Annals of Fuzzy Mathematics and Informatics Volume 8, No. 1, (July 2014), pp. 141–148 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fuzzy *e*-continuity and fuzzy *e*-open sets

V. SEENIVASAN, K. KAMALA

Received 12 October 2013; Revised 13 December 2013; Accepted 10 January 2014

ABSTRACT. In this paper the concept of fuzzy *e*-open set is introduced and its properties are studied in fuzzy topological spaces. Moreover, we introduce the fuzzy *e*-continuous mapping and other mapping and establish their various characteristic properties. Further fuzzy *e*-separation axioms have been introduced and investigated with the help of fuzzy *e*-open sets.

2010 AMS Classification: 54A40, 03E72

Keywords: Fuzzy *e*-open, Fuzzy *e*-closed, Fuzzy *e*-continuous, Fuzzy *e*-irresolute, Fuzzy *e*-connected.

Corresponding Author: K. Kamala (krsaut@gmail.com)

1. INTRODUCTION

The concept of fuzzy has invaded almost all branches of mathematics with the introduction of fuzzy sets by Zadeh [12] of 1965. The theory of fuzzy topological spaces was introduced and developed by Chang[5]. In 2008, Erdal Ekici[7], has introduced the concept of e-open sets in general topology. In this paper, we extend the notion of e-open sets to fuzzy topological space in the name fuzzy e-open sets and study some properties based on this new concept. We further study the relation between fuzzy e-open sets with other types of fuzzy open sets. We also introduce the concepts of fuzzy e-continuous mappings and study their nature with separation axioms.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, γ) (or simply X, Y and Z) represent non-empty fuzzy topological spaces. Let A be a fuzzy subset of a space X. The fuzzy closure of A, fuzzy interior of A, fuzzy δ -closure of A and the fuzzy δ -interior of A are denoted by cl(A), int(A), $cl_{\delta}(A)$ and $int_{\delta}(A)$ respectively. A fuzzy subset A of space X is called fuzzy regular open[2] (resp.fuzzy regular closed) if A = int(cl(A))(resp. A = cl(int(A))). The fuzzy δ -interior of fuzzy subset A of X is the union of all fuzzy regular open sets contained in A. A fuzzy subset A is called fuzzy δ -open[11] if $A = \operatorname{int}_{\delta}(A)$. The complement of fuzzy δ -open set is called fuzzy δ -closed (i.e, $A = cl_{\delta}(A)$).

A fuzzy subset A of a space X is called fuzzy semi open[2] (resp. fuzzy α open set[10], fuzzy β -open set[3], fuzzy pre-open set[4], fuzzy γ -open[9], fuzzy δ preopen [1], fuzzy δ -semi open)[8] if $A \leq cl$ int A (resp. $A \leq int$ (cl (int(A))), $A \leq cl$ (int (cl(A))), $A \leq int$ (cl(A)), $A \leq cl$ (int(A)) \lor int(cl(A)), $A \leq int$ ($cl_{\delta}(A)$), $A \leq cl$ (int_{\delta}(A))). The complement of a fuzzy δ -semiopen set (resp. fuzzy δ preopen set) is called fuzzy δ -semiclosed (resp.fuzzy δ -preclosed). The union of all fuzzy δ -semi open (resp. fuzzy δ -preopen) sets contained in a fuzzy set A in a fuzzy topological space X is called the fuzzy δ -semi interior [8] (resp. fuzzy δ -pre interior [1]) of A and it is denoted by $sint_{\delta}(A)$ (resp. $pint_{\delta}(A)$). The intersection of all fuzzy δ -semi closed (resp. fuzzy δ -preclosed) sets containing a fuzzy set A in a fuzzy topological space X is called the fuzzy δ -semiclosure [8] (resp. fuzzy δ -preclosure [1]) of A and it is denoted by $sint_{\delta}(A)$ (resp. $pint_{\delta}(A)$).

A function $f: X \to Y$ is called fuzzy δ -pre continuous[1] (resp. fuzzy δ -semi continuous [6] if $f^{-1}(\lambda)$ is fuzzy δ -pre open(resp. fuzzy δ -semi open) in X for every fuzzy open set λ of Y.

