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Abstract. The aim of this paper is to introduce some new sequence
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1. Introduction

The concept of fuzzy set theory was introduced by Zadeh [44] in the year 1965.
As a suitable mathematical model to handle vagueness and uncertainty, fuzzy set
theory is emerging as a powerful theory and has attracted the attention of many
researchers for Cybernetics, Artificial Intelligence, Expert System and Fuzzy Con-
trol, Pattern recognition, Operation Research, Decision making, Image Analysis,
Projectiles, Probabilty theory, Weather forecasting etc. It attracted many workers
on sequence spaces and summability theory to introduce different types of fuzzy
sequence spaces and study their different properties. Our studies are based on the
linear spaces of sequences of fuzzy numbers which may be useful in higher level stud-
ies in Quantum Mechanics, Particle Physics and Statistical Mechanics etc. Different
classes of sequences of fuzzy numbers have been discussed by Nanda [31], Nuray and
Savas [32], Matloka [27], Mursaleen and Basarir [28], Altin et al. [1], Dutta and
Tripathy [3], Hazarika [19] and the references therein.

Kostyrko et al. [24] introduced the notion of I-convergence with the help of an
admissible ideal where I denotes the ideal of subsets of N, which is a generalization
of statistical convergence. It was further studied by Cakalli and Hazarika [2], Esi and
Hazarika [6, 7], Hazarika [10, 11, 12, 13, 14, 15, 18], Hazarika and Savas [20], Kumar
and Kumar [25], Mursaleen and Mohiuddine [29], Mursaleen et al., [30], S̆alát et al.
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[35, 36], Savas [37], Tripathy and Hazarika [40, 41, 42], Subramanian et al., [38] and
the references therein.

Let X be a non-empty set. Then a family of sets I ⊂ 2X (the class of all subsets
of X) is called an ideal on X if and only if

(i) φ ∈ I.
(ii) for each A,B ∈ I, we have A ∪B ∈ I
(iii) for each A ∈ I and each B ⊂ A, we have B ∈ I.

A non-empty family of sets F ⊂ 2X is a filter on X if and only if
(i) φ /∈ F
(ii) for each A,B ∈ F, we have A ∩B ∈ F
(iii) each A ∈ F and each B ⊃ A, we have B ∈ F.
An ideal I is called non-trivial ideal if I 6= φ and X /∈ I. Clearly I ⊂ 2X is a

non-trivial ideal if and only if F = F (I) = {X −A : A ∈ I} is a filter on X.

A non-trivial ideal I ⊂ 2X is called
(i) admissible if and only if {{x} : x ∈ X} ⊂ I.
(ii) maximal if there cannot exists any non-trivial ideal J 6= I containing I as a

subset.
If we take I = If = {A ⊆ N : A is a finite subset }. Then If is a non-trivial

admissible ideal of N and the corresponding convergence coincides with the usual
convergence. If we take I = Iδ = {A ⊆ N : δ(A) = 0} where δ(A) denote the
asymptotic density of the set A. Then Iδ is a non-trivial admissible ideal of N and
the corresponding convergence coincides with the statistical convergence.

Throughout the paper, we denote I as an admissible ideal of subsets of N, unless
otherwise stated.

Goes and Goes [9] initially introduced the differential sequence space dE and the
integrated sequence space

∫
E for a given sequence space E, by using the multiplier

sequences (k−1) and (k) respectively, where E = c, c0, `∞. A multiplier sequence
which is used to accelerate the convergence of the sequences. In some sense, it can
be viewed as a catalyst, which is used to accelerate the process of chemical reaction.
Sometimes the associated multiplier sequence delays the rate of the convergence of
a sequence. Tripathy and Mahanta [43] used a general multiplier sequence Λ = (λk)
of non-zero scalars for all k ∈ N.

