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Abstract. Molodtsov (1999) [24] defined the notion of a soft set
for coping with uncertainties. Shabir and Naz (2011) [30] introduced the
topological structures of soft sets and investigated many properties. In
the present paper, we contribute to the progress of the soft topological
structures. We introduce soft Hausdorff spaces using the definition of soft
point in [10, 19] and investigate some of their properties. We give some
new concepts such as cluster soft point, soft net and support them with
examples. Then, by using these concepts, we obtain some properties with
respect to soft Hausdorff spaces which are important for further research
on soft topology.
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1. Introduction

There are diverse uncertainties for most of complex problems in economics,
engineering, environmental science and social science. Several set theories can be
regarded as mathematical tools for dealing with these uncertainties, for example the
theory of fuzzy sets [32], the theory of intuitionistic fuzzy sets [3, 4], the theory of
vague sets [12], the theory of interval mathematics [4, 14] and the theory of rough
sets [26]. However, these theories have their inherent difficulties because of the
inadequacy of the parameterization tool of the theories as cited by Molodtsov [24].

In 1999, Molodtsov [24] initiated the concept of soft set theory as a new approach
for coping with uncertainties and also presented the basic results of the new theory.
This new theory does not require the specification of a parameter. We can utilize
any parametrization with the aid of words, sentences, real numbers and so on. This
implies that the problem of setting the membership function does not arise. Hence,
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soft set theory has compelling applications in several diverse fields, most of these
applications was shown by Molodtsov [24].

Maji et al. [22] gave the first practical application of soft sets in decision making
problems. Chen et al. [8] presented a novel concept of parameterization reduction in
soft sets. Kong et al. [18] introduced the notion of normal parameter reduction and
presented a algorithm for normal parameter reduction. Then, Ma et al. [20] proposed
a simpler and more easily comprehensible algorithm. Pei and Miao [27] showed that
soft sets are a class of special information systems. Maji et al. [21] studied on
soft set theory in detail. Ali et al. [2] presented some new algebraic operations
on soft sets. Aktas and Cagman [1] introduced the soft group and also compared
soft sets to fuzzy set and rough set. Jun [15] defined and studied the concept of
soft BCK/BCI-algebras. Also, Feng et al. [11] worked on soft semirings, soft ideals
and idealistic soft semirings. Babitha and Sunil [6] introduced the soft set relation
and discussed many related concepts such as equivalent soft set relation, partition
and composition. Kharal and Ahmad [17] defined the notion of a mapping on soft
classes and worked some properties of images and inverse images of soft sets. Das and
Samanta [9] introduced the notions of soft real sets and soft real numbers and studied
their properties. Shabir and Naz [30] initiated the study of soft topological spaces.
Also, they defined fundamental notions such as soft open sets, soft closed sets,
soft interior, soft closure and soft separation axioms and established their several
properties. Nazmul and Samanta [25] defined new concepts such as soft element, soft
interior operator and soft closure operator and worked their properties. Aygunoglu
and Aygun [5] introduced soft product topology, soft compactness and generalized
Tychonoff theorem to the soft topological spaces. Zorlutuna et al. [33] also studied
on soft topological spaces and obtained the relation between soft topology and fuzzy
topology. Das and Samanta [10] introduced soft metric spaces and investigated some
their fundamental properties. Also, they redefined the notion of soft point. Studies
on the soft topological spaces have been accelerated [13, 28, 29, 31].

In this work, we first remind the fundamental concepts of soft set theory. Also, we
recall notion of soft point which is defined in [10, 19] and some of its basic properties.
We then recall some concepts of soft topological spaces and introduce some new
notions such as cluster soft point and soft net. Moreover, we introduce convergence
of soft net and soft filter. Finally, we define soft Hausdorff spaces by using notion
of soft point in [10, 19]. We study some basic properties of soft Hausdorff spaces.
Also, we show that a soft net and a soft filter converge to at most one soft point in
soft Hausdorff space. These study not only can form the theoretical basis for further
applications of soft topology but also lead to the advance of information systems.

2. Preliminaries

In this section, we recall some basic notions regarding soft sets, most of which
exist in [7, 17], and we present the concept of soft point introduced in [10, 19].
Throughout this work, let X be an initial universe, P (X) be the power set of X, E
be the set of all parameters for X and A ⊆ E.

Aygunoglu and Aygun [5] modified the definition of soft set defined in [7, 23, 24]
as follows.
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Definition 2.1. A soft set FA on the universe X with the set E of parameters is
defined by the set of ordered pairs

FA = {(e, FA(e)) : e ∈ E,FA(e) ∈ P (X)}
where FA : E → P (X) such that FA(e) ̸= ∅ if e ∈ A ⊆ E and FA(e) = ∅ if e /∈ A.

Throughout this paper, the family of all soft sets over X is denoted by S(X,E).
[5]

Definition 2.2 ([7]). The soft set F∅ ∈ S(X,E) is called null soft set if F∅(e) = ∅
for every e ∈ E.

The null soft set is denoted by Φ. [21]

Definition 2.3 ([7]). Let FA ∈ S(X,E). If FA(e) = X for all e ∈ A, then FA is
called A-absolute soft set. If A = E, then the A-absolute soft set is called absolute
soft set.

The A-absolute soft set and absolute soft set are denoted by Ã and Ẽ, respectively.
[21]

Definition 2.4 ([7]). Let FA, GB ∈ S(X,E). FA is a soft subset of GB if FA(e) ⊆
GB(e) for each e ∈ E. It is denoted by FA ⊑ GB .

Definition 2.5 ([7]). Let FA, GB ∈ S(X,E). FA and GB are soft equal if FA ⊑ GB
and GB ⊑ FA. It is denoted by FA = GB.