3. Fuzzy *e*-open set

Definition 3.1. A fuzzy subset μ of a space X is called fuzzy *e*-open(briefly, *fe*-open) if

$$\mu \leq cl(\operatorname{int}_{\delta}\mu) \vee \operatorname{int}(cl_{\delta}\mu),$$

fuzzy e-closed(briefly, fe-closed) if

$$\mu \geq cl(\operatorname{int}_{\delta}\mu) \wedge \operatorname{int}(cl_{\delta}\mu).$$

From the definitions we obtain the following diagram

fuzzy
regular
open

$$\psi$$

fuzzy
 δ -open
 ψ
fuzzy
open
 ψ
fuzzy
open
 ψ
fuzzy
 δ -open
 ψ
fuzzy
 γ -open
 ψ
fuzzy
 δ -open
 ψ
fuzzy
 γ -open
 ψ
fuzzy
 δ -open
 ψ
fuzzy
 δ -open
 ψ
fuzzy
fuzzy
fuzzy
fuzzy
 δ -open
 ψ
fuzzy
fu

None of these implications are reversible as shown in the following example.

Example 3.2. Let $X = \{a, b, c\}$ and v_1, v_2, v_3 be fuzzy sets of X defined as

 $v_1(a) = 0.2, v_2(a) = 0.1, v_3(a) = 0.2$ $v_1(b) = 0.3, v_2(b) = 0.1, v_3(b) = 0.4$ $v_1(c) = 0.4, v_2(c) = 0.4, v_3(c) = 0.4$

Let $\tau = \{0, v_1, v_2, 1\}$, then the fuzzy set v_3 is fuzzy e-open set. But it is not fuzzy δ -preopen.

Example 3.3. Let $X = \{a, b, c\}$ and $\nu_1, \nu_2, \nu_3, \nu_4$ be fuzzy sets of X defined as

$$\nu_1(a) = 0.3, \ \nu_2(a) = 0.4, \ \nu_3(a) = 0.4, \ \nu_4(a) = 0.3
\nu_1(b) = 0.5, \ \nu_2(b) = 0.2, \ \nu_3(b) = 0.5, \ \nu_4(b) = 0.5
\nu_1(c) = 0.5, \ \nu_2(c) = 0.6, \ \nu_3(c) = 0.6, \ \nu_4(c) = 0.4$$

Let $\tau = \{0, \nu_1, \nu_2, \nu_3, \nu_1 \land \nu_2, 1\}$. Then the fuzzy set ν_4 is fuzzy *e*-open but not fuzzy δ -semi open and also not a fuzzy β -open, fuzzy γ -open and fuzzy semi open.

Example 3.4. Let $X = \{a, b, c\}$ and u_1, u_2, u_3, u_4 be fuzzy sets of X defined as

$$u_1(a) = 0.3, u_2(a) = 0.6, u_3(a) = 0.6, u_4(a) = 0.3$$
$$u_1(b) = 0.4, u_2(b) = 0.5, u_3(b) = 0.5, u_4(b) = 0.4$$
$$u_1(c) = 0.5, u_2(c) = 0.5, u_3(c) = 0.4, u_4(c) = 0.4$$

Let $\tau = \{0, u_1, u_2, u_3, u_4, 1\}$ and let λ be fuzzy set defined as $\lambda(a) = 0.7, \lambda(b) =$ 0.6, $\lambda(c) = 0.4$. Then λ is not fuzzy *e*-open set but it is fuzzy β -open, fuzzy γ -open and fuzzy semi open.

