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ABSTRACT. An Economic Production Quantity (EPQ) model with
dynamic demand is developed in an imprecise environment under bi-level
trade credit policy. Supplier offers a delay period (M) to the retailer for
payment. Due to this facility retailer also offers a trade credit period
(V) to his customers to boost the demand. During trade credit period of
customers, demand of the item increases with time at a decreasing rate.
Different inventory parameters are assumed as fuzzy numbers. Average
profit function is imprecise in nature and its possibilistic mean value is
maximized for making optimal decision. Depending upon the values of M
and N twelve scenarios may occur. All the scenarios are illustrated with
numerical examples.
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1. INTRODUCTION

In classical inventory models it is normally assumed that payments will be made
to the suppliers for the goods immediately after receiving the consignment. However,
one can easily observe that in many cases suppliers provide credit periods for the
retailers to stimulate demand. A considerable number of research papers have been
published in this direction during last two decades ([1], [15], [5], [20], [11], [12],
[13] etc.). Most of the above models assumed that suppliers supply the items to
the retailers in a lot. But in many real life situations it is observed that suppliers
replenish the item at a finite rate. For example, suppliers of rice, wheat etc., collect
and supply the item to the retailers at a finite rate in general. As replenishment
of the item is made at a finite rate, the corresponding model can be treated for a
retailer as an EPQ model under finite replenishment rate. Very few research papers



S. Bag et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 6, 959-989

have been considered this real life situation ([12], [13]).

Again all the above models assumed that producer/supplier offers the retailer a
delay period for payment after delivery of item and the retailer sells the goods and
accumulate revenue and earn interest within the trade credit period. They implicitly
assumed that the customer would pay for the items as soon as the items are received
from the retailer. That is, they assumed that the supplier would offer the retailer a
delay period for payment but the retailer would not offer the trade credit period to
his/her customer. In most business transactions, this assumption is debatable and
these situations can be defined as one level of trade credit. Huang [13] proposed two
levels of trade credit policy where the supplier would offer the retailer a delay period
for payment and the retailer also adopts the trade credit policy to stimulate his/her
customer demand to develop the retailer’s replenishment model. Furthermore, he
also assumed that the retailer’s trade credit period offered by supplier M is not
shorter than the customer’s trade credit period offered by the retailer N (M > N).
Recently, Goswami [10] developed an optimal replenishment decisions in the EPQ
model for deteriorating items with two levels of trade credit financing. Mahata
[16] developed an EPQ-based inventory model for exponentially deteriorating items
under trade credit policy.

One of the drawbacks of the models ([13], [10], [16]) is that the assumed demand
during retailer’s credit period is constant, which is not realistic. As in reality demand
during credit period increases and depends on the credit period. Again as demand
depends on credit period, the assumption of (M > N) is also debatable.

It has been recognized that one’s ability to make precise statement concerning
different parameters of an inventory model diminishes with increasing complexities
of world economy throughout the year. As a result it is very difficult to estimate the
parameters of an item precisely. Many authors have developed inventory models in
imprecise environment ([21],[14],[171,[8],[9], [3], [2], [6], [18],[19] etc.).

Here an inventory model of an item is developed where the item is supplied to
the retailer by the supplier at a finite replenishment rate. The supplier offers the
retailer a delay period (M) for payment and the retailer also offers his/her customers
a delay period (V) for payment to stimulate his/her customer’s demand. i.e., item
purchased by the customers during this period has to pay final payment at time N.
As effective credit period of a customer purchasing item at ¢ (0 < ¢ < N) is (N-t),
it is assumed that demand increases with decreasing rate during [0, N]. After the
trade credit period [0, N], demand at t=N, prevails for the rest of the period.

Here the carrying cost rate, ordering cost, unit purchasing price and unit selling
price are assumed as fuzzy number to fit the real world. Model is formulated as profit
maximization principle. Here the average profit is fuzzy in nature. The possibilistic
mean value of a fuzzy number ([4]) is used to rank fuzzy numbers for the optimal
decision. The outline of this paper is as follows. Section 2 contains relevant notations
and assumption connected to the model. Section 3, Section 4 and Section 5 present
the mathematical formulation and determination of the optimal replenishment time
of the proposed fuzzy EPQ model under two levels of trade credit policy. Section
6 contains the algorithm of the proposed model. Section 7 is the illustration with
numerical example and Section 8 represent sensitivity analysis. Final Section 9
contains the concluding remarks.
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2. NOTATIONS AND ASSUMPTIONS

The following notations and assumptions are used in developing the model.

2.1. Notations.

(i) q(t)=inventory level at time ¢

(i) P=replenishment rate per year

(iii) A=Fuzzy set up cost per order
(iv) ¢,=unit purchasing price which is fuzzy in nature
(v sp—unlt selling price which is fuzzy in nature
(vi) h= fuzzy unit stock holding cost per item per year excluding interest charges
(vii) I.=interest earned per order quantity per year by the the retailer
(viii) Ix=interest charged per order quantity in stocks per year by the supplier
(ix) M=Retailer’s trade credit period offered by supplier in years.
(x) N=Customers trade credit period offered by retailer
(xi) D=Demand rate per year
(xii) T=Cycle length in years
(xiii) t;=Length of time up to which replenishment is being held. It is taken as
decision variable

(xiv) P;;(i=1,2 ; j=1,2,...,6)=annual total profit, which is a function of ¢;, where
annual total Profit==Sales revenue - Purchasing cost - Ordering cost - Holding cost -
Interest to be paid + Interest earned

2.2. Assumptions.
(i) Demand rate D increases with time during credit period of customers and is
of the form
a—be™ if 0<t<N
D = _eN
a — be if N<t<T,

where a, b, ¢ are positive constants.

(ii) Shortages are not allowed and lead time is negligible.

(iii) Time horizon is infinite.

(iv) Interest charged per order quantity (Ij) is greater than or equal to interest
earned per order quantity (I.) i.e., I > I.. Selling price (5,) is greater than or
equal to purchasing price(c,) i.e., 5 > Cp.

(v) Replenishment rate, P, is known and constant.

(vi) Replenishment time (¢1) is taken as decision variable.

(vii) Selling price(s,) is mark-up(m) of purchasing price(c,) i.e., s,=mc,, m > 1.

(viii) When N < M, the retailer can accumulate revenue and earn interest during
the period N to M with rate I, under the condition of trade credit. When N > M,

retailer will not earn any interest.

3. MATHEMATICAL FORMULATION

In the development of the model it is assumed that supplier supplies the item
to the retailer at a finite rate P, during [0, 1] and retailer sells the item to the
customers during [0, T7.

Here the revenue from sales (Eﬁ) is given by gﬁ:Ptlgp:PtlmEp, m>1.
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Purchasing cost (ID\(/Z') is given by %:PtlEp.

According to assumption (viii) depending on the values of M and N, there may
be two cases (Case 1: N < M and Case 2: N > M) to occur on interest charged
and interest earned per year. Depending on the values of M and N, six subcases
may arise for each of the above two cases.

Case-1: N < M

Depending on the values of M and N six subcases may arise which are presented
below:

Subcase-1.1 : N < M < t;
Let ¢(t) be the inventory level at time ¢ which is given by

da(t) P—-D=P—a+be for 0 <t <N
(3.1) Z—: P—-D=P—a+be=N for N <t <t
t —D=—a+be N fort; <t <T,

where ¢(0)=0=¢(T) and maximum inventory occur at t=t;.
On integration and using the above conditions and continuity at t=N

b
(P—a)t—&—;(l—e_d) if 0<t<N
(3.2) q(t) = (Pfa+be*CN)t+éf (b+bN)ecN if N<t<t
& C
(a —be= N (T — 1) if 44 <t<T
At t=t,
(33) T =t +¥ (P—a-+be M)t +9— 9+bN e N
‘ T T A be N e c

Holding cost(ﬁbz'n) is given by

HOC, = E[/Tq(t)dt] :ﬁ[/Nq(t)dt—l—/th(t)dt—i—/Tq(t)dt}

0 N t1
(3.4) = Al + I + I3],
where
T (P—a)N> b b
L = P 21— et —d CN—Z(1—eN
= [emarr ta-en]a = P I Sam ey
0
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Cc

ty
I, = /[(P—a—l—be_dv)t—i—b (i—l—bN)e‘CN]dt
N

— (Poa+ben) TN _QNQ) + [i — (i + bN)e—cN} (t — N)