Definition 2.6 ([7]). Let FA ∈ S(X,E). The complement of FA is denoted by F cA,
where F cA : E → P (X) is a mapping defined by F cA(e) = X − FA(e) for all e ∈ E.

Definition 2.7 ([7]). Let FA, GB ∈ S(X,E). The union of FA and GB is a soft set
HC , which is defined by HC(e) = FA(e) ∪GB(e) for all e ∈ E.
HC is denoted by FA ⊔GB .

Definition 2.8 ([7]). Let FA, GB ∈ S(X,E). Then, the intersection of FA and GB
is a soft set HC , which is defined by HC(e) = FA(e) ∩GB(e) for all e ∈ E.
HC is denoted by FA ⊓GB .

Definition 2.9 ([33]). Let J be an arbitrary index set and let {(FA)i}i∈J be a
family of soft sets over X. Then,

(i) The union of these soft sets is the soft setHC defined byHC(e) =
∪
i∈J (FA)i(e)

for every e ∈ E and this soft set is denoted by
⊔
i∈J(FA)i.

(ii) The intersection of these soft sets is the soft set HC defined by HC(e) =∩
i∈J (FA)i(e) for every e ∈ E and this soft set is denoted by ⊓i∈J(FA)i.

Theorem 2.10 ([5, 7, 33]). Let J be an index set and FA, GB, (FA)i, (GB)i ∈
S(X,E), for all i ∈ J . Then, the following statements are satisfied.

(1) FA ⊓
(⊔

i∈J (GB)i
)
=

⊔
i∈J(FA ⊓ (GB)i).

(2) FA ⊔
(
⊓i∈J (GB)i

)
= ⊓i∈J (FA ⊔ (GB)i).

(3) (F cA)
c = FA.

(4)
(
⊓i∈J (FA)i

)c
=

⊔
i∈J(FA)

c
i ,

(⊔
i∈J(FA)i

)c
= ⊓i∈J(FA)ci .

(5) If FA ⊑ GB, then G
c
B ⊑ F cA.

(6) FA ⊔ F cA = Ẽ, FA ⊓ F cA = Φ.
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Definition 2.11 ([10, 19]). A soft set PA over X is said to be a soft point, which is
called soft element in [25] , if there is e ∈ A such that PA(e) = {x} for some x ∈ X
and PA(e

′) = ∅ for all e′ ∈ E\{e}. This soft point is denoted by P xe
The soft point P xe is said to belongs to the soft set FA, denoted by P xe ∈̃FA, if

x ∈ FA(e). [10, 25]

From now on, the family of all soft points over X will be denoted by SP (X,E).

Definition 2.12 ([10]). Two soft points P x1
e1 , P

x2
e2 are said to be equal if e1 = e2

and x1 = x2. Thus, P
x1
e1 ̸= P x2

e2 ⇔ x1 ̸= x2 or e1 ̸= e2.

Proposition 2.13 ([10, 25]). Let FA, GB ∈ S(X,E) and let P xe ∈ SP (X,E). Then
we have:

(1) P xe ∈̃FA iff P xe /̃∈F cA.
(2) P xe ∈̃FA ⊔GB iff P xe ∈̃FA or P xe ∈̃GB.
(3) P xe ∈̃FA ⊓GB iff P xe ∈̃FA and P xe ∈̃GB.
(4) FA ⊑ GB iff P xe ∈̃FA imply P xe ∈̃GB.

Definition 2.14 ([17]). Let S(X,E) and S(Y,K) be the families of all soft sets over
X and Y , respectively. Let φ : X → Y and ψ : E → K be two mappings. Then,
the mapping φψ is called a soft mapping from X to Y , denoted by φψ : S(X,E) →
S(Y,K), for which:

(1) Let FA ∈ S(X,E). Then φψ(FA) is the soft set over Y defined as follows:

φψ(FA)(k) =

{ ∪
e∈ψ−1(k)∩A φ(FA(e)), if ψ−1(k) ∩A ̸= ∅;

∅, otherwise.

for all k ∈ K.
φψ(FA) is called a soft image of a soft set FA.

(2) Let GB ∈ S(Y,K). Then φ−1
ψ (GB) is the soft set over X defined as follows:

φ−1
ψ (GB)(e) =

{
φ−1(GB(ψ(e))), if ψ(e) ∈ B;
∅, otherwise.

for all e ∈ E.
φ−1
ψ (GB) is called a soft inverse image of a soft set GB .

The soft mapping φψ is called injective, if φ and ψ are injective. The soft mapping
φψ is called surjective, if φ and ψ are surjective. [5, 33]

Theorem 2.15 ([17]). Let (FA)i := (Fi)Ai ∈ S(X,E) and (GB)i := (Gi)Bi ∈
S(Y,K) for all i ∈ J where J is an index set. Then, for a soft mapping φψ :
S(X,E) → S(Y,K), the following conditions are satisfied.

(1) If (FA)1 ⊑ (FA)2, then φψ((FA)1) ⊑ φψ((FA)2).

(2) If (GB)1 ⊑ (GB)2, then φ
−1
ψ ((GB)1) ⊑ φ−1

ψ ((GB)2).

(3) φψ
(⊔

i∈J(FA)i
)
=

⊔
i∈J φψ((FA)i), φψ

(
⊓i∈J (FA)i

)
⊑ ⊓i∈Jφψ((FA)i).

(4) φ−1
ψ

(⊔
i∈J(GB)i

)
=

⊔
i∈J φ

−1
ψ ((GB)i), φ−1

ψ

(
⊓i∈J (GB)i

)
= ⊓i∈Jφ−1

ψ ((GB)i).