Lemma 3.5. [1, 8] Let μ be a fuzzy subset of X, then

- (i) $pcl_{\delta}(\mu) = \mu \lor cl(\operatorname{int}_{\delta}(\mu))$ and $pint_{\delta}(\mu) = \mu \land \operatorname{int}(cl_{\delta}(\mu))$
- (ii) $scl_{\delta}(\mu) = \mu \lor int(cl_{\delta}(\mu))$ and $sint_{\delta}(\mu) = \mu \land cl(int_{\delta}(\mu))$

Theorem 3.6. For any fuzzy subset μ of a space X, μ is fuzzy e-open if and only if $\mu = pint_{\delta}(\mu) \vee sint_{\delta}(\mu).$

Proof. Let μ be fuzzy e-open. Then $\mu \leq cl(\operatorname{int}_{\delta}\mu) \vee \operatorname{int}(cl_{\delta}\mu)$. By lemma 3.5, we have $pint_{\delta}(\mu) \lor sint_{\delta}(\mu) = (\mu \land int(cl_{\delta}(\mu)) \lor (\mu \land cl(int_{\delta}(\mu))) = \mu \land (int(cl_{\delta}(\mu)) \lor cl(int_{\delta}(\mu)))$ $= \mu$.

Conversely, if $\mu = pint_{\delta}(\mu) \lor sint_{\delta}(\mu)$ then, by lemma 3.5, $\mu = pint_{\delta}(\mu) \lor sint_{\delta}(\mu) = \mu \land$ $\operatorname{int}(cl_{\delta}(\mu)) \lor \mu \land cl(int_{\delta}(\mu)) = \mu \land (\operatorname{int}(cl_{\delta}(\mu)) \lor cl(\operatorname{int}_{\delta}(\mu))) \le \operatorname{int}(cl_{\delta}(\mu)) \lor cl(\operatorname{int}_{\delta}(\mu))$ and hence μ is fuzzy *e*-open. \square

Theorem 3.7. In a fuzzy topological space X,

- (i) Any union of fuzzy e-open sets is a fuzzy e-open set, and
- (ii) Any intersection of fuzzy e-closed sets is a fuzzy e-closed set.

Proof. (i) Let λ_{α} be a collection of fuzzy *e*-open sets. Then for each α , $\lambda_{\alpha} \leq 1$ $(cl(\operatorname{int}_{\delta}(\lambda_{\alpha}))) \vee (\operatorname{int}(cl_{\delta}(\lambda_{\alpha}))) \leq (cl(\operatorname{int}_{\delta}(\vee\lambda_{\alpha}))) \vee (\operatorname{int}(cl_{\delta}(\vee\lambda_{\alpha}))).$ Thus $\vee\lambda_{\alpha}$ is a fuzzy e-open set.

(ii) Since $\mu_{\alpha} = 1 - \lambda_{\alpha}$ is fuzzy closed set, from (i) we have $\mu_{\alpha} = 1 - \lambda_{\alpha} \ge 1 - \lambda_{\alpha}$ $[(cl(\operatorname{int}_{\delta}(\lor\lambda_{\alpha})))\lor(\operatorname{int}(cl_{\delta}(\lor\lambda_{\alpha})))]$. From this we have $\mu_{\alpha} \ge [1 - (cl(\operatorname{int}_{\delta}(\lor\lambda_{\alpha})))] \land$ $[1-(int(cl_{\delta}(\vee\lambda_{\alpha})))]$. This implies $\mu_{\alpha} \ge [(int(cl_{\delta}(1-(\vee\lambda_{\alpha}))))] \land [(cl(int_{\delta}(1-(\vee\lambda_{\alpha}))))]$. As $1 - (\vee \lambda_{\alpha}) = \wedge (1 - \lambda_{\alpha})$ we get $\mu_{\alpha} \ge [(int(cl_{\delta}(\wedge(\mu_{\alpha}))))] \wedge [(cl(int_{\delta}(\wedge(\mu_{\alpha}))))]$. Thus $\wedge \mu_{\alpha}$ is a fuzzy *e*-closed set. \Box

Definition 3.8. Let μ be any fuzzy set. Then (i) $fe\text{-}cl(\mu) = \wedge \{\lambda : \lambda \ge \mu, \lambda \text{ is a fuzzy } e\text{-}closed \text{ set of } X\}$ (ii) $fe\text{-}int(\mu) = \vee \{\lambda : \lambda \le \mu, \lambda \text{ is a fuzzy } e\text{-}open \text{ set of } X\}$

Theorem 3.9. In a fuzzy topological space X, λ be a fuzzy e-closed (resp. fuzzy e-open) if and only if $\lambda = fe\text{-}cl(\lambda)$ (resp. $\lambda = fe\text{-}int(\lambda)$).