Let Λ = (λk) be a sequence of non-zero scalars. Then for a given sequence
space E, the multiplier sequence space E(Λ) associated with multiplier sequence Λ
is defined by (for details see [43])

E(Λ) = {(xk) : (λkxk) ∈ E}.
Recall from [23] that an Orlicz function M is continuous, convex , nondecreasing
function such that M(0) = 0 and M(x) > 0 for x > 0. If convexity of Orlicz
function is replaced by M(x + y) ≤ M(x) + M(y) then this function is called the
modulus function and characterized by Ruckle [34]. An Orlicz function M is said to
satisfy ∆2 − condition for all values of u, if there exists K > 0 such that M(2u) ≤
KM(u), u ≥ 0.
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Two Orlicz functions M1 and M2 are said to be equivalent if there exist positive
constants α, β and x0 such that

M1(α) ≤ M2(x) ≤ M1(β) for all x with 0 ≤ x < x0.

Lindenstrauss and Tzafriri [26] studied some Orlicz type sequence spaces defined
as follows:

`M =

{
(xk) ∈ w :

∞∑

k=1

M(
|xk|
ρ

) < ∞, for some ρ > 0

}
.

The space `M with the norm

|| x || = inf

{
ρ > 0 :

∞∑

k=1

M(
|xk|
ρ

) ≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. The space `M is
closely related to the space `p which is an Orlicz sequence space with M(t) = |t|p,
for 1 ≤ p < ∞.

Different classes of Orlicz sequence spaces introduced and studied by Parashar
and Choudhary [33], Esi [4], Esi and Et [5], Hazarika [16, 17], Tripathy and Sarma
[39], Esi and Hazarika [8] and the references therein.

Throughout the article wF , cF , cF
0 and `F

∞ denote the classes of all, convergent,
null and bounded fuzzy real-valued sequence spaces, respectively. Also N and R
denote the set of positive integers and set of real numbers, respectively. The zero
sequence is denoted by θ.

2. Definitions and notations

We now give here a brief introduction about the sequences of fuzzy numbers. Let
D denote the set of all closed and bounded intervals X = [x1, x2] on the real line R.
For X, Y ∈ D, we define X ≤ Y if and only if x1 ≤ y1 and x2 ≤ y2,

d(X, Y ) = max{|x1 − y1|, |x2 − y2|}, where X = [x1, x2] and Y = [y1, y2].
Then it can be easily seen that d defines a metric on D and (D, d) is a complete

metric space (see [21]). Also the relation ” ≤ ” is a partial order on D. A fuzzy
number X is a fuzzy subset of the real line R i.e. a mapping X : R → J(= [0, 1])
associating each real number t with its grade of membership X(t).

A fuzzy number X is said to be
(i) convex if X(t) ≥ X(s) ∧X(r) = min{X(s), X(r)}, where s < t < r.
(ii) normal if there exists t0 ∈ R such that X(t0) = 1.
(iii) upper semi-continuous if for each ε > 0, X−1([0, a + ε)) for all a ∈ [0, 1] is

open in the usual topology of R.

Let R(J) denote the set of all fuzzy numbers which are upper-semi-continuous
and have compact support, i.e. if X ∈ R(J) the for any α ∈ [0, 1], [X]α is compact,
where

[X]α = {t ∈ R : X(t) ≥ α, if α ∈ [0, 1]},
[X]0 =closure of ({t ∈ R : X(t) > α, if α = 0}).
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The set R of real numbers can be embedded in R(J) if we define r ∈ R(J) by

r(t) =
{

1, if t = r :
0, if t 6= r

The absolute value , |X| of X ∈ R(J) is defined by (for details see [21])

|X|(t) =
{

max {X(t), X(−t)} , if t ≥ 0 :
0, if t < 0

Define a mapping d̄ : R(J)× R(J) → R+ ∪ {0} by

d̄(X, Y ) = sup
0≤α≤1

d([X]α, [Y ]α).

It is known that (R(J), d̄) is a complete metric space (for details see [21]).
A metric on R(J) is said to be translation invariant (see [28]) if

d̄(X + Z, Y + Z) = d̄(X, Y ), for X, Y, Z ∈ R(J).