(5) φ−1
ψ (K̃) = Ẽ, φ−1

ψ (Φ) = Φ.

(6) φψ(Φ) = Φ.
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Theorem 2.16 ([5, 33]). Let FA, (FA)i := (Fi)Ai ∈ S(X,E) for all i ∈ J where J
is an index set and let GB ∈ S(Y,K). Then, for a soft mapping φψ : S(X,E) →
S(Y,K), the following conditions are satisfied.

(1) FA ⊑ φ−1
ψ (φψ(FA)), the equality holds if φψ is injective.

(2) φψ(φ
−1
ψ (GB)) ⊑ GB, the equality holds if φψ is surjective.

(3) φψ
(
⊓i∈J (FA)i

)
= ⊓i∈Jφψ((FA)i) if φψ is injective.

(4) φψ(Ẽ) = K̃ if φψ is surjective.

Definition 2.17 ([6]). Let FA ∈ S(X,E) and GB ∈ S(Y,K). The cartesian product
FA×GB is defined by HA×B, where HA×B : E×K → P (X×Y ) and HA×B(e, k) =
FA(e)×GB(k) for all (e, k) ∈ E ×K.

Definition 2.18 ([5]). Let FA ∈ S(X,E), GB ∈ S(Y,K) and let p1 : X × Y →
X, q1 : E×K → E and p2 : X×Y → Y, q2 : E×K → K be the projection mappings
in classical meaning. The soft mappings (pq)1 := (p1)q1 and (pq)2 := (p2)q2 are called
soft projection mappings from X × Y to X and X × Y to Y , respectively, where
(pq)1(FA ×GB) = FA and (pq)2(FA ×GB) = GB.

3. Soft topological spaces, soft nets and convergence

In this section, we recall some fundamental properties of soft topological spaces
and give new definitions such as cluster soft point and soft net. In the next section,
these properties and definitions will be used.

Definition 3.1 ([30]). Let τ be a collection of soft sets over X, then τ is said to be
a soft topology on X if

(st1) Φ, Ẽ belong to τ .
(st2) the union of any number of soft sets in τ belongs to τ .
(st3) the intersection of any two soft sets in τ belongs to τ .

The pair (X, τ) is called a soft topological space. The members of τ are called soft
open sets in X. A soft set FA over X is called a soft closed in X if F cA ∈ τ .

Example 3.2. Let X be a non-empty set and E be a non-empty set of parameters.
Let P xe ∈ SP (X,E) be a fixed soft point. Then,

τ = {FE : P xe /̃∈ FE or if P xe ∈̃ FE , then
∪
e∈E

X\FE(e) is finite} ∪ {Φ}

is a soft topology on X and hence (X, τ) is a soft topological space over X.

Definition 3.3 ([5, 25]). Let (X, τ) be a soft topological space. A subcollection B
of τ is called a base for τ if every member of τ can be expressed as the union of some
members of B.

Proposition 3.4 ([25]). A family B of soft sets over X forms a base of a soft
topology over X iff the following conditions are satisfied.

(i) Φ ∈ B;
(ii) Ẽ is union of the members of B;
(iii) If FA, GB ∈ B then FA ⊓ GB is union of some members of B, i.e., for

FA, GB ∈ B and P xe ∈̃ FA⊓GB there exists a HC ∈ B such that P xe ∈̃ HC ⊑ FA⊓GB.
773
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Remark 3.5. Let D = {(FA)i : i ∈ J}. Then,
⊔
i∈∅(FA)i = Φ. Assume that⊔

i∈∅(FA)i ̸= Φ. Then, for e ∈ Ai0 there exists i0 ∈ ∅ such that (FA)i0(e) ̸= ∅, and
we have a contradiction. Moreover, let C = {(FA)ci : i ∈ J}. Then,

⊔
i∈∅(FA)

c
i = Φ.

If we pass to the complement, then we have ⊓i∈∅(FA)i = Ẽ.

From now on, we will omit the condition (i) in Proposition 3.4.

Corollary 3.6. A family of soft sets B satisfying the conditions (ii) and (iii) of
Proposition 3.4 generate a unique soft topology τ =

{⊔
FA∈ψ FA : ψ ⊆ B

}
over X.

Example 3.7. Let R be the real numbers, E = {e} and (Fλ)E = { (e, {λ} ) }, where
λ ∈ R. Consider the family B = {(Fλ)E : λ ∈ R}; since B satisfy (ii) and (iii), it is
base and generate the soft topology τ =

{⊔
λ∈J(Fλ)E : J ⊆ R

}
over R.

Definition 3.8 ([5]). Let (X, τ1) and (Y, τ2) be two soft topological spaces. A soft
mapping φψ : (X, τ1) → (Y, τ2) is called soft continuous if φ−1

ψ (GB) ∈ τ1 for every
GB ∈ τ2.

A soft mapping φψ : (X, τ1) → (Y, τ2) is called soft open if φψ(FA) ∈ τ2 for every
FA ∈ τ1.

Definition 3.9 ([31]). Let (X, τ1) and (Y, τ2) be two soft topological spaces. A
soft mapping φψ : (X, τ1) → (Y, τ2) is called homeomorphism if φψ is bijective, soft
continuous and soft open.

Definition 3.10 ([5]). Let (X, τ) be a soft topological space. A subcollection S of
τ is called a subbase for τ if the family of all finite intersections of members of S
forms a base for τ .

Theorem 3.11 ([5]). Let S be a family of soft sets over X such that Φ, Ẽ ∈ S. Then
S is a subbase for the soft topology τ , whose members are of the form

⊔
i∈J

(
⊓λ∈Λi

(FA)i,λ
)
where J is arbitrary index set and for each i ∈ J , Λi is a finite index set,

(FA)i,λ ∈ S for i ∈ J and λ ∈ Λi.