Proof. Suppose $\lambda = fe\text{-}cl(\lambda) = \wedge \{\mu : \mu \text{ is a fuzzy e-closed set and } \mu \geq \lambda \}$. This means $\lambda \in \wedge \{\mu : \mu \text{ is a fuzzy e-closed set and } \mu \geq \lambda \}$ and hence λ is fuzzy e-closed set.

Conversely, suppose λ be a fuzzy *e*-closed in X. Then we have $\lambda \in \{\mu : \mu \text{ is a fuzzy } e\text{-closed set and } \mu \geq \lambda\}$. Hence, $\lambda \leq \mu$ implies $\lambda = \wedge \{\mu : \mu \text{ is a fuzzy } e\text{-closed set and } \mu \geq \lambda\} = fe\text{-cl}(\lambda)$. Similarly for $\lambda = fe\text{-int}(\lambda)$.

Theorem 3.10. In a fuzzy topological space X the following holds for fuzzy e-closure sets. (i) fe-cl(0) = 0.

(ii) $fe\text{-}cl(\lambda)$ is a fuzzy e-closed set in X. (iii) $fe\text{-}cl(\lambda) \leq fe\text{-}cl(\mu)$ if $\lambda \leq \mu$. (iv) $fe\text{-}cl(fe\text{-}cl(\lambda)) = fe\text{-}cl(\lambda)$. Similar results hold for fuzzy e-interiors.

Theorem 3.11. In a fuzzy topological space X, we have (i)fe-cl($\lambda \lor \mu$) \ge fe-cl(λ) \lor fe-cl(μ) (ii) fe-cl($\lambda \land \mu$) \le fe-cl(λ) \land fe-cl(μ).

Proof. (i) $\lambda \leq \lambda \lor \mu$ or $\mu \leq \lambda \lor \mu$ this implies $fe\text{-}cl\lambda \leq fe\text{-}cl(\lambda \lor \mu)$ or $fe\text{-}cl\mu \leq fe\text{-}cl(\lambda \lor \mu)$. Therefore $fe\text{-}cl(\lambda \lor \mu) \geq fe\text{-}cl(\lambda) \lor fe\text{-}cl(\mu)$. (ii) Similar proof of (i).

Theorem 3.12. In a fuzzy topological space X, we have

(i) $fe\operatorname{-int}(\lambda \lor \mu) \ge fe\operatorname{-int}(\lambda) \lor fe\operatorname{-int}(\mu)$ and

(ii) $fe\operatorname{-int}(\lambda \wedge \mu) \leq fe\operatorname{-int}(\lambda) \wedge fe\operatorname{-int}(\mu)$.

Theorem 3.13. Let u be fuzzy e-open set, we have

- (i) If $\operatorname{int}_{\delta}(u) = 0$, then u is fuzzy δ -preopen.
- (ii) If $cl_{\delta}(u) = 0$, then u is fuzzy δ -semiopen.

Theorem 3.14. Let μ be a fuzzy subset of a space X, then, $fe\text{-}cl(\mu) = fpcl_{\delta}(\mu) \wedge fscl_{\delta}(\mu)$.

Proof. It is obvious that, $fe\text{-}cl(\mu) \leq fpcl_{\delta}(\mu) \wedge fscl_{\delta}(\mu)$. Conversely, from definition we have $fe\text{-}cl(\mu) \geq cl(\operatorname{int}_{\delta}(e\text{-}cl(\mu))) \wedge int(cl_{\delta}(e\text{-}cl(\mu))) \geq cl(\operatorname{int}_{\delta}(\mu)) \wedge \operatorname{int}(cl_{\delta}(\mu))$. Since $fe\text{-}cl(\mu)$ is fuzzy e- closed, by lemma 3.5, we have $fpcl_{\delta}(\mu) \wedge fscl_{\delta}(\mu) = (\mu \vee cl(int_{\delta}(\mu))) \wedge (\mu \vee int(cl_{\delta}(\mu))) = \mu \vee (cl(int_{\delta}(\mu)) \wedge int(cl_{\delta}(\mu))) = \mu \leq fe\text{-}cl(\mu)$.