A sequence X = (Xk) of fuzzy numbers is said to be
(i) convergent to a fuzzy number X0 if for every ε > 0, there exists a positive

integer n0 such that d̄(Xk, X0) < ε for all n ≥ n0 (see [27]).
(ii) bounded if the set {Xk : k ∈ N} of fuzzy numbers is bounded (see [27]).
(iii) I-convergent (see [25]) to a fuzzy number X0 if for each ε > 0 such that

A = {k ∈ N : d̄(Xk, X0) ≥ ε} ∈ I.

The fuzzy number X0 is called I-limit of the sequence (Xk) of fuzzy numbers and
we write I − lim Xk = X0.

(iv) I-bounded (see [25]) if there exists M > 0 such that

{k ∈ N : d̄(Xk, 0̄) > M} ∈ I.

A sequence space EF of fuzzy numbers is said to be
(i) solid ( or normal) if (Yk) ∈ EF whenever (Xk) ∈ EF and d̄(Yk, 0̄) ≤ d̄(Xk, 0̄)

for all k ∈ N.
(ii) symmetric if (Xk) ∈ EF implies (Xπ(k)) ∈ EF where π is a permutation of N.

Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space of E is
a sequence space

λE
K = {(xkn) ∈ w : (kn) ∈ E}.

A canonical pre-image of a sequence {(xkn)} ∈ λE
K is a sequence {yk} ∈ w defined

as

yk =
{

xk, if k ∈ K
0, otherwise.

A canonical pre-image of a step space λE
K is a set of canonical preimages of all

elements in λE
K , i.e. y is in canonical preimage of λE

K if and only if y is canonical
preimage of some x ∈ λE

K .
A sequence space EF is said to be monotone if EF contains the canonical pre-

images of all its step spaces.
910



Bipan Hazarika et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 6, 907–917

The following well-known inequality will be used throughout the article. Let
p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤ supk pk = G,D =
max{1, 2G−1} then

|ak + bk|pk ≤ D(|ak|pk + |bk|pk) for all k ∈ N and ak, bk ∈ C
Also |ak|pk ≤ max{1, |a|G} for all a ∈ C.

First we procure some known results; those will help in establishing the results
of this article.

Lemma 2.1. A sequence space EF is normal implies EF is monotone. (For the
crisp set case, one may refer to Kamthan and Gupta [22], page 53)

Lemma 2.2. (Kostyrko et al., [24], Lemma 5.1). If I ⊂ 2N is a maximal ideal, then
for each A ⊂ N we have either A ∈ I or N−A ∈ I.

3. Some new sequence spaces of fuzzy numbers

The main aim of this article to introduce the following sequence spaces and ex-
amine topological and algebraic properties of the resulting sequence spaces. Let
p = (pk) be a sequence of positive real numbers for all k ∈ N. Let M = (Mk) be
a sequence of Orlicz functions and Λ = (λk) be a sequence of non-zero scalars and
X = (Xk) be a sequence of fuzzy numbers, we define the following sequence spaces.

wI(F )(M, Λ, p) =

{(Xk) ∈ wF :

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄ (λkXk, X0)

ρ

)]pk

≥ ε

}

∈ I for ρ > 0 and X0 ∈ R(J)},
w

I(F )
0 (M, Λ, p) =

{(Xk) ∈ wF :

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄ (λkXk, 0̄)

ρ

)]pk

≥ ε

}
∈ I for ρ > 0},

wF
∞(M, Λ, p) = {(Xk) ∈ wF : sup

1
n

n∑

k=1

[
Mk

(
d̄ (λkXk, 0̄)

ρ

)]pk

< ∞ for ρ > 0}

w
I(F )
∞ (M, Λ, p) =

{(Xk) ∈ wF : ∃K > 0 s.t.

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄ (λkXk, 0̄)

ρ

)]pk

≥ K

}

∈ I for ρ > 0}.
Now, we examine the basic topological and algebraic properties of these spaces

and obtain the inclusion relation between these spaces.