I3 = /T [(a — be= N )(T — t)} dt = (a— be—cN)w

t1

Interest to be paid (IPy;) is given by
T

Py, = Eplk[/q(t)dt]
M

t1 T
" { / a(t)dt + / q(t)dt]
M t
(3.5) = Sl + I3,
where
ty
—¢cN b b —cN
I, = (P —a-+be )t—l—z— E+bN e dt
M

_ (P_G‘Lbe_;v)(t% —MY E —~ (i +bN>e‘CN] (t1 — M)

Interest earned(I/'E'n) is given by

M

By = §pIe[O/D(t)dt(M—N)—I—/D(t)dt(M—t)}

(3.6) = mcple [(M —N) (aN - g(l — e_CN)) + (a— be_CN)W]
Subcase-1.2: 0 < N < t1,t1 <M <T

In this subcase the inventory level at time ¢, ¢(¢), is given by the same differential
equation and so we get the same expression of ¢(t) as in subcase-1.1.
Here holding cost(I/{?)E'lg):ﬁbE'n and interest earned(ﬁlg):ﬁ'll. Here interest
to be paid (ﬁ’m) is given by

— T R VaY:
(3.7 1Py = cply, / q(t)dt = cpI(a — beiCN)w
M

Subcase-1.3: 0 < N <t;, M >T
In this case the inventory level at time ¢, ¢(t), is given by the same differential

equation and so we get the same expression of ¢(t) as in subcase-1.1. Here holding
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cost(170?13)=1?(3611 and interest to be paid(ﬁDlg)zo.
Interest earned (IE;3) is given by

(3.8) IE1s = 3pl, [ /0 : D(t)dt(T — N) + /N ! D(t)dt(T —t)

+/OT D(t)dt(M — T)}

- m@ngqumN—iu—ecN»+m—mzWxT—N)

2

Subcase-14: t1 < N<T, N<M<T
Let g(t) be the inventory level at time ¢ which is given by

@M—N—ﬂ}

dq(t) P—D=P—a+be for0 <t <t
(3.9) Z—t = —D = —a+be fort; <t< N
—D=—a+be N for N <t<T,
where ¢(0)=0=¢(T) and maximum inventory occur at t=t;.
On integration and using the above conditions

b
(P—aﬁ+gu—@ﬂﬂ if 0<t<t

(3.10) q(t) = -ﬂpﬁ‘ﬁ+Pn+91fmgth
c
(a—be M) (T —t) if N<t<T
At t=N,
1 b b _eN

Here, holding cost (HOC'14) is given by
o T 1 ot N T
(3.12) HOCw = h / q(t)dt:h[ / g(t)dt + / g(t)dt + / q(t)dt}
0 0

ty N
= h(Is+ Is + I7),

h b 2 b b
where Iy = /0 P—a)t+- (1 e~ N]dt = (P —a)= 5 + Etl + C—Q(e_dl
N b
Iy = J/ — ‘“t+-f%1—+ ]d
N b b
- g " c—2<e-CN ) (Pl DN — 1),
T — N)?
I; = / (a—be ") (T —t)dt = (afbe*CN)i( 5 )
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Interest to be paid (ﬁD 14) is given by

T T
(3.13)  IPu = &l / o(t)dt = &I / (a — be=<N)(T — 1)dt
M M
T — M)?
= Ep[}c(a — be_CN)%

Interest earned (fEM) is given by

B = 51, UN D(#)dt(M — N) + /M D)dL(M — 1)
0 N
(3.14) = m@@{mf—Nxmv—iu—e*N»
—c (M B N)2
—|—(a — be N)2:|

Subcase-1.5: t1 < N <T, M >T

In this subcase the inventory level at time ¢, ¢(t) is given by the same differential
equation and so we get the same expression of ¢(¢) as in subcase-1.4. Here holding
cost(HOC15)=HOC'14 and interest to be paid(ﬁD15):O and interest earned (INEL:,)
is given by

IEys = 35,1, {/ON D(t)dt(T — N) + /NT D()dt(T —t) + /OT D(t)dt(M —T)
- :/ON(a  be=\dH(T — N) + /NT(a — be=N)dH(T — t) + (M —T)
[ANm—wﬂﬂﬁ+[jw—mﬂWm4]

m@@(M>meN—Qu—eﬁN»+m—mexT—N)
(&
@M—N—ﬂ}
X—
2
Subcase-1.6: T < N < M

In this subcase, the inventory level at time ¢, ¢(t), during the time interval (0 <
t < T) is given by
dg [ P-D=P—a+be " if 0<t<t
dt | -D=—-a+be if t7<t<T

where ¢(0)=0=¢(T).
On integration and using the above conditions, we get

(3.15)

(3.16)

(P—aﬂ+éu—e*6 if 0<t<ty
(3.17) q(t) = £
a(T —t)+ E(e_CT —e ) if t, <t<T

965
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b b
At t=ty, Pt + - =al + —e L.
& &

Here holding cost (HOCg) is given by

(3.19) HOC14 = h /OT q(t)dt = B[/Otl q(t)dt + /tT q(t)dt] = h(Is + Iy),

where
h b (P—a)t2 b b
Is = P — (1 —e ¢ S 7t S (e~ 1
o= [e-ars2a-eea = o 2y S o
T b
Iy = / {a(T —t) 4+ —(e7T — eCt)} dt
ty ¢
a(T — t1)2 b —cT b —cT —ctq
= fﬁ-ze (T—tl)—i—C—Q(e —e )

Here interest to be paid(ﬁDm)ZO.
Interest earned (I FE1g) is given by

T
IEg = gple/ D(t)dt(M — N)
0

(3.20) = mcple [(M — N)(aT + %(e*CT —1))

Case-2: N > M

As in this case, the customer’s trade credit period N is equal to or larger than
the supplier credit period M, there is no interest earned for the retailer. In this case
also depending on values of M and N, six subcases may arise which are presented
below:
Subcase-2.1: M < N <, <T

In this subcase the inventory level at time ¢, ¢(t), is given by the same differential
equation and so we get the same expression of ¢(t) as in subcase-1.1. Here holding
COSt(HOOgl):HOOH.
Here interest to be paid (IPa;)is given by

IPy = Gl [PM(N—M)+/J:Pdt(N—t)+/NTq(t)dt}
N

= &I, [PM(N—M)—&—/M Pdt(N—t)—i—{/I: [(P—a-l—be_dv)t

+g — <lc’ + bN) e_CN} dt + /:(a —be N)(T - t)dtH

= Gl [P(NQQ— M?) + (P—a+ be—;N)(t% — N?)
(3.21) +{i - (i + bN) e_CN}(tl Y U be_d;)(T - t1)2:|

966
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Subcase-2.2: M <t; < NLT
In this subcase the inventory level at time ¢, ¢(t) is given by the same differential

equation and so we get the same expressions of ¢(t) and holding cost(i.e.,ﬁbf’gg
=HOC,) as in subcase-1.4.
Here interest to pay (I Pa3) is given by

ty1
(3.22) 1Py = o, [PM(N — M) +/ Pdt(t; —t)
M
T
P = M =)+ [ q(t)dt]
N
— be=N)(T — N)2 PM2 P2

Subcase-2.3: 0 < M <t;, N>T

In this subcase the inventory level at time ¢, ¢(t) is given by the same differential

equation and so we get the same expressions of ¢(¢) and holding cost (HOC33) as
in subcase-1.6. Here interest to pay (IP23) is given by

t1
(3.23)IPy3 = Gyl [PM(N — M) +/ Pdt(t; —t) + P(t; — M)(N —t;)
M
N PM? Pt
= Gl [PNtl - - 21}

Subcase-2.4: t; < M < N T

In this subcase the inventory level at time ¢, ¢(t) is given by the same differential

equation and so we get the same expressions of ¢(t) and holding cost (f75c/724) as
in subcase-1.4. Here interest to pay(IPs4) is given by

T

(a —be=N)(T — N)th]

= Gl [Ptl(N — M)+ 5

Subcase-2.5: t1 < M <T <N

In this subcase the inventory level at time ¢, ¢(t) is given by the same differential

equation and so we get the same expressions of ¢(¢) and holding cost (1?56’25) as
in subcase-1.6. Here interest to be paid (I Pg5) is given by