144

Theorem 3.15. Let μ be a fuzzy subset of a space X, then $fe\operatorname{-int}(\mu) = fp\operatorname{int}_{\delta}(\mu) \wedge fs\operatorname{int}_{\delta}(\mu)$.

Proof is similar to the above theorem.

Theorem 3.16. Let λ be any fuzzy set in X, then

- (i) $fe cl(1 \lambda) = 1 fe int(\lambda)$
- (ii) $fe\operatorname{-int}(1-\lambda) = 1 fe\operatorname{-}cl(\lambda).$

Proof. (i) Let v be fuzzy e-open set. Then for a fuzzy e-open set $v \leq \lambda$, $v \geq 1-\lambda$. Then $fe\operatorname{-int}(\lambda) = \vee \{1 - v, v \text{ is a fuzzy e-closed set and } v \geq 1-\lambda\} = 1 - \wedge \{v : v \text{ is a fuzzy e-closed set and } v \geq 1-\lambda\} = 1 - fe\operatorname{-cl}(1-\lambda)$. Thus $fe\operatorname{-cl}(1-\lambda) = 1 - fe\operatorname{-int}(\lambda)$.

(ii) Let μ be fuzzy e-open set. Then for a fuzzy e-closed set $\mu \geq \lambda, \mu \leq 1 - \lambda$. Then $fe\text{-}cl(\lambda) = \wedge \{1 - \mu, \mu \text{ is a fuzzy e-open set and } \mu \leq 1 - \lambda\} = 1 - \vee \{\mu : \mu \text{ is a fuzzy e-open set and } \mu \leq 1 - \lambda\} = 1 - fe\text{-}int(1 - \lambda)$. Thus $fe\text{-}int(1 - \lambda) = 1 - fe\text{-}cl(\lambda)$.

4. FUZZY *e*-CONTINUITY AND SEPARATION AXIOMS

Definition 4.1. A mapping $f : X \to Y$ is said to be a fuzzy e-continuous if $f^{-1}(\lambda)$ is fuzzy *e*-open in X for every fuzzy open set λ in Y.

Definition 4.2. A mapping $f : X \to Y$ is said to be a fuzzy *e*-irresolute if $f^{-1}(\lambda)$ is fuzzy *e*-open in X for every fuzzy *e*-open set λ in Y.

Theorem 4.3. For a mapping $f : (X,T) \to (Y,S)$, the following statements are equivalent

- (i) f is a fuzzy e- continuous.
- (ii) For every fuzzy singleton $x_p \in X$ and every fuzzy open set v in Y such that $f(x_p) \leq v$, there exit fuzzy e- open set $u \leq X$ such that $x_p \leq u$ and $f(u) \leq v$.
- (iii) $f^{-1}(\lambda) = \operatorname{int}(cl_{\delta}f^{-1}(\lambda)) \lor cl(int_{\delta}f^{-1}(\lambda))$ for each fuzzy open set λ in Y.
- $({\rm iv}) \ \ The \ inverse \ image \ of \ each \ fuzzy \ closed \ set \ in \ Y \ is \ fuzzy \ e-closed.$
- (v) $cl(\operatorname{int}_{\delta} f^{-1}(v) \wedge \operatorname{int}(cl_{\delta} f^{-1}(v) \leq f^{-1}(cl(\nu)))$ for each fuzzy set $\nu \leq Y$.
- (vi) $f(clint_{\delta}(u) \wedge int cl_{\delta}(u)) \leq cl(f(u))$ for every fuzzy set $u \leq X$.

Proof. $(i) \Rightarrow (ii)$: Let the singleton set x_p in X and every fuzzy open set v in Y such that $f(x_p) \leq v$. Since f is fuzzy e-continuous. Then $x_p \in f^{-1}(f(x_p)) \leq f^{-1}(v)$. Let $u = f^{-1}(v)$ which is a fuzzy e-open set in X. So, we have $x_p \leq u$. Now $f(u) = f(f^{-1}(v)) \leq v$.