Definition 3.12 ([5]). Let {(φψ)i : S(X,E) → (Yi, τi)}i∈J be a family of soft
mappings and {(Yi, τi)}i∈J be a family of soft topological spaces. Then, the soft
topology τ generated from the subbase S = {(φψ)−1

i (FA) : FA ∈ τi, i ∈ J} is called
the soft topology ( or initial soft topology ) induced by the family of soft mappings
{(φψ)i}i∈J .

Theorem 3.13 ([5]). The initial soft topology τ on X induced by the family {(φψ)i :
S(X,E) → (Yi, τi)}i∈J is the coarsest soft topology making (φψ)i : (X, τ) → (Yi, τi)
soft continuous, for all i ∈ J .

Definition 3.14 ([5]). Let {(Xi, τi)}i∈J be a family of soft topological spaces. Then,
the initial soft topology on X

(
=

∏
i∈J Xi

)
generated by the family {(pq)i}i∈J is

called product soft topology on X (Here, (pq)i is the soft projection mapping from
X to Xi, i ∈ J).

The product soft topology is denoted by
∏
i∈J τi.

Definition 3.15 ([33]). Let (X, τ) be a soft topological space and FA ∈ S(X,E).
The soft interior of FA is the soft set
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(FA)
o =

⊔
{GB : GB is a soft open set and GB ⊑ FA}.

By property (st2) for soft open sets, (FA)
o is soft open. It is the largest soft open

set contained in FA.

Definition 3.16 ([30]). Let (X, τ) be a soft topological space and FA ∈ S(X,E).
The soft closure of FA is the soft set

(FA) = ⊓{GB : GB is a soft closed set and FA ⊑ GB}.
Clearly (FA) is the smallest soft closed set over X which contains FA.

Definition 3.17 ([25]). A soft set FA in a soft topological space (X, τ) is called a
soft neighborhood of the soft point P xe if there exists a soft open set GB such that
P xe ∈̃ GB ⊑ FA.

The soft neighborhood system of a soft point P xe , denoted by Nτ (P
x
e ), is the

family of all its soft neighborhoods.

Definition 3.18 ([25, 33]). A soft set FA in a soft topological space (X, τ) is called
a soft neighborhood of the soft set GB if there exists a soft open set HC such that
GB ⊑ HC ⊑ FA.

Definition 3.19 ([25]). Let (X, τ) be a soft topological space and {Nτ (P
x
e ) :

P xe ∈̃ Ẽ} be the system of soft neighborhoods. Then,

(sn1) Nτ (P
x
e ) ̸= ∅, for all P xe ∈ SP (X,E),

(sn2) If FA ∈ Nτ (P
x
e ), then P

x
e ∈̃ FA,

(sn3) If FA ∈ Nτ (P
x
e ) and FA ⊑ GB , then GB ∈ Nτ (P

x
e ),

(sn4) If FA, GB ∈ Nτ (P
x
e ), then FA ⊓GB ∈ Nτ (P

x
e ),

(sn5) If FA ∈ Nτ (P
x
e ), then there is a GB ∈ Nτ (P

x
e ) such that GB ⊑ FA and

GB ∈ Nτ (P
y
α), for each P

y
α ∈̃ GB .

Theorem 3.20 ([19]). Let (X, τ) be a soft topological space. A soft point P xe ∈̃ (FA)
iff each soft neighborhood of P xe intersects FA.

Definition 3.21 ([28]). Let (X, τ) be a soft topological space and let E(P xe ) be a
family of soft neighborhoods of a soft point P xe . If, for each soft neighborhood FA
of P xe , there exists a GB ∈ E(P xe ) such that P xe ∈̃ GB ⊑ FA, then we say that E(P xe )
is a soft neighborhood base at P xe .

Definition 3.22 ([30]). Let (X, τ) be a soft topological space and S be a non-empty

subset of X. Then, τS = {ẼS ⊓ FA : FA ∈ τ} is called the soft relative topology on
S and (S, τS) is called a soft subspace of (X, τ).

Here, ẼS is the soft set over X defined by ẼS(e) = S for all e ∈ E.

Proposition 3.23 ([30]). Let (S, τS) be a soft subspace of (X, τ) and FA ∈ S(X,E).

Then, FA is soft open in S if and only if FA = ẼS ⊓GB, for some GB ∈ τ .

Definition 3.24. Let (X, τ) be a soft topological space, {P xn
en : n ∈ N} be a sequence

of soft points in (X, τ) and P xe ∈ SP (X,E). The sequence {P xn
en : n ∈ N} is said to

converge to P xe , and we write P xn
en → P xe , if for every FA ∈ Nτ (P

x
e ), there exists an

n0 ∈ N such that P xn
en ∈̃ FA for all n ≥ n0.
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Example 3.25. Let (R, τ) be a soft topological space which is defined in Example
3.7 and P xn

e → P xe in (X, τ). Then, for every FA ∈ Nτ (P
x
e ), there exists an n0 ∈ N

such that P xn
e ∈̃ FA for all n ≥ n0. Since P xe ∈ τ , there exists an n′ ∈ N such that

P xn
e ∈̃ P xe for all n ≥ n′. Hence, xn = x, for all n ≥ n′.

Definition 3.26. Let (X, τ) be a soft topological space, {P xn
en : n ∈ N} be a sequence

of soft points in (X, τ) and P xe ∈ SP (X,E). P xe is called a cluster soft point of the
sequence {P xn

en : n ∈ N} if for every FA ∈ Nτ (P
x
e ) and for every n0 ∈ N, there is

some n ≥ n0 such that P xn
en ∈̃ FA.