(3.25) IPys = GIxPty(N — M)

Subcase-2.6: T < M < N
In this subcase the inventory level at time ¢, ¢(t) is given by the same differential

equation and so we get the same expressions of ¢(¢) and holding cost (@626) as
967
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in subcase-1.6. Here interest to be paid (1:1326)15 given by

(3.26) IPyy = IxPti(N — M)

4. MATHEMATICAL FORM OF THE MODEL
From the above discussion the average profit Ej(tl) in j-th subcase of i-th case
is given by

P;;(t1) = Sales revenue — Purchasing cost — Ordering cost — Holding cost

—Interest to be paid + Interest earned

(4.1) = 3\15—135—/1—1%00”—fFijJrvaij]/T(i:l,m:1,2,...,6)

and now our problem is to determine optimal value of ¢; to maximize the average
pI‘Oﬁt Pij(tl) (211,2, j:1,2,,6)

5. DETERMINATION OF OPTIMAL REPLENISHMENT TIME (£})

Let us consider the fuzzy numbers /T, h and ¢p as triangular fuzzy numbers (TFN)
A=(A, A, A), h=(h, h, h) and cp=(cp, Cps Tp)-
Then the a-cuts [7] of the above fuzzy numbers are

Ala) = [A+a(A—-A),A—a(A-A),
ha) = [p+a(h—h),h—alh—h),
epla) = e, +ale—cp),ep—al@ —cp)l.

For determining the optimal production time ¢ in different cases, let us first derive

the possibilistic mean value M(é]) (i=1,2; j=1,2,...,6) of fuzzy profit functions

P;;(t1)(i=1,2; j=1,2,....6),
where

1
(5.1) M(ISU) = /0 a(Pyj (o) + Pyj r(a))da, (i=1,25=1,2,...,6).

Then we optimize this M(ﬁ”) (i=1,2 ; j=1,2,...,6) with respect to t1, so that the
optimal ¢] can be obtained.

Values of M(]Sij)’s (i=1,2; j=1,2,...,6) in different subcases are derived below:
Subcase-1.1: N <t;, N < M < t; In this subcase average proﬁt(f’n) is given by

P, = {Ptlmgp — Pt1é, — A—h(ly + I + Is) — &I (Is + Is) +

meple |(M — N)qa e a—be ® (M- N)
(5.2) I [(M N){ N--(1 - N)}+( be—eN) 2 H/T
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Taking a-cut on both sides, we get,

Piis(0) Pua@)] = [Z{Palm= 1), +ale - ) = A+ a(d - 4)
—(E - Oé(ﬁ — h))(Il + IQ + 13)
—(Cp — a(@p — cp)) k(s + I3) + (¢, + alcp — ¢p))lemen},
FPh(m = 1)(&, — a(e, — ¢,)) ~ A~ a(4 - 4)

—(h+a(h —h))(I1 + I+ I3)
_(Qp + O[(Cp - Qp))lk<l4 + I3>

(5.3) +(¢p — a(cp — ¢p))Iemer }|,
where
(5.4) e1 = (M — N)[aN — 2(1 —e M)+ (a — be~ ) (M _2 )
This gives
P p(a) = %{Ptl(m —1)(c, +ale, —c,)) — A+ a(A—A) — (h—a(h—h))
(L + I+ I3) — (€ — alep — cp)) Ii(Is + I5)
(5.5) +(c, +alcy —¢p))lemer },
Py p(a) = %{Ptl(m -1 —aley—cp)) —A—a(A—A) — (h+a(h—h))
(Il —+ 12 + 13) — (Qp + a(cp — Qp))lk;(L; + Ig)
(5.6) "’(Ep - O‘(Ep - Cp))lemel}

So the possibilistic mean value of the fuzzy profit function ]51 1 is

(5.7) M(P) = / a(Pyi (@) + Prg(a))da

Substituting the above values of P11, 1(a) and P11, g(«) and then after simplification,
we get,

[(h+h+4h)([1 +1’2+I3)}

(A+A+44A)
e

6T
[Ik(cp +cp+4cp) (s + IS)] n [(Cp ot 4Cp)Iem€1]

67 6T
969

(5.8)
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Differentiating, we get,

dM(Py))  (m—=1)P(@ +¢,+4c,) (m—1)P2(c, +¢, +4c)t

dty 6T 672(a — be=cN)
(A+ A+4A)P  (h+h+4h)(I1 + I+ I3)P
672(a — be=cN) 672 (a — be—cN)
(h+h+4h)((2 +bN)e=eN — 1)
6T
(h+ bt ah)(a— P —be=N) | Ik(@p + ¢, +4ep)(la + )P
6 672(a — be=cN)
L@t + dep) (2 +bN)e N — &)
6T
+Ik(ép + ¢, +4cp)(a— P —be=N)
6
(¢p + ¢, +4cp)lemer P
672(a — be=cN)

+

+

(5.9) —
Again differentiating, we get,

dt? T 3T8(a—beN)2 373(a — be=cN)?2
(h+h+4h)P((2 +bN)e=eN - b)
3T2(a — be=cN)
(h+h+4h)P(a — P — be=<N) B I1(2p + ¢, + 4cp) P2 (14 + I)
671 (a — be=eN) 373 (a — be—cN)?2
14(, +c, +4,)(E + BN)eN — B)p
373 (a — be—cN)
Ii(cp + ¢, +4cp)Pla— P —be™N)  I.(c, + ¢, + 4cy)me P
6T (a — be=eNV) 3T3(a — be—cN)2

PM(Pn)) A+ A+4A)P®  (h+h+4h) (I + I + I3) P?

(5.10)

Substituting the expressions of T', I, I3, I3 and I in the equation %ﬁll)) =0,

we get the optimal ¢; (say t%), which maximizes M (Py;), as

(5.11) t; = (—61}11}10 — 12’1}11}21}9 — V1ws +

\/(61111110 + 1201 v209 + v1wg)? — 4(6v%vg + v1w)

(6v10v2 + 6v3Vy + viws — viwyg))/ (2(6v3vg + viw,)),
970
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where
P b (24 bN)e N
v = —————,Vy = < < )
a — be—<N a — be—<N
P— be— N b b
vy = W,U4=—<+6N>6CN,
2 c c
N? b b (P —a+be°N)2
= —(P—a+be M)+ N(= = (= +bN)e M), v =
v = T (Poabe ) £ N = (b)) = e
, P - be~N) M2 b b ,
vy = (P—a+be_°N)v271)8:( a+2€ ) +{= = (=+bN)e N} M,
c c
(h+h+4h)(a—P —be=N) (G +¢, +4¢,)Ix(a — P —be™N)
V9 = + 3
6 6
b —eN b
/ , 24+ bN)e Y —2) _
v, = (mfl)P(Ep+§p+4cp),v10zvlJr(c )6 C){(h+ﬁ+4h)
+(€p + ¢, +4cp) i},
(P—a)N*> b b .
vy = fﬁ-EN—C—Z(l—e NY — w5 + 03,
wi = (v3+ve){(h+h+4h)+ (T +c, +4cp) i},
wy = (v4+v7){(ﬁ+h+4h)+(Ep+gp—|—4cp)fk}—v/1P,
wy = (A+A+4A) +oi(h+h+4h) + (v3 —v8)(Cp + ¢, + 4cp) I,
wy = m61[6(6p+gp+4cp)

Similarly, in other subcases possibilistic mean values are calculated as below:
Subcase-1.2: 0 < N < t1,t; < M < T. In this case possibilistic mean value of the

fuzzy profit function 1312 is

(m—1)Pt(C+¢,+40)  (A+A+44)

M(Pp) =

6T 6T
(h+h+4n) (L + I + T)
6T
(5.12) B (@ + ¢, + 4cp) Ik (a — be™N)(T — M)? N (¢p + ¢, +dcp)lemey
12T 6T
Differentiating, we get,
d(M(ISH)) _ (m—1)P(cy +c, +4¢) (m— 1)P?(c, + ¢p +4cp)ta
dty 6T 672(a — be=cN)
(A+A+4A)P (h+h+4h) (L + L+ I3)P
672(a — be—cN) 672(a — be—cN)
(h+h+4h)((2 +bN)e=N - L)
- 6T
N (h+h+ 4h)(cg— P —be=<N) N (¢p + ¢, + 4;2)1{,;@ — M)?P
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(€ +cp, +dcp) [, (T — M)P (¢, + ¢, +4cy)lemer P
6T 672 (a — be=cN)