Theorem 3.1. wI(F )(M,Λ, p), w
I(F )
0 (M,Λ, p) and w

I(F )
∞ (M, Λ, p) are closed with

respect to addition and scalar multiplication.
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Proof. We will prove the result for w
I(F )
0 (M,Λ, p). Let X = (Xk) and Y = (Yk) be

two elements of w
I(F )
0 (M, Λ, p). Then there exist ρ1 > 0 and ρ2 > 0 such that

A ε
2

=

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

≥ ε

2

}
∈ I

and

B ε
2

=

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

≥ ε

2

}
∈ I

Let α, β be two scalars. By the continuity of the function M = (Mk) the following
inequality holds:

1
n

n∑

k=1

[
Mk

(
d̄(λk(αXk + βYk, 0̄))

|α|ρ1 + |β|ρ2

)]pk

≤ D
1
n

n∑

k=1

[ |α|
|α|ρ1 + |β|ρ2

Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

+D
1
n

n∑

k=1

[ |β|
|α|ρ1 + |β|ρ2

Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

≤ DK
1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

+ DK
1
n

n∑

k=1

[
Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

,

where K = max{1,
(

|α|ρ1
|α|ρ1+|β|ρ2

)
,
(

|β|ρ2
|α|ρ1+|β|ρ2

)
}.

From the above relation we obtain the following:{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λk(αXk + βYk, 0̄))

|α|ρ1 + |β|ρ2

)]pk

≥ ε

}
⊆

{
n ∈ N : DK

1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ1

)]pk

≥ ε

2

}

∪
{

n ∈ N : DK
1
n

n∑

k=1

[
Mk

(
d̄(λkYk, 0̄)

ρ2

)]pk

≥ ε

2

}
∈ I.

This completes the proof. ¤

Remark 3.2. It is easy to verify that the space wF
∞(M,Λ, p) is closed with respect

to addition and scalar multiplication.

Theorem 3.3. The space wF
∞(M,Λ, p) is a complete metric space with the metric

gΛ defined by

gΛ(X) = inf
{

ρ
pk
H : sup

k
Mk

(
d̄(λkXk, 0̄)

ρ

)
≤ 1, for ρ > 0

}
,

where H = max {1, supk pk} .

Proof. Proof of the theorem is easy, so omitted here. ¤
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Theorem 3.4. Let M = (Mk) and S = (Sk) be sequences of Orlicz functions.
Then the following hold:

(i) w
I(F )
0 (S,Λ, p) ⊆ w

I(F )
0 (M.S,Λ, p), provided p = (pk) be such that G0 =

inf pk > 0.

(ii) w
I(F )
0 (M,Λ, p) ∩ w

I(F )
0 (S, Λ, p) ⊆ w

I(F )
0 (M + S, Λ, p).

Proof. (i) Let ε > 0 be given. Choose ε1 > 0 such that max
{

εG
1 , εG0

1

}
< ε. Choose

0 < δ < 1 such that 0 < t < δ implies that Mk(t) < ε1 for each k ∈ N. Let X = (Xk)
be any element in w

I(F )
0 (S,Λ, p). Put

Aδ =

{
n ∈ N :

1
n

n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

≥ δG

}
.

Then by the definition of ideal we have Aδ ∈ I. If n /∈ Aδ we have

1
n

n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

< δG

⇒
n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

< nδG

⇒
[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

< δG, for k = 1, 2, 3, ..., n

(3.1) ⇒ Sk

(
d̄(λkXk, 0̄)

ρ

)
< δG, for k = 1, 2, 3, ..., n.

Using the continuity of the function M = (Mk) from the relation (3.1) we have

Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))
< ε1, for k = 1, 2, 3, ..., n.

Consequently we get
n∑

k=1

[
Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))]pk

< n. max
{

εG
1 , εG0

1

}
< nε

⇒ 1
n

n∑

k=1

[
Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))]pk

< ε.

This implies that{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
Sk

(
d̄(λkXk, 0̄)

ρ

))]pk

≥ ε

}
⊆ Aδ ∈ I.

This completes the proof.
(ii) Let X = (Xk) ∈ w

I(F )
0 (M, Λ, p) ∩ w

I(F )
0 (S, Λ, p). Then by the following in-

equality the result follows:

1
n

n∑

k=1

[
(Mk + Sk)

(
d̄(λkXk, 0̄)

ρ

)]pk
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≤ D
1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ

)]pk

+ D
1
n

n∑

k=1

[
Sk

(
d̄(λkXk, 0̄)

ρ

)]pk

.