Remark 3.27. If a sequence {P xn
en : n ∈ N} in a soft topological space (X, τ)

converges to P xe ∈ SP (X,E), then this soft point is a cluster soft point of this
sequence. But the converse is not always true. For example, consider the soft

topological space (R, τ) as defined in Example 3.7. The sequence {P (−1)n

e : n ∈ N}
of soft points in (R, τ) has two cluster soft points, P 1

e and P−1
e ; but does not converge.

Definition 3.28 ([16]). A directed set is a pair (D,≳) where D is a non-empty set
and ≳ is a binary relation on D satisfying:

(d1) For all m ∈ D, m ≳ m,
(d2) For all m,n, p ∈ D, m ≳ n and n ≳ p imply m ≳ p,
(d3) For all m,n ∈ D, there is some p ∈ D such that p ≳ m, p ≳ n.

We also say that the relation ≳ directs the set D.

Example 3.29. Let Nτ (P
x
e ) be a soft neighborhood system of a soft point P xe in a

soft topological space (X, τ). Then, the set Nτ (P
x
e ) with the relation ⊑∗ ( that is,

FA ⊑∗ GB if and only if GB ⊑ FA ) forms a directed set.

Definition 3.30. Let X be a set and (D,≳) be a directed set. The function T :
D → SP (X,E) is called a soft net in X. In other words, a soft net is a pair (T,≳)
such that T : D → SP (X,E) is a function and ≳ directs the domain of T . For
n ∈ D, T (n) is denoted by Tn and hence a soft net is denoted by {Tn : n ∈ D}.
Example 3.31. Since

(
Nτ (P

x
e ),⊑∗ )

is a directed set, the function T : Nτ (P
x
e ) →

SP (X,E) is a soft net, denoted by {TFA
: FA ∈ Nτ (P

x
e )}.

Definition 3.32. Let (X, τ) be a soft topological space, {Tn : n ∈ D} be a soft net
in X and FA ∈ S(X,E).

(i) The soft net {Tn : n ∈ D} is called in FA if Tn ∈̃ FA, for all n ∈ D.
(ii) The soft net {Tn : n ∈ D} is called eventually in FA if there exists some

m ∈ D such that Tn ∈̃ FA, for all n ≳ m.

Definition 3.33. A soft net {Tn : n ∈ D} in a soft topological space (X, τ) is said
to converge to P xe ∈ SP (X,E), and we write Tn → P xe , if it is eventually in every
soft neighborhood of P xe .

Example 3.34. Let X = {a, b}, E = {e1, e2} and

τ =
{
Φ, Ẽ, FE = {(e1, X), (e2, {b})}, GE = {(e1, {a}), (e2, X)},

FE ⊓GE = {(e1, {a}), (e2, {b})}
}
.

The set Nτ (P
a
e1) with the relation ⊑∗ form a directed set. Then, {TFA

: FA ∈
Nτ (P

a
e1)} is a soft net in X, where TFE = P ae2 , TGE = P be2 , TFE⊓GE = P ae1 , TẼ =

P be1 , and converges to P ae1 .
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Definition 3.35 ([29]). A soft filter on X is a non-empty subset F ⊆ S(X,E) such
that:

(sf1) Φ /∈ F ,
(sf2) If FA, GB ∈ F , then FA ⊓GB ∈ F ,
(sf3) If FA ∈ F and FA ⊑ GB , then GB ∈ F .
The definition implies that the intersection of a finite number of members of a

filter is non-empty and the union of any number of members of a filter belongs to

filter. Also, from (sf3) it follows that Ẽ ∈ F .

Example 3.36. Let (X, τ) be a soft topological space. Then, the soft neighbor-
hood system Nτ (P

x
e ) of a soft point P xe is a soft filter on X. It is called the soft

neighborhood filter at P xe .

Definition 3.37 ([29]). Let F1 and F2 be two soft filters on X. Then, F2 is finer
than F1 (or F1 is coarser than F2 ) if F1 ⊂ F2.

Definition 3.38. A soft filter F on a soft topological space (X, τ) is said to con-
verge to P xe ∈ SP (X,E), and we write F → P xe , if Nτ (P

x
e ) ⊂ F .

Definition 3.38 implies that F converges to P xe if F is finer than the soft neigh-
borhood filter at P xe .

4. Soft Hausdorff spaces

In this section, we introduce soft Hausdorff space and establish its some properties.
Also, we show that a soft net and a soft filter converge to at most one soft point in
soft Hausdorff space.

Definition 4.1. A soft topological space (X, τ) is called soft Hausdorff space or soft
T2-space if for any two distinct soft points P x1

e1 , P
x2
e2 ∈ SP (X,E) there exist soft

open sets FA and GB such that P x1
e1 ∈̃ FA, P

x2
e2 ∈̃ GB and FA ⊓GB = Φ.

Example 4.2. Let (X, τ) be a soft topological space which is defined in Example
3.2. Then, (X, τ) is a soft Hausdorff space.

Definition 4.3 ([28]). A soft topological space (X, τ) is soft first-countable if there
exists a countable soft neighborhood base at every soft point over X.

Lemma 4.4 ([28]). (X, τ) is a soft first-countable space if and only if every soft
point over X has a countable soft open neighborhood base {(FA)n}n∈N such that
(FA)n+1 ⊑ (FA)n for each n ∈ N.

Theorem 4.5. Let (X, τ) be a soft first-countable space.
(X, τ) is a soft Hausdorff space if and only if every sequence {P xn

en : n ∈ N} of
soft points in (X, τ) converges to at most one soft point.

