-int}(1 - \lambda) = 1 - fe \text{-cl}(\lambda)$.

Proof. (i) Let v be fuzzy e-open set. Then for a fuzzy e-open set $v \leq \lambda$, $v \geq 1 - \lambda$. Then $fe \text{-int}(\lambda) = \lor\{1 - v, v \text{ is a fuzzy e-closed set and } v \geq 1 - \lambda\} = 1 - \lor\{v : v \text{ is a fuzzy e-closed set and } v \geq 1 - \lambda\} = 1 - fe \text{-cl}(1 - \lambda)$. Thus $fe \text{-cl}(1 - \lambda) = 1 - fe \text{-int}(\lambda)$.

(ii) Let μ be fuzzy e-open set. Then for a fuzzy e-closed set $\mu \geq \lambda$, $\mu \leq 1 - \lambda$. Then $fe \text{-cl}(\lambda) = \land\{1 - \mu, \mu \text{ is a fuzzy e-open set and } \mu \leq 1 - \lambda\} = 1 - \land\{\mu : \mu \text{ is a fuzzy e-open set and } \mu \leq 1 - \lambda\} = 1 - fe \text{-int}(1 - \lambda)$. Thus $fe \text{-int}(1 - \lambda) = 1 - fe \text{-cl}(\lambda)$.

4. FUZZY E-CONTINUITY AND SEPARATION AXIOMS

Definition 4.1. A mapping $f : X \to Y$ is said to be a fuzzy e-continuous if $f^{-1}(\lambda)$ is fuzzy e-open in X for every fuzzy open set λ in Y.

Definition 4.2. A mapping $f : X \to Y$ is said to be a fuzzy e-irresolute if $f^{-1}(\lambda)$ is fuzzy e-open in X for every fuzzy e-open set λ in Y.

Theorem 4.3. For a mapping $f : (X, T) \to (Y, S)$, the following statements are equivalent

(i) f is a fuzzy e-continuous.

(ii) For every fuzzy singleton $x_p \in X$ and every fuzzy open set v in Y such that $f(x_p) \leq v$, there exist fuzzy e-open set $u \leq X$ such that $x_p \leq u$ and $f(u) \leq v$.

(iii) $f^{-1}(\lambda) = \text{int}(cl_{\delta}f^{-1}(\lambda)) \lor \text{cl}(\text{int}_{\delta}f^{-1}(\lambda))$ for each fuzzy open set λ in Y.

(iv) The inverse image of each fuzzy closed set in Y is fuzzy e-closed.

(v) $\text{cl}(\text{int}_{\delta}f^{-1}(v)) \lor \text{int}(cl_{\delta}f^{-1}(v)) \leq f^{-1}(f(v))$ for each fuzzy set v in Y.

(vi) $f(\text{cl}_{\delta}f^{-1}(u)) \lor \text{int}(cl_{\delta}f^{-1}(u)) \leq cl(f(u))$ for every fuzzy set $u \leq X$.

Proof. (i) ⇒ (ii) : Let the singleton set x_p in X and every fuzzy open set v in Y such that $f(x_p) \leq v$. Since f is fuzzy e-continuous. Then $x_p \in f^{-1}(f(x_p)) \leq f^{-1}(v)$. Let $u = f^{-1}(v)$ which is a fuzzy e-open set in X. So, we have $x_p \leq u$. Now $f(u) = f(f^{-1}(v)) \leq v$.

(ii) ⇒ (iii) : Let λ be any fuzzy open set in Y. Let x_p be any fuzzy point in X such that $f(x_p) \leq \lambda$. Then $x_p \in f^{-1}(\lambda)$. By (ii), there exists a fuzzy e-open set $u \leq X$ such that $x_p \leq u$ and $f(u) \leq \lambda$. Therefore, $x_p \in u \leq f^{-1}(f(u)) \leq f^{-1}(\lambda) \leq \text{int}(cl_{\delta}f^{-1}(\lambda)) \lor cl(\text{int}_{\delta}f^{-1}(\lambda))$.

(iii) ⇒ (iv) : Let λ be any fuzzy closed set in Y. Then $1 - \lambda$ be a fuzzy open set in Y. By (iii), $f^{-1}(1 - \lambda) \leq \text{int}(cl_{\delta}f^{-1}(1 - \lambda)) \lor cl(\text{int}_{\delta}f^{-1}(1 - \lambda))$. This implies $1 - f^{-1}(\lambda) \leq \text{int}(cl_{\delta}(1 - f^{-1}(\lambda)) \lor cl(\text{int}_{\delta}(1 - f^{-1}(\lambda))) \leq \text{int}(1 - \text{int}_{\delta}f^{-1}(\lambda)) \lor cl(1 - cl_{\delta}f^{-1}(\lambda)) = 1 - cl(\text{int}_{\delta}f^{-1}(\lambda)) \lor 1 - \text{int}(cl_{\delta}f^{-1}(\lambda))$ and hence $1 - f^{-1}(\lambda) =
Let X, Y and Z be fuzzy topological spaces. If $x, y \in X$ pair of distinct points then f is an \mathcal{E}-continuous function and this implies $f^{-1}(\lambda)$ is fuzzy \mathcal{E}-closed in X.