 $(ii) \Rightarrow (iii)$: Let λ be any fuzzy open set in Y. Let x_p be any fuzzy point in X such that $f(x_p) \leq \lambda$. Then $x_p \in f^{-1}(\lambda)$. By(ii), there exists a fuzzy e-open set $u \leq X$ such that $x_p \leq u$ and $f(u) \leq \lambda$. Therefore, $x_p \in u \leq f^{-1}(f(u)) \leq f^{-1}(\lambda) \leq int(cl_{\delta}f^{-1}(\lambda)) \vee cl(int_{\delta}f^{-1}(\lambda))$.

 $(iii) \Rightarrow (iv)$: Let λ be any fuzzy closed set in Y. Then $1 - \lambda$ be a fuzzy open set in Y. By (iii), $f^{-1}(1-\lambda) \leq \operatorname{int}(cl_{\delta}f^{-1}(1-\lambda)) \vee cl(\operatorname{int}_{\delta}f^{-1}(1-\lambda))$. This implies $1 - f^{-1}(\lambda) \leq \operatorname{int}(cl_{\delta}(1 - f^{-1}(\lambda))) \vee cl(\operatorname{int}_{\delta}(1 - f^{-1}(\lambda))) \leq \operatorname{int}(1 - \operatorname{int}_{\delta}f^{-1}(\lambda)) \vee cl(1 - cl_{\delta}f^{-1}(\lambda)) = 1 - cl(\operatorname{int}_{\delta}f^{-1}(\lambda)) \vee 1 - \operatorname{int}(cl_{\delta}f^{-1}(\lambda))$ and hence $1 - f^{-1}(\lambda) = 145$ $1 - (cl(\operatorname{int}_{\delta} f^{-1}(\lambda)) \wedge \operatorname{int}(cl_{\delta} f^{-1}(\lambda))).$ Hence $f^{-1}(\lambda) \geq cl(\operatorname{int}_{\delta} f^{-1}(\lambda)) \wedge \operatorname{int}(cl_{\delta} f^{-1}(\lambda))$ and this implies $f^{-1}(\lambda)$ is fuzzy e-closed in X.

 $(iv) \Rightarrow (v)$: Let $\nu \leq Y$. Then $f^{-1}(cl(\nu))$ is fuzzy e-closed in X. (i.e)int $(cl_{\delta}f^{-1}(\nu)) \wedge$ $cl(\operatorname{int}_{\delta} f^{-1}(\nu)) \leq \operatorname{int}(cl_{\delta} f^{-1}(cl(\nu))) \wedge cl(\operatorname{int}_{\delta} f^{-1}(cl(\nu))) \leq f^{-1}(cl(\nu)).$

 $(v) \Rightarrow (vi)$: Let $u \leq X$. Put $\nu = f(u)$ in (v). Then, $\operatorname{int}(cl_{\delta}f^{-1}(f(u))) \wedge$ $cl(\operatorname{int}_{\delta} f^{-1}(f(u))) \leq f^{-1}(cl(f(u)))$. This implies that $\operatorname{int}(cl_{\delta}(u)) \wedge cl(\operatorname{int}_{\delta}(u)) \leq cl(\operatorname{int}_{\delta}(u))$ $f^{-1}(cl(f(u))) f(int(cl_{\delta}(u)) \wedge cl(int_{\delta}(u))) \leq cl(f(u))$

 $(vi) \Rightarrow (i)$: Let $v \leq Y$ be fuzzy open set. Put $u = I_Y - v$ and $u = f^{-1}(v)$ then $f(int(cl_{\delta}(f^{-1}(v))) \wedge cl(int_{\delta}(f^{-1}(v)))) \leq cl(f(f^{-1}(v))) \leq cl(v) = v$. That is, $f^{-1}(v)$ is fuzzy e-closed in X, so f is fuzzy e-continuous. \square

we obtain the following diagram hold:

*/ *

These implications are not reversible as shown in the following example.

. .