Proof. Let (X, τ) be a soft Hausdorff space and let us assume that a sequence
{P xn

en : n ∈ N} of soft points in (X, τ) converges to two distinct soft points P xe
and P yα . By the soft Hausdorff property, there exist soft open sets FA and GB such
that P xe ∈̃ FA, P

y
α ∈̃ GB and FA⊓GB = Φ. Since {P xn

en : n ∈ N} converges to P xe and

P yα there exists an index p0 ∈ N such that P xn
en ∈̃ FA and P xn

en ∈̃ GB for all n ≥ p0,
a contradiction. This mean that every sequence of soft points in (X, τ) converges to
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at most one soft point.
Conversely, let (X, τ) be a soft first-countable space and assume that every se-

quence of soft points in (X, τ) converges to at most one soft point, but suppose
that (X, τ) is not a soft Hausdorff space. Then, there exist two distinct soft points
P xe , P

y
α ∈ SP (X,E) such that every soft neighborhood of P xe intersects every soft

neighborhood of P yα . By Lemma 4.4, P xe and P yα have countable soft open neighbor-
hood bases {(FA)n}n∈N and {(GB)n}n∈N, respectively such that (FA)n+1 ⊑ (FA)n
and (GB)n+1 ⊑ (GB)n for each n ∈ N. Because (FA)n ⊓ (GB)n ̸= Φ, for every
n ∈ N we may choose a soft point P xn

en ∈̃ (FA)n ⊓ (GB)n. Then, {P xn
en : n ∈ N} is a

sequence of soft points in (X, τ) and converges to both P xe and P yα , which contradicts
our assumption. □

If (X, τ) is a soft topological space which is not soft first-countable, then the
sufficient condition of Theorem 4.5 does not hold.

Example 4.6. Let R be the real numbers, E = {e} and

τ = {FE : R\FE(e) is countable} ∪ {Φ}.
Then, (R, τ) is a soft topological space which is not soft first-countable. Now, let
{P xn

e : n ∈ N} be a sequence of soft points in (R, τ) and let us consider this sequence
converges to P xe ∈ SP (R, E). Then, this sequence does not converge to any soft
point expect for P xe since it has the form {P x1

e , P x2
e , ..., P

xn0
e , P xe , P

x
e , ...}. Hence,

every sequence of soft points in (R, τ) converges to at most one soft point; but (R, τ)
is not soft Hausdorff space.

Lemma 4.7. Let (X, τ) be a soft topological space, where E = {e}, and let {P xn
e :

n ∈ N} be a sequence of soft points in (X, τ). Then, P xe ∈ SP (X,E) is a cluster

soft point of the sequence {P xn
e : n ∈ N} if and only if P xe ∈̃ (Fn)E , for all n ∈ N,

where (Fn)E =
⊔
n′≥n P

xn′
e .

Proof. The sufficiency is clear from Theorem 3.20 and the definition of cluster soft
point.

To prove necessity, let P xe ∈ SP (X,E) be a cluster soft point of {P xn
e : n ∈ N}.

Then, for every FE ∈ Nτ (P
x
e ) and for every n0 ∈ N, there is some n ≥ n0 such that

P xn
e ∈̃ FE . Therefore, every soft neighborhood of P xe intersects (Fn)E for all n ∈ N.

By Theorem 3.20, P xe ∈̃ (Fn)E for all n ∈ N. □

Theorem 4.8. Let (X, τ) be a soft Hausdorff space, where E = {e}, and let {P xn
e :

n ∈ N} be a sequence of soft points in (X, τ). If {P xn
e : n ∈ N} → P xe ∈ SP (X,E),

then P xe is the unique cluster soft point of {P xn
e : n ∈ N}.

Proof. Firstly, we show that the soft point P xe is a cluster soft point of {P xn
e : n ∈ N}.

By Lemma 4.7, we show that P xe ∈̃ (Fn)E for all n ∈ N, where (Fn)E =
⊔
n′≥n P

xn′
e .

Since {P xn
e : n ∈ N} → P xe , for every FE ∈ Nτ (P

x
e ), there exists an n0 ∈ N such

that P xn
e ∈̃ FE for all n ≥ n0. Then, FE ⊓ (Fn)E ̸= Φ for all n ≥ n0. If n < n0,

then (Fn0)E ⊑ (Fn)E and so FE ⊓ (Fn)E ̸= Φ. Hence P xe ∈̃ (Fn)E for all n ∈ N.
Now, we show that the soft point P xe is unique. Assume that P ye ∈ SP (X,E)

(x ̸= y) is also a cluster soft point of {P xn
e : n ∈ N}. Because (X, τ) is a soft

Hausdorff space, there exist soft open sets FE and GE such that P xe ∈̃ FE , P
y
e ∈̃ GE
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and FE ⊓ GE = Φ. Since {P xn
e : n ∈ N} → P xe , there exists an n0 ∈ N such that

P xn
e ∈̃ FE for all n ≥ n0. Therefore, (Fn0)E ⊑ FE . On the other hand, P ye ∈̃ (Fn)E

for all n ∈ N from Lemma 4.7. Then, for n = n0, we have P ye ∈̃ (Fn0)E and by
Theorem 3.20, GE ⊓ (Fn0)E ̸= Φ. This is a contradiction. □

Theorem 4.9. A soft topological space (X, τ) is a soft Hausdorff space if and only
if every soft net in (X, τ) converges to at most one soft point.

Proof. Let (X, τ) be a soft Hausdorff space and let us assume that a soft net
{Tn : n ∈ D} converges to two distinct soft points P x1

e1 and P x2
e2 . By the soft Haus-

dorff property, there exist soft open sets FA and GB such that P x1
e1 ∈̃ FA, P

x2
e2 ∈̃ GB

and FA ⊓GB = Φ. As {Tn : n ∈ D} converges to P x1
e1 and P x2

e2 there exists an index

k ∈ D such that Tk ∈̃ FA and Tk ∈̃ GB , a contradiction. This mean that every soft
net in X converges to at most one soft point.