(iv) \Rightarrow (v): Let $\nu \leq Y$. Then $f^{-1}(cl(\nu))$ is fuzzy \mathcal{E}-closed in X. (i.e.ν is fuzzy \mathcal{E}-closed in Y and $cl(\nu)$ is fuzzy \mathcal{E}-closed in Y).

$$(v) \Rightarrow (vi):$$ Let $u \leq X$. Put $\nu = f(u)$ in (v). Then, $\nu = f^{-1}(cl(\nu)) \leq cl(\nu)$ in X. This implies that $\nu = f^{-1}(cl(\nu)) \leq \nu$ in X.

$$(vi) \Rightarrow (i):$$ Let $v \leq Y$ be fuzzy open set. Put $u = I_Y - v$ and $u = f^{-1}(v)$ then $f^{-1}(v) \leq f^{-1}(v) \leq cl(v) = v$. That is, $f^{-1}(v)$ is fuzzy \mathcal{E}-closed in X, so f is fuzzy \mathcal{E}-continuous.

we obtain the following diagram hold:

\[
\begin{array}{ccc}
\text{fuzzy δ-pre continuous} & \Longrightarrow & \text{fuzzy δ-semi continuous} \\
\text{fuzzy \mathcal{E}-continuous} & \Longleftrightarrow & \text{fuzzy δ-semi continuous}
\end{array}
\]

These implications are not reversible as shown in the following example.

Example 4.4. Let $X = \{a, b, c\}$ and v_1, v_2, v_3 and v_4 be fuzzy sets of X defined as

$v_1(a) = 0.4$, $v_2(a) = 0.6$, $v_3(a) = 0.6$, $v_4(a) = 0.4$

$v_1(b) = 0.6$, $v_2(b) = 0.4$, $v_3(b) = 0.4$, $v_4(b) = 0.5$

$v_1(c) = 0.5$, $v_2(c) = 0.4$, $v_3(c) = 0.5$, $v_4(c) = 0.5$

Let $\tau_1 = \{0, v_1, v_2, v_3 \vee v_2, v_3 \vee v_2, 1\}$, $\tau_2 = \{0, v_3, 1\}$, and $\tau_3 = \{0, v_4, 1\}$ and the mapping $f : (X, \tau_1) \rightarrow (X, \tau_2)$ and $g : (X, \tau_1) \rightarrow (X, \tau_3)$ defined as $f(a) = a, f(b) = b, f(c) = c$. It is clear that f is fuzzy \mathcal{E}-continuous, but it is not fuzzy δ-pre continuous and g is fuzzy \mathcal{E}-continuous, but it is not fuzzy δ-semi continuous.

Theorem 4.5. Let X, Y and Z be fuzzy topological spaces.

(i) If $f : X \rightarrow Y$ fuzzy \mathcal{E}-continuous and $g : Y \rightarrow Z$ is fuzzy continuous. Then $g \circ f : X \rightarrow Z$ is fuzzy \mathcal{E}-continuous.

(ii) If $f : X \rightarrow Y$ fuzzy \mathcal{E}- irresolute and $g : Y \rightarrow Z$ is fuzzy \mathcal{E}-continuous. Then $g \circ f : X \rightarrow Z$ is fuzzy \mathcal{E}- continuous.

Proof. Obvious.

Definition 4.6. A fuzzy topological space (X, τ) is said to be fuzzy \mathcal{E}-T_1 if for each pair of distinct points x and y of X, there exists fuzzy \mathcal{E}-closed sets U_1 and U_2 such that $x \in U_1$ and $y \notin U_2$, $x \notin U_2$ and $y \notin U_1$.

Theorem 4.7. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is fuzzy \mathcal{E}-continuous injective function and Y is fuzzy \mathcal{E}-T_1 then X is fuzzy \mathcal{E}-T_1.
Suppose that \(Y \) is fuzzy \(T_1 \). For any two distinct points \(x \) and \(y \) of \(X \), there exists fuzzy open sets \(F_1 \) and \(F_2 \) in \(Y \) such that \(f(x) \in F_1 \), \(f(y) \in F_2 \), \(f(x) \notin F_2 \) and \(f(y) \notin F_1 \). Since \(f \) is injective fuzzy \(e \)-continuous function, we have \(f^{-1}(F_1) \) and \(f^{-1}(F_2) \) are fuzzy \(e \)-open sets in \(X \). Hence by definition \(X \) is fuzzy \(e \)-\(T_1 \).

Definition 4.8. A fuzzy topological space \((X, \tau)\) is said to be fuzzy \(e \)-\(T_2 \) (i.e., fuzzy \(e \)-Hausdorff) if for each pair of distinct points \(x \) and \(y \) of \(X \), there exists disjoint fuzzy \(e \)-open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \).