(5.13) -
Substituting the expressions of T', I, I, I3 in the equation %I;”)) = 0, we get
the optimal #; (say ¢}), which maximizes M (Py,)(since for t=t, dz(#(?r"))<0), as

= ( — 6viv13 + vlvll(ﬁ + h+ 4h) — 120101209 — 4hvivy — hvyvg — hvyvy

—4hU1U7 — ﬁ’UlU7 — E’Ul’U7

+\/(74(1)11)14 + 61}131)2 + 6’0121}%)(6’0%1}12 + 4h’l)1’U3 + Qvlvg + Evlvg
+4hvivg + hvive + E’Ul’UG) + (61}1’013 — U1’U/1 (E +h+ 4]1) + 12v1v19v9
+4hvivy + hvivg + hvyvg + 4hvrvr + hoyvr + EU1U7)2)/(2(GU%U12
+4hvyvz + hvivs + hvivs + dhvyve + hvyve + hvivg)),

(5.14)
where
(h+h+4h)(a— P —be=*N) = P(@ +c,+4¢)(1 - 21t)
Vi2 = -+ ,
6 12
h+h+4h) b b
Vi3 = (m — I)P(ép +Qp —+ 4Cp) 4+ %((E + bN)e—cN o E)
Ik‘MP(Ep + Qp + 4Cp)
3 b
- 1
o = (A A+ 44) 4+ (0 + ¢+ Ac) M(a — be™N) = mlLer (@ + c, + dcy)
+(h + h + 4h)vy;.

Subcase-1.3: 0 < N < t;, M > T In this case possibilistic mean value of the fuzzy
profit function P35 is
(m—1)Pt1(cy + ¢, +4c,)  (A+ A+4A)

M(Pa) = 6T 6T
(515) _ (h + b + 4h)([1 + I2 + 13) n (Ep + Qp + 4Cp)Iem62 7
6T 6T
where
OM — N —T
ea = (M—N) (aN — g(l — e‘CN)) + (a — be=*N)(T — N)(2—)
d(M(f)B)) _ (m —1)P(c, tec+ 4dcp) B (m —1)P*(c, +cept dep)t
dt B 6T 6T2(a — be—<N)
(A+A+4A)P (h+h+4h) (L1 + L+ I3)P
612 (a — be—cN) 612 (a — be—cN)
(h+h+4h)((2 +bN)e N — 1)
* 6T

972



S. Bag et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 6, 959-989

(5.16) L(hthtdh)(a—P—beN) (G +¢,+de)lemerP
' 6 6T%(a — be—<N)

Substituting the expressions of T', I1, Is, I3 in the equation %11’13)) = 0, we get

~ 2 =
the optimal ¢; (say t}), which maximizes M (P;3)(since for t=t7, d(#(?g))d)), as

t; = (—6111’()16 + U1’Ul1 (E + ﬁ + 4h) — 121)1’0151}2 — 4hU1’U4 — ﬁvlm — E’U1U4

—4h1}1’v7 — QU1U7 — EU1U7

+\/(—4(U11)17 + 6v1gv2 + 61}151}%)(6’0%1}15 + (E +h+ 4h)(1111)3 + ’U11}6)

(601016 — v10; (B + h 4 4R) + 120101505 + (B + h + 4h) (104 4 v107))?)
/(2(6v3v15 + (b + h + 4h)(v1v3 + v106))),

(5.17)
where
h+h+4h)(a— P —be—N 1 .
vy = (BFhR )(6 )+§m[ep(cp+gp+4cp),
1. — b e b _
vie = Gl(A+h+4n)(( +bN)e N—E)—IemMP(Cp+gp+4cp),
vir = (A+A+4A4)+ (h+h+4h)vir +mle(cy + ¢, +4cp)

N(2M — N)(a — be=<N)
2
Subcase-1.4: t; < N < T, N < M < T In this case possibilistic mean value of the

— (M — N)(aN — 2(1 — e_CN))}.

fuzzy profit function Py is
— (m = 1Pt (G +¢,+4c)  (A+A+44)

M(Pu) = T oT
_ _ 2
(At h+an)Is+ I+ 1) (@ +c,+ dep)Tk(a — bemeN) T
6T 6T
(€p + ¢, + 4cp) Iemes
¢ P
(5.18) + 6T ,
where
_ 2
es = (M — N)(aN — 9(1 —e "))+ (a— be*CN)M
C
d(M(Pu))  (m=1)P@E +c,+4¢) (m—1)PE, +c¢,+4e)h
dty N 6T 6T2(a — be=cN)
(A+A+4A)P  (h+h+4h)(a—be V)

672(a — be—cN) 12
_ (h+h+4h)ez  (h+h+4h)PNeq
1272(a — be—°N) 672(a — be=cN)
(h+h+4h)P N (h+h+4h)es (G +cp +4¢) k(2P — 1)
12 6T2(a — be—cN) 12
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(ep +cp +4cp)) [WPM? (T + ¢, + dep) Lemes P
1272 672(a —be—°N)

(5.19)

b N b N1 BN bNZe~eN
where 67:<+bN>e_°N—, 68:67_,_7_ € )
c

c 2 c 2
Substituting the expressions of T" in the equation %If“)) = 0, we get the optimal
~ 2 =
t1 (say t}), which maximizes M (Py4)(since for t=t}, %(%PM))Q)), as

* / ’ "
] = < — U1V + V1gV1 — 20102018

(5.20) +\/(U1’U/18 — ]gv1” + 20102v18)2 — 4vivis(—v1g + Vovig + ’U%’Ulg)) /(2vivgg),

where
1 — 1
vig = (m—1)Pc+ E(h + h+44h)(a — P —be~N) + Elk(ép + ¢, +4cp)(1 = 2P),
1 — - 1o, 1.,
vy = m[(/l +A+4A)P+ (h+h+4h)(es + PNer — 5e7) + §Ik(cp
+c, + 4cy)PM?(a — be™N) — me3 P(c, + ¢, +4cp)le)]
v (m— 1)P%(¢p + ¢, + 4¢p) ~ (m—=1)P(¢, + ¢, + 4cp)
. 6(a — be—cN) V18 = 6 '

Subcase-1.5: t1 < N < T, M > T In this case possibilistic mean value of the fuzzy
profit function Pis is

(m—1)Pti (G +¢p +4cp)  (A+A+44)

M(Py5) = T o
(5.21) (bt anUs+ Lo+ 1) | (et g+ e lemes
6T 6T
whereey = (M — N)(aN — 9(1 —e M) 4 (@ — be N (T — N)W_—ZN_T)
c
d(M(ﬁIS)) _ (m—1)P(@ +c, +4¢) (m— 1)P?(c, + cp +4cp)ty
dty B 6T 672(a — be—cN)
(A+A+4A)P (h+h+4h)(a—be °N)  (h+h+4h)e?
_|_ —
672(a — be=cN) 12 1272%(a — be=cNV)
(h+h+4h)PNe;  (h+h+4h)P  (h+h+4h)Peg
672 (a — be=cN) 12 6T2(a — be=cN)
(5.22) B (¢p+c,+ 4cp)leme4P7
6T2(a — be—cN)
—cN _ 1 N N2 —cN
where e; = (b+bN>e—CN_b’ 682672_’_})7_6 €
c c c c 2
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Substituting the expressions of T, I5, Is, I7 in the equation %If“)) = 0, we get
the optimal #; (say ¢}), which maximizes M (Py5)(since for t=t?, %<0), as
1
tT = ( — 2’011}2’020 —+ V1U21 — Pvll’Ugl —+ \/(21)11)21}20 — V1V21 =+ PU1U21)2
—4v3va (V3020 + U/17121 — VaU91 + v22)) /(207 v20),
(5.23)
1 - —eN 1 _
where vy = E(h +h+4h)(a— P —be” ") + EmP(cp +c, +4cp)le
M
Vg = KmP(ép +c, + dep)le
1 — — e2
= — A+ A+4A)P+ (R +h+4h)(—2L + PNe; + P
U2 = G pemam) (AT AT AP+ (At bt dh)(= 5+ PNer + Pes)