For the converse, assume that every soft net in (X, τ) converges to at most one
soft point, but suppose that (X, τ) is not a soft Hausdorff space. This implies
that there exist two distinct soft points P x1

e1 , P
x2
e2 ∈ SP (X,E) such that every soft

neighborhood of P x1
e1 intersects every soft neighborhood of P x2

e2 . Since Nτ (P
x1
e1 )

and Nτ (P
x2
e2 ) are directed sets, Nτ (P

x1
e1 ) × Nτ (P

x2
e2 ) with the relation ⊑∗ ( that is,

(FA, GB) ⊑∗ ((FA)1, (GB)1) if and only if FA ⊒ (FA)1 and GB ⊒ (GB)1 ) form a di-
rected set. As FA⊓GB ̸= Φ, for every (FA, GB) ∈ Nτ (P

x1
e1 )×Nτ (P

x2
e2 ) we may select

a soft point T(FA,GB)∈̃FA⊓GB . Then, {T(FA,GB) : (FA, GB) ∈ Nτ (P
x1
e1 )×Nτ (P

x2
e2 )}

is a soft net. Now, we observe that T((FA)1,(GB)1) ∈̃ (FA)1 ⊓ (GB)1 ⊑ FA ⊓ GB ,
for all ((FA)1, (GB)1) ∈ Nτ (P

x1
e1 )×Nτ (P

x2
e2 ) such that (FA, GB) ⊑∗ ((FA)1, (GB)1).

Consequently, this soft net converges to P x1
e1 and P x2

e2 , which contradicts our assump-
tion. □

In a soft topological space which is not soft Hausdorff space, a soft net can con-
verge to more than one soft point.

Example 4.10. Let R be the real numbers, E = {e} and (Fλ)E = {
(
e, (2− λ, 2 +

λ)
)
}, where λ ∈ R+. Then, τ = {(Fλ)E : λ ∈ R+} ∪ {Φ, Ẽ} is a soft topological

space which is not soft Hausdorff space. Since the set R\{0} with the relation ≤
form a directed set, {Tn : n ∈ R\{0}} is a soft net in R, where Tn = P

2− 1
n

e for all
n ∈ R\{0}, and converge to more than one soft point.

Theorem 4.11. A soft topological space (X, τ) is a soft Hausdorff space if and only
if every soft filter on (X, τ) converges to at most one soft point.

Proof. Let (X, τ) be a soft Hausdorff space and F be a soft filter on (X, τ). Suppose
that F converges to two distinct soft points P x1

e1 and P x2
e2 . By the soft Hausdorff

property, there exist soft open sets FA and GB such that P x1
e1 ∈̃ FA, P

x2
e2 ∈̃ GB and

FA ⊓ GB = Φ. Since F converges to P x1
e1 and P x2

e2 , then FA, GB ∈ F . Therefore,
FA ⊓GB = Φ ∈ F , contradicting the definition of soft filter.

Conversely, assume that every soft filter on (X, τ) converges to at most one soft
point, but suppose that (X, τ) is not a soft Hausdorff space. Then, there are two
distinct soft points P x1

e1 , P
x2
e2 ∈ SP (X,E) such that every pair of soft neighborhoods

FA of P x1
e1 and GB of P x2

e2 intersect. Thus, F = {FA ⊓ GB : FA ∈ Nτ (P
x1
e1 ), GB ∈
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Nτ (P
x2
e2 )} is a soft filter on X. Since every soft neighborhood of P x1

e1 and every
soft neighborhood of P x2

e2 belongs to F , we get F → P x1
e1 and F → P x2

e2 . This is a
contradiction. □

Theorem 4.12. A soft topological space (X, τ) is a soft Hausdorff space if and only
if the intersection of all soft closed neighborhoods of a soft point equals the soft point
itself.

Proof. Let (X, τ) be a soft Hausdorff space and P x1
e1 ∈ SP (X,E). If P x2

e2 ∈ SP (X,E)
(P x1
e1 ̸= P x2

e2 ) then, since (X, τ) is a soft Hausdorff space, there exist soft open sets

FA and GB such that P x1
e1 ∈̃ FA, P

x2
e2 ∈̃ GB and FA ⊓ GB = Φ. If FA ⊓ GB = Φ,

then we have P x1
e1 ∈̃ FA ⊑ GcB . Therefore, GcB is a soft closed neighborhood of P x1

e1
not containing P x2

e2 . Hence, the intersection of all soft closed neighborhoods of P x1
e1

does not contain any soft point except for P x1
e1 .

Conversely, let P x1
e1 , P

x2
e2 ∈ SP (X,E) be any two distinct soft points and let

{(FA)i}i∈J be a family of all soft closed neighborhoods of P x1
e1 . Since ⊓i∈J(FA)i =

P x1
e1 , there exists an i0 ∈ J such that x2 /∈ (FA)i0(e2). Then, there exist soft

neighborhoods (FA)i0 of P x1
e1 and (FA)

c
i0

of P x2
e2 such that (FA)i0 ⊓ (FA)

c
i0

= Φ.
Thus, (X, τ) is a soft Hausdorff space. □

Proposition 4.13. Let φψ : S(X,E) → S(Y,K) be a soft mapping and P xe ∈
SP (X,E). Then φψ(P

x
e ) = P

φ(x)
ψ(e) ∈ SP (Y,K).