¤
The proof of the following theorems are easy and so omitted.

Theorem 3.5. Let 0 < pk ≤ qk and
(

qk

pk

)
be bounded, then

w
I(F )
0 (M, Λ, q) ⊆ w

I(F )
0 (M, Λ, p).

Theorem 3.6. For any two sequences p = (pk) and q = (qk) of positive real
numbers, then the following holds:

Z(M,Λ, p) ∩ Z(M, Λ, q) 6= φ, for Z = wI(F ), w
I(F )
0 , w

I(F )
∞ and wF

∞.

Theorem 3.7. The sequence spaces Z(M, Λ, p) are normal as well as monotone,
for Z = w

I(F )
0 and w

I(F )
∞ .

Proof. We shall give the prove of the theorem for w
I(F )
0 (M,Λ, p) only. Let X =

(Xk) ∈ w
I(F )
0 (M, Λ, p) and Y = (Yk) be such that d̄(Yk, 0̄) ≤ d̄(Xk, 0̄) for all k ∈ N.

Then for given ε > 0 we have

B =

{
n ∈ N :

1
n

n∑

k=1

[
Mk

(
d̄(λkXk, 0̄)

ρ

)]pk

≥ ε

}
∈ I.

Again the set E =
{

n ∈ N : 1
n

n∑
k=1

[
Mk

(
d̄(λkYk,0̄)

ρ

)]pk ≥ ε

}
⊆ B.

Hence E ∈ I and so Y = (Yk) ∈ w
I(F )
0 (M, Λ, p). Thus the space w

I(F )
0 (M, Λ, p) is

normal. Also from the Lemma 2.1, it follows that w
I(F )
0 (M, Λ, p) is monotone. ¤

Theorem 3.8. The space wI(F )(M, Λ, p) is neither normal nor monotone in gen-
eral.

Proof. Let I be not a maximal ideal. We first prove that the space wI(F )(M,Λ, p)
is not monotone. Let us consider a sequence X = (Xk) of fuzzy numbers defined by

Xk(t) =





3−1(1 + t), if t ∈ [−1, 2];
2−1(−t + 4), if t ∈ [2, 4];

0, otherwise

Then (Xk) ∈ wI(F )(M, Λ, p).
Since I is not maximal, so by Lemma 2.2, there exists a subset K in N such that

K /∈ I and N−K /∈ I.Let us define a sequence Y = (Yk) by

Yk =
{

Xk, if k ∈ K;
1, otherwise

Then Y = (Yk) belongs to the canonical pre-image of the K-step space of (Xk) ∈
wI(F )(M, Λ, p). But (Yk) /∈ wI(F )(M, Λ, p). Hence wI(F )(M, Λ, p) is not monotone.
Therefore by Lemma 2.1, it follows that the space wI(F )(M, Λ, p) is not normal. ¤

Theorem 3.9. The spaces wI(F )(M,Λ, p) and w
I(F )
0 (M, Λ, p) are not symmetric in

general.
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Proof. Let I be not a maximal ideal. Let us consider a sequence X = (Xk) of fuzzy
real numbers defined by

Xk(t) =





1 + t− 3k, if t ∈ [3k − 1, 3k];
1− t + 3k, if t ∈ [3k, 3k + 1];

0, otherwise

for k ∈ A ⊂ I an infinite set.
Then (Xk) ∈ w

I(F )
0 (M, Λ, p) ⊆ wI(F )(M, Λ, p). Let K ⊆ N be such that K /∈ I

and N − K /∈ I (the set K exists by Lemma 2.2, as I is not maximal).Consider a
sequence Y = (Yk) a rearrangement of the sequence (Xk) defined as follows:

Yk =
{

Xk, if k ∈ K;
1, otherwise

Then (Yk) /∈ w
I(F )
0 (M, Λ, p). Also (Yk) /∈ wI(F )(M, Λ, p). Hence wI(F )(M,Λ, p)

and w
I(F )
0 (M,Λ, p) are not symmetric. ¤

Theorem 3.10. If I is neither maximal nor I = If then the space w
I(F )
∞ (M,Λ, p)

is not symmetric.