+mPN(2M — N)(C, + ¢, + 4cp) L]

Subcase-1.6: T < N < M In this subcase possibilistic mean value of the fuzzy profit
function ]516 is
(B — (m—1)Pt(@+¢,+4¢) (A+A+44)  (h+h+4h)(Is + Io)
6T 6T 6T
(I + I + 41.)mces
+ 67T ’

(5.24)

where es=|(M — N)(aT + 2(e=T — 1))

d(M(Pyg)) — (m=1)PE, +c,+4c) (m—1)P*(C, +c, +4cp)t
dt B 67T 672(a — be=<N)
(A+A+4A)P (h+h+4h)P(Ig+ 1) (h+h+4h)(a— P)
672(a — be—°T) 672(a — be—T) 6
h+h+4h)(e=T —1)b (G + ¢, +4cp)IemesP
(5.25) Lt htdh)ie b_Gts ”)_
6T 672%(a — be=<T)
Substituting the expressions of T, Is and Iy in the equation %1?16)) =0, we get
the optimal ¢, (say ¢}), which maximizes M (Py¢)(since for t=t7, %%Pw))<0), as
;7 = (P- 1)1}11)/1 — 12(a — b)v1vavar — 12bcv1v3v97 — 120102098 4 120112029

+6v1v30 — 6V32 + 6v34 + Bcvavsy

+\/((P — Dv1v] — 12(a — b)vivavey — 12bcviv3vay

— 120109098 + 120109029 + 6V1V30 — 632 + 64 + 6cvavsy)? — 4(11/1112 +

6av3voy — 6bvavay 4 6bcvivay + 6v3Ug — 6V — BV2U3g + 6U31 ) (6avivay
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—6bv? Vg7 4 6bcvivavay + 6V Vg — BUTVag + Guss — Bcvivss)))/(2(6avivay

—6b’U%’U27 + 6()61}%’021}27 + 61}%1}28 — 61}%1}29 + 6vgg — 661}1’034)),

(5.26)
1 —
where vo7 = (m—1)Pc+ é(h +h+4h)(a—b— P)

1 — 1

Vog = ﬁ(h + h + 4h)PcPvgg, vag = EmP(M — N)?I,
1 —

vso = G{(A+h+4h)Pevys +mI.Pla—b)(M = N)(c, +c¢,+4c,)}
1 _

I — 6{(A + A+ 4A)P + (h + h + 4h)P(vas + vog) }
1 — 1 —

vzp = E(h + h+4h)Puyy, w3z = g(h + h+4h)Puas
1 - b

V34 = 6(h+ﬁ+4h)P(U1 — ]_)E

Subcase-2.1: M < N <t; <T In this subcase possibilistic mean value of the
fuzzy profit function ]321 is
(m —1)Pt1(¢, + ¢, + 4cp)
6T
(A+A+4A4) (h+h+4h) (L + I+ I3)

61 6T
(@ + ¢, +40) I [P(N? = M?) | (P—a+be=N)( - N?)
- 6T [ 2 + 2
(5.27) _{ <lc) + bN) e—cN _ b}(tl B N) N (a — befCN)(T _ t1)2

c 2

M(Py) =

A(M(Py))  (m—1)P(@E,+c,+4c,) (m—1)P%(E +c, +4c))t
dty 6T 672(a — be—cN)
(A+ A+4A)P (h+h+4h)P(I1 + I, + I3)
6T2(a — be—<N) 6T2(a — be—cN)
+(h+élT+4h)|:(Zc)+bN>e—cN_i+(a_be—cN_P)T:|
(¢p +¢cp +4dep) [P [p(N2 —M?)  (P—a+be=°N)
6T2(a — be—cN) 2 2

Cc

(Tmz} L @tg o)k H (b +bN>ecN B b}

(- N?) - {(i’ + bN)e‘CN _ b}(tl _ N+ (a— bem<N)

2 6T

(5.28) —(P—a+ be‘CN)T]
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Substituting the expressions of T', I, Is, I3 in the equation %Ifm)) = 0, we get
d?(M(P21))

the optimal #; (say ¢}), which maximizes M (Py;)(since for t=t?, > <0), as
1

!’ ’ !’ ’ ’
t7 = (= vivy + Poivy — 120109035 — 601036 + 6v2035 — V1038 + 1/ ((v10] — Po1v)

+12v1v2v35 + 6V V36 — 61)21};)6 + v1v38)2 — 4(1}%7}2 + 61}31}35 + 6vavsg + v1vU37)

(6’0%'1)35 — 6’011);,6 + Ulﬂgg)))/(2(60%’l}35 — 61)1’[);6 + 'Ul’Ugg)),

(5.29)
where vgs = (m—1)Pc+ %(ﬁ + h+4h)(a — P — be=N)
+1—12(Ep +c, +4cp)Ix(a— P — 2be =)
v = (b4 ah)+ @+ e, +Ae)IHC +bN)e N — 2
Vg = —%(ép + ¢, +4cp) I
vy = (A+A+44)+vii(h+h+4h)+ (G + ¢, + 4@@{@
e a2+ be”*") b, vss = (h+h+4h)(vs + v7)
vzg = (h+h+4h)(vs+ve) + %(Ep + ¢, +46p) (P — a+ be”N).

Subcase-2.2: 0 < M <t < NLZT In this subcase possibilistic mean value of
the fuzzy profit function ﬁ22 is
(m —1)Pti(ep + ¢, +4cp) (A4 A+44)

M(Py) =
(Pa2) - T o7
(h+h+4h)(Is + 16+ I7) (Cp + ¢, +4cp) I
6T 6T
—beN)(T —N)2 PM? Pt
(5.30) Pt 4 @b ) _Pa
2 2 2
A(M(Py))  (m—1)P(@, +¢, +4c,) _ (m— 1)P2(c, + ¢, + 4cp)t
dty B 6T 6T2(a — be—<N)
(A+A+4A)P  (h+h+4h)P(I5 + I + I7)
612 (a — be=cN) 612 (a — be=cN)
(h+h+4h)P(t; = T) = (¢p+c, + 4¢y) [P
6T 672(a — be=cN)
2 _ —cN _ 2 2
{PNtl _PM n (a —be=")(T — N) P
2 2 2
(5:31) . (@ +cp+ 421?;Ikp(t1 —-T)
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Substituting the expressions of T, I, I> and I3 in the equation %{%2)) =0, we
get the optimal #; (say ¢}), which maximizes M (Py;)(since for t=t*, ‘12(#(;22))<0),
as

t; = (—1)11}/1 + P’Uﬂ},l — 121)1’()2’040 — 6’[}11}41 — 61}2’042 — 6’[)44
—l—\/((vlv/1 — Puyvy + 120109040 + 601041 + 6v2040 + 61)44)2
—4(’[)/1’1}2 + 6’022’1}40 + 6vov41 + 6’()43)(61}%’040 + 6v1v40
—6045)))/ (2(6viv40 + 6U1V42 — 6vss)),
(5.32)
h+h+4h)P 1 _ _
where vg9 = (m—1)Pc— % - EP(cp + ¢, +4ep) Iy
(h+h+4h)P(bNe=N —aN) 1 _
v = 6(a — be—cN) * E(C” 6yt dep) I
1_ - 1
V42 = 6P(h+h+4h) + ép(ép—kgp—l—élcp)]k
D (A4 A4+ Bt h+an P 1)+ iN
v = — —(e — -
@ 6(a — be—eN) - - c c

1 2 _—cN - N —cN 1 2
—§bN e }—(cp+gp+4cp)lk{ﬁ(a—be )—|—§PM 1

P — _

v = m[(h + h+4h)PN + PN(Gp, + ¢, + 4cp) Ii]
P - _

Vg5 = m[(h/ +h+4h) + (¢, + [ dep) Iy

Subcase-2.3: 0 < M < t;, N >T In this subcase possibilistic mean value of the
fuzzy profit function Ps3 is

(m—=1)Pti(¢) + ¢, +4cp)  (A+A+4A)  (h+h+4h)(Is+ 1)