()

Example 4.4. Let $X = \{a, b, c\}$ and v_1, v_2, v_3 and v_4 be fuzzy sets of X defined as

()

$$v_1(a) = 0.4, v_2(a) = 0.6, v_3(a) = 0.6, v_4(a) = 0.4$$

 $v_1(b) = 0.6, v_2(b) = 0.4, v_3(b) = 0.4, v_4(b) = 0.5$
 $v_1(c) = 0.5, v_2(c) = 0.4, v_3(c) = 0.5, v_4(c) = 0.5$

Let $\tau_1 = \{0, v_1, v_2, v_1 \lor v_2, v_1 \land v_2, 1\}$, $\tau_2 = \{0, v_3, 1\}$, and $\tau_3 = \{0, v_4, 1\}$ and the mapping $f: (X, \tau_1) \to (X, \tau_2)$ and $g: (X, \tau_1) \to (X, \tau_3)$ defined as f(a) =a, f(b) = b, f(c) = c. It is clear that f is fuzzy e-continuous, but it is not fuzzy δ -pre continuous and g is fuzzy e-continuous, but it is not fuzzy δ -semi continuous.

Theorem 4.5. Let X, Y and Z be fuzzy topological spaces.

- (i) If $f: X \to Y$ fuzzy e-continuous and $g: Y \to Z$ is fuzzy continuous. Then $g \circ f : X \to Z$ is fuzzy e-continuous.
- (ii) If $f: X \to Y$ fuzzy e-irresolute and $g: Y \to Z$ is fuzzy e-continuous. Then $g \circ f : X \to Z$ is fuzzy e-continuous.

Proof. Obvious.

Definition 4.6. A fuzzy topological space (X, τ) is said to be fuzzy $e T_1$ if for each pair of distinct points x and y of X, there exists fuzzy e-open sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$, $x \notin U_2$ and $y \notin U_1$.

Theorem 4.7. If $f:(X,\tau) \to (Y,\sigma)$ is fuzzy e-continuous injective function and Y is fuzzy T_1 then X is fuzzy e- T_1 .

Proof. Suppose that Y is fuzzy T_1 . For any two distinct points x and y of X, there exists fuzzy open sets F_1 and F_2 in Y such that $f(x) \in F_1$, $f(y) \in F_2$, $f(x) \notin F_2$ and $f(y) \notin F_1$. Since f is injective fuzzy e-continuous function, we have $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are fuzzy e-open sets in X. Hence by definition X is fuzzy e-T₁.

Definition 4.8. A fuzzy topological space (X, τ) is said to be fuzzy e- T_2 (i.e., fuzzy e-Hausdorff) if for each pair of distinct points x and y of X, there exists disjoint fuzzy e-open sets U and V such that $x \in U$ and $y \in V$.

Theorem 4.9. If $f : (X, \tau) \to (Y, \sigma)$ is fuzzy *e*-continuous injective function and Y is fuzzy T_2 then X is fuzzy e^{-T_2} .

Proof. Suppose that Y is fuzzy T_2 space. For any two distinct points x and y of X, there exists fuzzy open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$, $f(x) \notin V$ and $f(y) \notin U$. Since f is injective fuzzy e-continuous function, we have $f^{-1}(U)$ and $f^{-1}(V)$ are fuzzy e-open sets in X. Hence by definition, X is fuzzy $e -T_2$.

Definition 4.10. A fuzzy topological space (X, τ) is said to be fuzzy *e*-normal if for every two disjoint fuzzy closed sets A and B of X, there exist two disjoint fuzzy *e*-open sets U and V such that $A \leq U$ and $B \leq V$ and $U \wedge V = 0$.

Theorem 4.11. If $f : (X, \tau) \to (Y, \sigma)$ is fuzzy *e*-continuous closed injective function and Y is fuzzy normal then X is fuzzy *e*-normal.

Proof. Suppose that Y fuzzy normal. Let A and B be closed fuzzy sets in X such that $A \wedge B = 0$. Since f is fuzzy closed injection f(A) and f(B) are fuzzy closed in Y and $f(A) \wedge f(B) = 0$. Since Y is normal, there exists fuzzy open sets U and V in Y such that $f(A) \leq U$, $f(B) \leq V$ and $U \wedge V = 0$. Therefore we obtain, $A \leq f^{-1}(U)$ and $B \leq f^{-1}(V)$ and $f^{-1}(U \wedge V) = 0$. Since f is fuzzy e- continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are fuzzy e-open sets. Hence by definition X is fuzzy e-normal.