Proof. It is clear from the Definition 2.14. □

Proposition 4.14. Let φψ : S(X,E) → S(Y,K) be a soft mapping and P yk ∈
SP (Y,K). If φψ is bijective, then φ−1

ψ (P yk ) = P
φ−1(y)
ψ−1(k) ∈ SP (X,E).

Proof. Using the Definition 2.14, we can easily prove it. □

Theorem 4.15. Let the soft mapping φψ : (X, τ1) → (Y, τ2) be injective and soft
continuous. If (Y, τ2) is soft Hausdorff space, then (X, τ1) is also soft Hausdorff
space.

Proof. Let P x1
e1 , P

x2
e2 ∈ SP (X,E) be any two distinct soft points. By Proposition

4.13, φψ(P
x1
e1 ) = P

φ(x1)
ψ(e1)

, φψ(P
x2
e2 ) = P

φ(x2)
ψ(e2)

∈ SP (Y,K). Since φψ is injective, we

have P
φ(x1)
ψ(e1)

̸= P
φ(x2)
ψ(e2)

. Since (Y, τ2) is soft Hausdorff space, there exist soft open sets

FA and GB such that P
φ(x1)
ψ(e1)

∈̃ FA, P
φ(x2)
ψ(e2)

∈̃ GB and FA ⊓GB = Φ. Because φψ is

soft continuous, the sets φ−1
ψ (FA) and φ

−1
ψ (GB) are disjoint soft open sets in (X, τ1)

containing P x1
e1 and P x2

e2 , respectively. This implies that (X, τ1) is a soft Hausdorff
space. □

Theorem 4.16. Let the soft mapping φψ : (X, τ1) → (Y, τ2) be bijective and soft
open. If (X, τ1) is soft Hausdorff space, then (Y, τ2) is also soft Hausdorff space.

Proof. Let P y1k1 , P
y2
k2

∈ SP (Y,K) be any two distinct soft points. By Proposition

4.14, φ−1
ψ (P y1k1 ) = P

φ−1(y1)
ψ−1(k1)

, φ−1
ψ (P y2k2 ) = P

φ−1(y2)
ψ−1(k2)

∈ SP (X,E). Since φψ is surjec-

tive, we have P
φ−1(y1)
ψ−1(k1)

̸= P
φ−1(y2)
ψ−1(k2)

. Since (X, τ1) is soft Hausdorff space, there exist
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soft open sets FA and GB such that P
φ−1(y1)
ψ−1(k1)

∈̃ FA, P
φ−1(y2)
ψ−1(k2)

∈̃ GB and FA⊓GB = Φ.

As φψ is soft open, the sets φψ(FA) and φψ(GB) are soft open sets in (Y, τ2) con-
taining P y1k1 and P y2k2 , respectively. Also, φψ(FA) and φψ(GB) are disjoint because

φψ is injective. Thus, (Y, τ2) is a soft Hausdorff space. □

Theorem 4.17. Let (X, τ) be a soft topological space and S be a non-empty subset
of X. If (X, τ) is a soft Hausdorff space, then (S, τS) is a soft Hausdorff space.

Proof. Let P x1
e1 , P

x2
e2 ∈̃ ẼS be any two distinct soft points. Then, P x1

e1 , P
x2
e2 ∈̃ Ẽ and

so there exist soft open sets FA and GB in (X, τ) such that P x1
e1 ∈̃ FA, P

x2
e2 ∈̃ GB

and FA ⊓ GB = Φ. Therefore, ẼS ⊓ FA and ẼS ⊓ GB are soft open sets in (S, τS)

containing P x1
e1 and P x2

e2 , respectively. Also, ẼS ⊓ FA and ẼS ⊓ GB are disjoint
because FA ⊓GB = Φ. Hence, (S, τS) is a soft Hausdorff space. □

Lemma 4.18 ([31]). Let (X, τ1) and (Y, τ2) be two soft topological spaces. Then, X
and Y are homeomorphic to a subspace of X × Y .

Theorem 4.19. Let (X, τ1) and (Y, τ2) be two soft topological spaces. Then, (X, τ1)
and (Y, τ2) are soft Hausdorff spaces if and only if (X ×Y, τ1 × τ2) is soft Hausdorff
space.

Proof. Let (X, τ1) and (Y, τ2) be soft Hausdorff spaces and let P
(x1,y1)
(e1,k1)

, P
(x2,y2)
(e2,k2)

∈
SP (X × Y,E × K) be any two distinct soft points. Then either P x1

e1 ̸= P x2
e2 or

P y1k1 ̸= P y2k2 . Take P x1
e1 ̸= P x2

e2 . Since (X, τ1) is soft Hausdorff space, there exist soft

open sets FA and GB in (X, τ1) such that P x1
e1 ∈̃ FA, P

x2
e2 ∈̃ GB and FA ⊓ GB =

Φ. Then, FA × K̃ and GB × K̃ are soft open sets in (X × Y, τ1 × τ2) such that

P
(x1,y1)
(e1,k1)

∈̃ FA × K̃, P
(x2,y2)
(e2,k2)

∈̃ GB × K̃ and (FA × K̃) ⊓ (GB × K̃) = Φ. Thus,

(X × Y, τ1 × τ2) is soft Hausdorff space.
For the converse, let X × Y be soft Hausdorff space. It follows directly from the

Theorem 4.17 and Lemma 4.18 that X and Y are soft Hausdorff spaces. □

5. Conclusions

In the present work, we mainly introduce soft Hausdorff spaces and establish some
of their properties. Also, we have shown that a soft net and a soft filter converge
to at most one soft point in soft Hausdorff space. Since there are close relations
between soft sets and information systems, we can utilize the results inferred from
this study to improve these kinds of relations. We believe that these results will help
the researchers to advance and promote the further study on soft topology to carry
out a general framework for their applications in practical life.
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