M(Py) = - _
(Fos) 6T 6T 6T
(¢p + ¢ +4dep) Ik PM? Pt
(5.33) - - PNty - —5— — =+
d(M(Ps))  (m—1)P(G + ¢y +4cp) _(m— 1)P2(c, + ¢, + 4¢p)t
dty N 6T 672(a — be=cN)
(A+A+4A)P  (h+h+4h)P(Is + Iy)
672(a — be—<T) 672(a — be—<T)
(h+ h+ 4h) b, _ur
M a—P)T+ (=T —1
L - T+ 2T - 1))
(Ep+gp+4cp)IkP PNt PM? B PL%
672(a — be—cT) ! 2 2
(5.34) n (Ep +c,+ 4Cp)[kP(t1 —N)

6T
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Substituting the expressions of T', Ig and Iy in the equation

the optimal #; (say ¢}), which maximizes M (Pys)(since for t=t,

=

(5.35)

7d<M;tIf23))N: 0, we get
d?(M(P23))

i <0), as

((P — 1>U1U1l — 12(a — b)’Ul’U2U46 — 12[)0’01?}%’1}46 — 121}1’02’1}47 + 6?}11}48

2 2
—6v2v49 + 6vV1V50 — 6U52 — 655 + Gcvavs,

+\/(—4(6av%v46 — 6bv?v46 + 6bcv?vava6 + 6VIV47

+6v1v49 + 652 — 601111}?2)(11/1112 + 6av3v46 — 6bvsv46 + 6bcv3vsg + 6VFVAT

—6UQU48—6U2U50 + 6’051) + ((P — 1)1}1’01/ — 12(a — b)’l)l’l)gv46 — 12[)0’1)11}%’1}46

—12v1v9v47 + 6V1V48 — BV2V49 4+ BV V50 — BU52 — 6’[]?2 + 661}21)?2)2))

/(2(6av3vas — 6bvivag + 6bcvivavas + 6v3 V47 + 6v1V49 + 6Usy — 6cv1vE,)),

where v4
(o
V49

Us1

1 —
= E(h+ﬁ+4h)c2026, V48 = 6

- (m—l)Pc+%(E+ﬁ+4h)(a*b*P)

1 —
*(h + h + 4h)C1)26

1 1
= E(Ep tet dep) Ik P, w50 = EN(EP +cp + dep) Iy

1 — _
= E{P(A +A+4A) + (h+ h+4h)(vas + vag)

1
—§PM2(E,, + ¢, +4cp) i}

1
= E{Q(h—i—ﬁ—‘rﬁlh)’l)gg —P(Ep—l—gp—l—élcp)lk}

1 —
= 6{(h + h+4h)vay + PN (¢, + ¢, + 4¢p) 11}

D (Ba s am)wn - 1))

Subcase-2.4: t1 < M < N<<ZT In this subcase possibilistic mean value of the

fuzzy profit function 1324 is

M(Pyy) =

(5.36)

(m —1)Pty(¢, + ¢, +4cp)

6T
(A+A+44) (h+h+4h)(I5 + s + Ir)
6T 6T
C, + _|_4 I _ —cN _ 2
@ g%T o) I Ptl(N_M)Jr(a be 2)(T N)
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d(M(f)24)> _ (m —1)P(c, teo+ 4dcp) B (m — 1)P2(Ep +copt dep)t
dty 6T 672(a — be—cN)
(A+A+4A)P (h+h+4h)P(I5+ Is + I7)
612 (a — be—cN) 612 (a — be=cN)
N (h+h+4h)P(ty —T) (¢p+c, +4cy) Iy P
6T 672%(a — be=cN)
_ —cN _ 2
Ph(N — M) + (a — be 2)(T N)
(5.37) N (e +¢p E;Cp)IkMP B (e +e, J(; 4cp) I P

Substituting the expressions of T', I5, I and I7 in the equation %124)) =0, we

get the optimal ¢, (say t}), which maximizes M (Py,)(since for t=t?, W<O),
1

as

t*{ = ((P — 1)’[)1’[)1/ - 12’1)11)2’[]53 + 6'[}1’1)54 - 61)2’[)55 - 61}58

+\/(—4(’U/1112 + 6’1}%1)53 — bvgusy + 61}55)
(6’0%’[}53 + 6’[)1’1)55 — 61)57) + ((P - 1)’[}1’1)1/ — ].2’01’[]21}53 + 6’1)11}54
—6vav55 — 61}58)2))/(2(61)%1153 + 6v1v55 — 6’1)57)),

(5.38)
1 — Iy P _
where vs3 = E( +Q+4h)(P—2)—ﬁ(cp+gp+4cp)
NP — I
I T(h—!—ﬁ—kllh)—!—g(ép+gp+4cp)(NP—|—1)
P —
VUss = E(h+h+4h)
P(A+A+4A) P(h+h+4h) b, .y
— ZemN 1
U560 6(a — be—N) + 6(a — be—N) {02(6 )
BN 1. 5 _.n 1 9,
+7_§bN e }+EI]€N (Cp +gp+4cp),
P?(h + h + 4h)
UsT = S5 7 ToNy
12(a — be—<NV)
P2N(h+ h+4h) Ik P?(N — M)(, + ¢, + 4¢,)
Vee =
o 6(a — be=°eNV) 6(a — be=°eNV)

Subcase-2.5: t1 < M <T <N In this subcase possibilistic mean value of the
fuzzy profit function Pss is

. (m—1)Pti(¢p + ¢, +4cy)  (A+A+4A)  (h+h+4h)(Is + Io)
M(Pos) = 6T - 6T B 6T
(¢p + ¢, +4cp) [k P(N — M)ty

6T

(5.39) -
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A(M(Pys))  (m—=1)P(E+c,+4c,)  (m—1)PE+c, + 4t
dty B 6T 6T2(a — be—<N)
(A+A+4A)P  (h+h+4h)P(Is+ Io) N (h+ h+4h)
672(a — be—°T) 672(a — be—T) 6T

{la—PIT+ (e —1))

b(Tp + ¢, + 4cp) [ P(N — M)(e™T — 1)
6¢T?(a — be=°T)
b(@, + ¢, + dep) [ P(N — M)e~<T
6T (a — be=cT)

(5.40)

7d(Md(:25)) =0, we get

d?(M(Pys))
dt?

Substituting the expressions of T, Is and Iy in the equation

the optimal ¢, (say t}), which maximizes M (Pys)(since for t=t7, <0), as

tik = ((P — 1)1}1’1}/1 — 12(@ - b)Ul’UQ'UE,g - ].2bC’Ul'U§’U59 - 12’1)11)2’[)60 + 6'[}1’U61

—6vg3 — 6vg4 + 6cV2VE4

+\/(((P — 1)vivy — 12(a — b)vyvavsg — 12bcviv3vsg — 12012060 + 61061
—6vg3 — 6vgq + 601)21)64)2 — 4(7}%1}2 + 6av§v59 — 6bv§v59 + 6bcv§v59 + 6@%1}60
—6vovg1 + 6’[)62)(6@’()%1]59 — 6()’0%1}59 + 6bC’U%’U2’U59 + 6’1)%’1)60 — b6cvivgs + 6’()65))

/(2(@1}%1}59 — bv%v59 + bcvagv59 + vago — cv1vps + Vgs)),

(5.41)
1 —
where vsg = E(h +h+4h)(a— P —10)

1 — 1

veo = ECQP(h +h+4h) — EbcP(N — M)(Ty + ¢, + 4cp) I
1 _

V61 = ECPU26(h + ﬁ + 4h),
P _ _

v = G{(A+A+44)+ (h+h+4h)(v5 + vae)}
P

Vo3 = EUM(h + h + 4h),
Pb - 1 _

Vea = a(vl—l)(h+h+4h)7 U65:6PU23(h+ﬁ+4h)

Subcase-2.6: T < M < N In this subcase possibilistic mean value of the fuzzy
profit function Psg is
(m—1)Pti(¢p + ¢, +4cy)  (A+A+4A)  (h+h+4h)(Is + Io)

M(Py) = 6T B 6T - 6T

(¢p + ¢, +4cp) [k P(N — M)ty
6T

(5.42) -
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A(M(Py))  (m—=1)P@+c,+4c,) (m—1)P%E+c, + 4t
dty B 6T 6T2(a — be—<N)
(A+A+4A)P  (h+h+4h)P(Is+ Io) N (h+ h+4h)
672(a — be—°T) 672(a — be—T) 6T

{la—PIT+ (e —1))

b(cp + ¢, + 4¢p) [RP(N — M)(e™ T — 1)
6¢T?(a — be=T)
b(@, + ¢, + dep) [ P(N — M)e~<T
67 (a — be=<T)