Proof. Let us consider a sequence X = (Xk) of w
I(F )
∞ (M, Λ, p) defined by

Xk(t) =





1 + t− 5k, if t ∈ [5k − 1, 5k];
1− t + 5k, if t ∈ [5k, 5k + 1];

0, otherwise

for k ∈ A ⊂ I an infinite set.Otherwise Xk = 1̄.
Since I is not maximal, so by Lemma 2.2, there exists a subset K in N such that

K /∈ I and N−K /∈ I. Let f : K → A and h : N−K → N−A be bijections. Consider
a sequence Y = (Yk) a rearrangement of the sequence (Xk) defined as follows:

Yk =
{

Xf(k), if k ∈ K;
Xh(k), if k ∈ N−K

Then (Yk) /∈ w
I(F )
∞ (M, Λ, p). Hence w

I(F )
∞ (M,Λ, p) is not symmetric. ¤
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[2] H. Çakalli and B. Hazarika, Ideal quasi-Cauchy sequences, J. Inequal. Appl. 2012, 2012:234,
11 pp.

[3] A. J. Dutta and B. C. Tripathy, On I-acceleration convergence of sequences of fuzzy real
numbers, Math. Model. Anal. 17(4) (2012) 549–557.

[4] A. Esi, On some paranormed sequence spaces of fuzzy numbers defined by Orlicz functions
and statistical convergence, Math. Model. Anal. 11(4) (2006) 379–388.

[5] A. Esi and M. Et, Some new sequence spaces defined by Orlicz functions, Indian J. Pure Appl.
Math. 31(8) (2000) 967–972.

[6] A. Esi and B. Hazarika, λ-ideal convergence in intuitionistic fuzzy 2-normed linear space, J.
Intell. Fuzzy Systems 24(4) (2013) 725–732.

915



Bipan Hazarika et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 6, 907–917

[7] A. Esi and B. Hazarika, Lacunary summable sequence spaces of fuzzy numbers defined by
ideal convergence and an Orlicz function, Afr. Math. DOI: 10.1007/s13370-012-0117-3.

[8] A. Esi and B. Hazarika, Some new generalized classes of sequences of fuzzy numbers defined
by an Orlicz function, Ann. Fuzzy Math. Inform. 4(2) (2012) 401–406.

[9] G. Goes and S. Goes, Sequences of bounded variation and sequences of Fourier coefficients,
Math. Z. 118 (1970) 93–102.

[10] B. Hazarika, On fuzzy real valued generalized difference I-convergent sequence spaces defined
by Musielak-Orlicz function, J. Intell. Fuzzy Systems 25(1) (2013) 9–15.

[11] B. Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, J. Intell.
Fuzzy Systems 25(1) (2013) 157–166.

[12] B. Hazarika, On σ-uniform density and ideal convergent sequences of fuzzy real numbers, J.
Intell. Fuzzy Systems 26(2) (2014) 793–799.

[13] B. Hazarika, Fuzzy real valued lacunary I-convergent sequences, Appl. Math. Lett. 25(3) (2012)
466–470.

[14] B. Hazarika, Lacunary I-convergent sequence of fuzzy real numbers, The Pacific J. Sci. 10(2)
(2009) 203–206.

[15] B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces, Filomat
26(6) (2012) 1273–1282.

[16] B. Hazarika, Some new sequence of fuzzy numbers defined by Orlicz functions using a fuzzy
metric, Comput. Math. Appl. 61(9) (2011) 2762–2769.

[17] B. Hazarika, Some classes of ideal convergent difference sequence spaces of fuzzy numbers
defined by Orlicz function, Fasc. Math. (in press).

[18] B. Hazarika, I-Convergence and summability in topological group, J. Inform. Math. Sci. 4(3)
(2012) 269–283.

[19] B. Hazarika, On fuzzy real valued I-convergent double sequence spaces, J. Nonlinear Sci. Appl.
(in press)
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