Definition 4.12. A space X is said to be fuzzy *e*-regular if for each closed set F of X and each $x \in X - F$, there exist disjoint fuzzy *e*-open sets U and V such that $x \in U$ and $F \leq V$.

Theorem 4.13. If $f : (X, \tau) \to (Y, \sigma)$ is fuzzy *e*-continuous closed injective function and Y is fuzzy regular then X is fuzzy *e*-regular.

Proof. Let F be fuzzy closed set in Y with $y \notin F$. Take y = f(x). Since Y is fuzzy regular, there exists disjoint fuzzy open sets U and V such that $x \in U$ and $y = f(x) \in f(U)$ and $F \leq f(V)$ such that f(U) and f(V) are disjoint fuzzy open sets. Therefore we obtain that, $f^{-1}(F) \leq V$. Since f is fuzzy e-continuous, $f^{-1}(F)$ is fuzzy e-closed set in X and $x \notin f^{-1}(F)$. Hence by definition X is fuzzy e- regular. \Box

Definition 4.14. A fuzzy set v in a fuzzy topological spaces (X, τ) is said to be fuzzy *e*-connected if and only if v cannot be expressed as the union of two fuzzy *e*-open sets.

Theorem 4.15. Let $f: X \to Y$ be a fuzzy e-continuous surjective mapping. If v is a fuzzy e-connected subset in X then, f(v) is fuzzy connected in Y.

Proof. Suppose that f(d) is not fuzzy connected in Y. Then, there exist fuzzy open sets u and v in Y such that $f(d) = u \lor v$. Since f is fuzzy e-continuous surjective mapping, $f^{-1}(u)$ and $f^{-1}(v)$ are fuzzy e-open set in X and $d = f^{-1}(u \lor v) = f^{-1}(u) \lor f^{-1}(v)$. It is clear that $f^{-1}(u)$ and $f^{-1}(v)$ are fuzzy e-open set in X. Therefore, d is not fuzzy e-connected in X, which is a contradiction. Hence, Y is fuzzy connected.

References

- [1] Anjana Bhattacharyya and M. N. Mukherjee, On fuzzy δ -almost continuous and δ^* -almost continuous functions, J. Tripura Math. Soc. 2 (2000) 45–57.
- K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [3] G. Balasubramanian, On fuzzy β-compact spaces and fuzzy β-extremally disconnected spaces, Kybernetika (Prague) 33(3) (1997) 271–277.
- [4] A. S. Bin Shahna, On fuzzy strong semi continuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303–308.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [6] S. Debnath, On fuzzy
δ-semi continuous functions, Acta Cienc. Indica Math. 34
(2) (2008) 697–703.
- [7] Erdal Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian J. Sci, 33 (2) (2008),269-282.
- [8] A. Mukherjee and S. Debnath, $\delta\text{-semi}$ open sets in fuzzy setting, J. Tri. Math.Soc. 8 (2006) 51–54.
- [9] T. Noiri and O. R. Sayed, Fuzzy γ-open sets and fuzzy γ-continuity in fuzzifying topology, Sci. Math. Jpn. 55 (2002) 255–263.
- [10] R. Prasad, S. S. Thakur and R. K. Saraf, Fuzzy $\alpha\text{-irresolute mappings},$ J. Fuzzy Math. 2(2) (1994) 335–339.
- [11] N. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78(2) (1968) 103-118.
- [12] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>V. SEENIVASAN</u> (seenujsc@yahoo.co.in)

Department of mathematics, University College of Engineering Panruti, (A constituent college of Anna university, Chennai), Panruti-607 106, Tamilnadu, India

<u>K. KAMALA</u> (krsaut@gmail.com)

Department of mathematics, University College of Engineering Panruti, (A constituent college of Anna university, Chennai), Panruti-607 106, Tamilnadu, India