Theorem 4.9. If \(f : (X, \tau) \to (Y, \sigma) \) is fuzzy \(e \)-continuous injective function and \(Y \) is fuzzy \(T_2 \) then \(X \) is fuzzy \(e \)-\(T_2 \).

Proof. Suppose that \(Y \) is fuzzy \(T_2 \) space. For any two distinct points \(x \) and \(y \) of \(X \), there exists fuzzy open sets \(U \) and \(V \) in \(Y \) such that \(f(x) \in U \), \(f(y) \in V \), \(f(x) \notin V \) and \(f(y) \notin U \). Since \(f \) is injective fuzzy \(e \)-continuous function, we have \(f^{-1}(U) \) and \(f^{-1}(V) \) are fuzzy \(e \)-open sets in \(X \). Hence by definition, \(X \) is fuzzy \(e \)-\(T_2 \).

Definition 4.10. A fuzzy topological space \((X, \tau)\) is said to be fuzzy \(e \)-normal if for every two disjoint fuzzy closed sets \(A \) and \(B \) of \(X \), there exist two disjoint fuzzy \(e \)-open sets \(U \) and \(V \) such that \(A \leq U \) and \(B \leq V \) and \(U \cap V = 0 \).

Theorem 4.11. If \(f : (X, \tau) \to (Y, \sigma) \) is fuzzy \(e \)-continuous closed injective function and \(Y \) is fuzzy normal then \(X \) is fuzzy \(e \)-normal.

Proof. Suppose that \(Y \) fuzzy normal. Let \(A \) and \(B \) be closed fuzzy sets in \(X \) such that \(A \cap B = 0 \). Since \(f \) is fuzzy closed injection \(f(A) \) and \(f(B) \) are fuzzy closed in \(Y \) and \(f(A) \cap f(B) = 0 \). Since \(Y \) is normal, there exists fuzzy open sets \(U \) and \(V \) in \(Y \) such that \(f(A) \leq U \), \(f(B) \leq V \) and \(U \cap V = 0 \). Therefore we obtain, \(A \leq f^{-1}(U) \) and \(B \leq f^{-1}(V) \) and \(f^{-1}(U \cap V) = 0 \). Since \(f \) is fuzzy \(e \)- continuous, \(f^{-1}(U) \) and \(f^{-1}(V) \) are fuzzy \(e \)-open sets. Hence by definition \(X \) is fuzzy \(e \)-normal.

Definition 4.12. A space \(X \) is said to be fuzzy \(e \)-regular if for each closed set \(F \) of \(X \) and each \(x \in X - F \), there exist disjoint fuzzy \(e \)-open sets \(U \) and \(V \) such that \(x \in U \) and \(F \leq V \).

Theorem 4.13. If \(f : (X, \tau) \to (Y, \sigma) \) is fuzzy \(e \)-continuous closed injective function and \(Y \) is fuzzy regular then \(X \) is fuzzy \(e \)-regular.

Proof. Let \(F \) be fuzzy closed set in \(Y \) with \(y \notin F \). Take \(y = f(x) \). Since \(Y \) is fuzzy regular, there exists disjoint fuzzy open sets \(U \) and \(V \) such that \(x \in U \) and \(y = f(x) \in f(U) \) and \(F \leq f(V) \) such that \(f(U) \) and \(f(V) \) are disjoint fuzzy open sets. Therefore we obtain that, \(f^{-1}(F) \leq V \). Since \(f \) is fuzzy \(e \)-continuous, \(f^{-1}(F) \) is fuzzy \(e \)-closed set in \(X \) and \(x \notin f^{-1}(F) \). Hence by definition \(X \) is fuzzy \(e \)-regular.

Definition 4.14. A fuzzy set \(v \) in a fuzzy topological spaces \((X, \tau)\) is said to be fuzzy \(e \)-connected if and only if \(v \) cannot be expressed as the union of two fuzzy \(e \)-open sets.

Theorem 4.15. Let \(f : X \to Y \) be a fuzzy \(e \)-continuous surjective mapping. If \(v \) is a fuzzy \(e \)-connected subset in \(X \) then, \(f(v) \) is fuzzy connected in \(Y \).

147
Proof. Suppose that $f(d)$ is not fuzzy connected in Y. Then, there exist fuzzy open sets u and v in Y such that $f(d) = u \lor v$. Since f is fuzzy e-continuous surjective mapping, $f^{-1}(u)$ and $f^{-1}(v)$ are fuzzy e-open set in X and $d = f^{-1}(u \lor v) = f^{-1}(u) \lor f^{-1}(v)$. It is clear that $f^{-1}(u)$ and $f^{-1}(v)$ are fuzzy e-open set in X. Therefore, d is not fuzzy e-connected in X, which is a contradiction. Hence, Y is fuzzy connected. □

References