(5.43)

the optimal #; (say ¢}), which maximizes M (Pyg)(since for t=t, w<0), as
1

Substituting the expressions of T', Ig and Iy in the equation

tik = ((P — 1)”[11’0/1 — 12(a — b)Uva’U59 — 12bC’U1’U§’U59 — 12’1)1?)2’[)60 + 61)1’1)61

—6vgz — 6vg4 + BCV2V64

+\/ — 1vivy — 12(a — b)v1vavsg — 12bcv1v3vs9 — 1201v2v60 + 6V1V61
—6vg3 — 6vgsa + 6C1)2’U64) - 4(v1v2 + 6cw2 Vg9 — 6bv2 Usg + 6bcv2 Usg + 61}2 V60
—6v9vg1 + 61)@)(6@1)%1)59 — 6bv%v59 + 6bcv%vgv59 + 61}%1}60 — 6cvyvgs + 6@65))
/(2(av?vsg — bvivsg + bevivavsg + vivgy — cV1V6s + Vgs))

(5.44)

6. ALGORITHM

Depending upon the values of M and N six subcases may occur for each of two
cases (i) N<M and (ii) N>M.

(6.1)
Find optimal ¢; (say t7) to maximize M(Ej(tl)),i =1,2,5=1,2,...,6

If N<M
If 0< N<M<t;. Perform (6.1)(Profit and ¢ are given by (5.8) and (5.11))
If 0< N<ty<M. Perform (6.1)(Profit and ¢ are given by (5.12) and (5.14))
If 0<N<ty, M>T. Perform (6.1)(Profit and ¢} are given by (5.15) and (5.17))
If t4<N<M<T. Perform (6.1)(Profit and ¢; are given by (5.18) and (5.20))
If t4<N<T, M>T. Perform (6.1)(Profit and ¢} are given by (5.21) and (5.23))
If T<N<M. Perform (6.1)(Profit and ti are given by (5.24) and (5.26))

Else
If M<N<t;<T. Perform (6.1)(Profit and ¢} are given by (5.27) and (5.29))
If 0< M <t;<N<T. Perform (6.1)(Profit and ¢} are given by (5.30) and (5.32))
If 0<M<t;,N> T. Perform (6.1)(Profit and ¢} are given by (5.33) and (5.35))
If t4<M<N<T. Perform (6.1)(Profit and ¢} are given by (5.36) and (5.38))
If t;<M<T< N. Perform (6.1)(Profit and ¢} are given by (5.39) and (5.41))
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If T<XM<N. Perform (6.1)(Profit and ¢} are given by (5.42) and (5.44))

For twelve different subcases twelve different examples are used. In Table 7.1,
different crisp data for different examples are given and in Table 7.2 different fuzzy
data for different examples are given and in Table 7.3 optimal cycle length, optimal
replenishment time and maximum profits are given for twelve different examples.

7. NUMERICAL ILLUSTRATION

Results of different examples

983

Table 7.1
Crisp data for different examples
Subcase | Example P a b c N M Iy, I m
1.1 1.1 1300 | 1000 | 200 | 2.5 | .25 | .4 | .19 | .14 | 1.5
1.2 1.2 1300 | 1000 | 200 | 2.5 2 .5 19 | .14 | 1.5
1.3 1.3 1300 | 1000 | 200 | 2.5 | .2 9 | 19| .14 | 1.5
1.4 1.4 1900 | 1000 | 200 | 2.5 3 .6 19 | .14 | 1.5
1.5 1.5 2200 | 1000 | 200 | 2.5 | .19 | .47 | .19 | .14 | 1.5
1.6 1.6 3000 | 1000 | 200 | 2.5 | .70 | .90 | — | .14 | 1.5
2.1 2.1 1100 | 1000 | 200 | 2.5 | .50 | .30 | .19 | — | 1.5
2.2 2.2 1400 | 1000 | 200 | 2.5 | .35 | .20 | .19 | — 1.5
2.3 2.3 2000 | 1000 | 200 | 2.5 | 1.2 2 |19 — |15
2.4 2.4 1500 | 1000 | 200 | 2.5 | .22 2 19 | — 1.5
2.5 2.5 1400 | 1000 | 200 | 2.5 | 1.3 | 9 | .19 | — | 1.5
2.6 2.6 1500 | 1000 | 200 | 2.5 | 1.3 | 1.2 | — | — | 1.5
Table 7.2
Fuzzy data for different examples
Subcase | Example h Cp A
1.1 1.1 (4.2,4.5,4.8) | (.29,30,.37) | (1045,1050,1055)
1.2 1.2 (4.2,4.5,4.8) | (.29,30,.37) | (1045,1050,1055)
1.3 1.3 (4.2,4.5,4.8) | (.29,30,.37) | (1045,1050,1055)
1.4 1.4 (4.2,4.5,4.8) | (.29,30,.37) (645,650,655)
1.5 1.5 (4.2,4.5,4.8) | (.29,30,.37) (645,650,655)
1.6 1.6 (7.2,7.5,7.8) | (.29,30,.37) (445,450,455)
2.1 2.1 (4.2,4.5,4.8) | (.29,30,.37) | (1045,1050,1055)
2.2 2.2 (4.2,4.5,4.8) | (.29,30,.37) (645,650,655)
2.3 2.3 (7.2,7.5,7.8) | (.29,30,.37) (445,450,455)
2.4 2.4 (4.2,4.5,4.8) | (.29,30,.37) (645,650,655)
2.5 2.5 (7.2,7.5,7.8) | (.29,30,.37) (445,450,455)
2.6 2.6 (7.2,7.5,7.8) | (.29,30,.37) (445,450,455)
Table 7.3
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Subcase | Example | T year | t] year % Profit (units)
1.1 1.1 7147 .4829 —65081.238 11283.01
1.2 1.2 .6214 4145 -20180.30 11753.91
1.3 1.3 .6472 4117 -15456.87 13932.80
1.4 1.4 .6378 .2997 -28346.55 11997.99
1.5 1.5 4660 | .1800 -.54x108 12034.60
1.6 1.6 .6729 .2026 -24201.77 12073.90
2.1 2.1 1.60 1.35 -886.41 11690.55
2.2 2.2 .55 .35 -36715.11 10882.23
2.3 2.3 1.09 .51 -405779.20 6596.14
2.4 2.4 .229 124 -104208.30 9451.265
2.5 2.5 .98 .645 -22803.70 10057.07
2.6 2.6 .94 .58 -25187.52 11491.14

From Table 7.3, it reveals that the Subcase 1.3 is the most profitable scenario,
since in this case (M-N) is largest, so retailer can earn more interest than the other
subcases and Subcase 2.3 is worst subcase for the opposite reason.

8. SENSITIVITY ANALYSIS

Results are obtained due to different values of a, for all the examples(i.e., for the
subcases 1.1 to 1.6 and the subcases 2.1 to 2.6) and it is observed that(see table-
8.1 and table-8.2) profit increases with a i.e., profit increases with the increase of
demand, which agrees with reality.

Table-8.1
Profits with various values of ‘a’ for case-1 (N< M)
a 1000 1100 1200 1300 1400
Example-1.1 | 11283.01 | 12927.35 | 14664.10 | 16552.07 | 18952.78
Example-1.2 | 11753.91 | 13412.52 | 15094.36 | 16793.53 | 18492.73
Example-1.3 | 13932.80 | 15843.51 | 17777.37 | 19732.98 | 21709.39
Example-1.4 | 11997.99 | 13533.39 | 15045.57 | 16534.26 | 17999.47
Example-1.5 | 12034.60 | 13641.69 | 15246.16 | 16845.28 | 18439.03
Example-1.6 | 12073.90 | 13585.41 | 15115.96 | 16664.45 | 18230.16

’HH@OFU"U

Table-8.2
Profits with various values of ‘a’ for case-2 (N> M)
a 1000 1050 1100 1150 1200
Example-2.1 | 11690.55 | 12744.24 | 13940.27 | 15576.56 | 14718.33
Example-2.2 | 10882.23 | 11583.76 | 12281.85 | 12976.49 | 13667.7
Example-2.3 | 6596.14 7826.68 | 10024.20 | 12374.07 | 14723.95
Example-2.4 | 9451.265 | 11186.99 | 11847.62 | 12506.01 | 13162.17
Example-2.5 | 10057.07 | 11482.92 | 13001.79 | 14683.92 | 17208.00

Example-2.6 | 11491.14 | 13044.21 | 14665.08 | 16382.67 | 18271.20
984

’HH@OFU"U




S. Bag et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 6, 959-989

Now, results are obtained due to different values of M, for all the examples( i.e.,
for the subcases-1.1 to 1.6 and the subcases-2.1 to 2.6) and it is observed that(see
tables-8.3 to 8.14) profit increases with the increase of retailer’s trade credit period
(M) , which agrees with reality.

Table-8.3

Profits with various values of ‘M’ for subcase-1.1
M .40 42 .44 .46 .48

PROFIT | Example-1.1 | 11283.01 | 11376.13 | 11478.77 | 11581.01 | 11675.94

Table-8.4
Profits with various values of ‘M’ for subcase-1.2
M .50 .52 .54 .56 .58
PROFIT | Example-1.2 | 11753.91 | 11861.28 | 11696.00 | 12058.29 | 12185.52
Table-8.5
Profits with various values of ‘M’ for subcase-1.3
M .90 .92 .94 .96 .98
PROFIT | Example-1.3 | 13932.80 | 14042.04 | 14151.29 | 14260.53 | 14369.77
Table-8.6
Profits with various values of ‘M’ for subcase-1.4
M .60 .61 .62 .63 .637
PROFIT | Example-1.4 | 11997.99 | 12029.91 | 12062.18 | 12094.79 | 12117.81
Table-8.7
Profits with various values of ‘M’ for subcase-1.5
M A7 .48 .49 .50 .51
PROFIT | Example-1.5 | 12034.60 | 12088.87 | 12143.14 | 12197.41 | 12251.69
Table-8.8
Profits with various values of ‘M’ for subcase-1.6
M .90 .92 .94 .96 .98
Profit | Example-1.6 | 12073.9 | 12187.6 | 12301.3 | 12415.0 | 12528.9
Table-8.9
Profits with various values of ‘M’ for subcase-2.1
M .30 .32 .34 .36 .38 .40
Profit | Ex-2.1 | 11690.5 | 11715.0 | 11741.3 | 11769.5 | 11799.8 | 11832.2
Table-8.10
Profits with various values of ‘M’ for subcase-2.2
M .20 .21 .22 .23 .24 .25
Profit | Ex-2.2 | 10882.2 | 10911.8 | 10942.8 | 10975.2 | 11009.1 | 11044.4
Table-8.11
Profits with various values of ‘M’ for subcase-2.3
M .20 .22 .24 .26 .28 .30
Profit | Ex-2.3 | 6596.10 | 6641.20 | 6693.90 | 6756.50 | 6833.70 | 7301.00
Table-8.12
Profits with various values of ‘M’ for subcase-2.4
M .20 .21 .22 .23 .24 .25
Profit | Ex-2.4 | 9451.30 | 10635.7 | 10736.8 | 10786.0 | 10835.1 | 10884.3
Table-8.13

Profits with various values of ‘M’ for subcase-2.5
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M .90 .91 .92 .93 .94 .95
Profit | Ex-2.5 | 10057.1 10109.8 | 10162.6 | 10215.3 | 10268.1 10320.9
Table-8.14

Profits with various values of ‘M’ for subcase-2.6
M 1.20 1.22 1.24 1.26 1.28 1.30

Profit | Ex-2.6 | 11491.1 | 11596.4 | 11701.7 | 11807.0 | 11912.3 | 12017.6

Now, results are obtained due to different values of N, for all the examples and
it is observed that(see tables-8.15-8.19 and tables-8.21, 8.22, 8.24) profit increases
with the increase of customer’s trade credit period (N) up to certain period after
that profit decreases with the increase of N. It happens because initially increase of
N increases the demand of the item which in turn increases profit. Again increase
of N decreases profit due to bank interest. But profit due to increase of demand
dominates loss of bank interest. As a result increase of IV initially increases the
resultant profit. As demand increases with time at a decreasing rate so after certain
level of N, increase of profit due to increase of demand is less than the loss of bank
interest due to increase of N. As a result resultant profit decreases after certain level
of N. But this situation does not occur for Models-1.6, 2.3, 2.5, 2.6 (see tables-8.20,
8.23, 8.25, 8.26), as in that case N > T, so increase of N does not effect the demand
during [0,77]. So profit decreases with increase of N in this case.

Table-8.15
Profits with various values of ‘N’ for subcase-1.1
N .25 .27 .29 .31 .33 .35 .37
Profit | Ex-1.1 | 11283 | 11687 | 11690 | 11684 | 11671 | 11651 | 11627
Table-8.16
Profits with various values of ‘N’ for subcase-1.2
N .20 .24 .28 .30 .32 .36 .40
Profit | Ex-1.2 | 11754 | 11796 | 11806 | 11801 | 11789 | 11748 | 11685
Table-8.17
Profits with various values of ‘N’ for subcase-1.3
N .20 .24 .28 .31 .33 .35 .39
Profit | Ex-1.3 | 13933 | 13993 | 14018 | 14016 | 14007 | 13991 | 13943
Table-8.18
Profits with various values of ‘N’ for subcase-1.4
N .30 .34 .38 .40 .44 .48 .52
Profit | Ex-1.4 | 11998 | 12020 | 12026 | 12022 | 12006 | 11977 | 11937
Table-8.19
Profits with various values of ‘N’ for subcase-1.5
N .20 21 .22 .23 .24 .25 .26
Profit | Ex-1.5 | 12040 | 12043 | 12043 | 12041 | 12037 | 12031 | 12022
Table-8.20
Profits with various values of ‘N’ for subcase-1.6
N .70 74 .78 .82 .84 .86 .88
Profit | Ex-1.6 | 12074 | 11845 | 11617 | 11391 | 11278 | 11165 | 11053
Table-8.21

Profits with various values of ‘N’ for subcase-2.1
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N .50 .51 .52 .53 .54 .55 .56
Profit | Ex-2.1 | 11691 | 11692 | 11693.4 | 11694 | 11693.2 | 11692.6 | 11692.2

Table-8.22
Profits with various values of ‘N’ for subcase-2.2
N .35 .37 .39 41 .43 .45 A7
Profit | Ex-2.2 | 10882 | 10889 | 10890.3 | 10885 | 10875 | 10861 | 10843.1
Table-8.23
Profits with various values of ‘N’ for subcase-2.3
N 1.20 | 1.22 | 1.24 1.26 1.28 1.30 1.32
Profit | Ex-2.3 | 6596 | 6490 | 6384 | 6277.8 | 6171.8 | 6065.8 | 5959.9
Table-8.24

Profits with various values of ‘N’ for subcase-2.4
N .22 .23 .24 .25 .26 27 .28

Profit | Ex-2.4 | 9451.3 | 10506 | 10484 | 10460 | 10433 | 10403 | 10371

Table-8.25
Profits with various values of ‘N’ for subcase-2.5
N 1.30 1.32 1.34 1.36 1.38 1.40 1.42
Profit | Ex-2.5 | 10057 | 9951.6 | 9846.2 | 9740.8 | 9635.4 | 9530.0 | 9424.7
Table-8.26

Profits with various values of ‘N’ for subcase-2.6
N 1.30 1.32 1.34 1.36 1.38 1.40 1.42

Profit | Ex-2.6 | 11491 | 11386 | 11281 | 11176 | 11070 | 10965 | 10860

9. CONCLUSIONS

This research addresses a production inventory model with dynamic demand un-
der bi-level trade credit policy in imprecise environment. An easy-to-use algorithm
is proposed which gives the optimal values of both profit and replenishment time.
Here we have determined the optimal replenishment time in maximizing the expected
resultant profit using possibilistic mean value approach and finally, numerical exam-
ples are used to illustrate all results obtained in this paper. In addition, we obtain a
lot of managerial insights from numerical examples. This retailer’s model has wide
range of applications in wholesale-retail-customer business where the competition is
stiff, especially in grocery, stationary goods shop, building materials shop etc.

A future study will further incorporate the proposed model into more realistic
assumptions, such as fuzzy demand, deteriorating items, allowable shortages, multi-
supplier, multi-retailer, multi-customer etc
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