Annals of Fuzzy Mathematics and Informatics Volume 7, No. 6, (June 2014), pp. 901–906 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Intuitionistic 2-fuzzy strong, weak continuity and boundedness

THANGARAJ BEAULA, D. LILLY ESTHAR RANI

Received 30 July 2013; Revised 18 September 2013; Accepted 12 October 2013

ABSTRACT. This paper defines the concepts- strong fuzzy continuity, weak fuzzy continuity, sequentially fuzzy continuity, strong boundedness and weak boundedness on intuitionistic 2-fuzzy 2-normed linear space and some theorems are established.

2010 AMS Classification: 46B99, 46A19

Keywords: Strongly fuzzy continuous, Weakly fuzzy continuous, Sequentially fuzzy continuous, Strongly bounded, Weakly bounded.

Corresponding Author: Thangaraj Beaula (edwinbeaula@yahoo.co.in)

1. INTRODUCTION

The theory of fuzzy sets was introduced by L. A. Zadeh [7] in 1965. A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler [4] in 1964. The notion of 2-fuzzy 2-normed linear space of the set of all fuzzy sets of a set was introduced by R.M.Somasundaram and Thangaraj Beaula [5]. Intuitionistic fuzzy n-normed linear space is briefly established in [6]. The concept of intuitionistic 2-fuzzy 2-normed linear space of the set of all fuzzy sets of a universal set was introduced by Thangaraj Beaula and D.Lilly Esthar Rani [2]. The notion of 2-fuzzy inner product space was developed in a different way in [3].

In this paper strong fuzzy continuity, weak fuzzy continuity, sequentially fuzzy continuity, strong boundedness and weak boundedness are defined for a intuitionistic 2-fuzzy 2-normed linear space. Using these concepts some theorems are proved.

2. Preliminaries

For the sake of completeness, we list the following definitions

Definition 2.1 ([4]). Let X be a real linear space of dimension greater than one and |et||, || be a real valued function on X × X satisfying the following conditions:

- (1) ||x,y|| = 0 if and only if x and y are linearly dependent,
- (2) ||x,y|| = ||y,x||
- (3) $||\alpha \mathbf{x}, \mathbf{y}|| = |\alpha| ||\mathbf{x}, \mathbf{y}||$, where α is real,
- (4) $||x,y+z|| \le ||x,y|| + ||x,z||$

 $||\cdot, \cdot||$ is called a 2-norm on X and the pair $(X, ||\cdot, \cdot||)$ is called a 2-normed linear space.

Definition 2.2 ([1]). Let X be a linear space over K (the field of real or complex numbers). A fuzzy subset N of $X \times R$ (R,the set of real numbers) is called a fuzzy norm on X if and only if for all $x, u \in X$ and $c \in K$.

(N1) for all $t \in \mathbb{R}$ with $t \leq 0$, N(x,t)=0

(N2) for all $t \in \mathbb{R}$ with t > 0, N(x,t)=1 if and only if x=0

(N3) for all t \in R with t>0, N(cx,t) = N(x, $\frac{t}{|c|}$), if $c \neq 0$

(N4) for all s, t \in R , x , u \in X, N(x+u , s+t) $\geq \min \{ N(x,s), N(u,t) \}$

- (N5) N(x,·) is a non decreasing function of R and $\lim_{t\to\infty} N(x,t)=1$
- The pair (X,N) will be referred to as a fuzzy normed linear space.

Definition 2.3 ([5]). Let F(X) be a linear space over the real field K. A fuzzy subset N of $F(X) \times R$, (R, the set of real numbers) is called a 2-fuzzy norm on F(X) if and only if,

(N1) for all $t \in \mathbb{R}$ with $t \leq 0$, $N(f_1, f_2, t) = 0$,

(N2) for all $t \in \mathbb{R}$ with t > 0, N $(f_1, f_2, t) = 1$ if and only if f_1 and f_2 are linearly dependent,

(N3) N (f₁, f₂,t) with t ≥ 0 , N (f₁, cf₂, t) = N (f₁, f₂, $\frac{t}{|c|}$) if $c\neq 0$, $c\in K$ (field)

(N4) for all $s,t \in \mathbb{R}$, N $(f_1 + f_2, s, t) \ge \min \{ N(f_1, s), N(f_2, t) \}$,

(N5) for all s, $t \in \mathbb{R}$, N (f₁, f₂ + f₃, s +t) $\geq \min \{ N(f_1, f_2, s), N(f_1, f_3, t) \}$

(N6) N (f₁,f₂,.) : $(0, \infty)$ [0,1] is continuous,

(N7) $\lim_{t\to\infty} N(f_1, f_2, t) = 1.$

Then the pair (F(X), N) is a fuzzy 2-normed linear space or (X,N) is a 2-fuzzy 2-normed linear space.

Definition 2.4 ([2]). An intuitionistic fuzzy 2- normed linear space (i.f-2-NLS) is of the form

A = { F(X), N(f₁, f₂, t), M(f₁, f₂, t) / (f₁, f₂) \in F[(X)]²} where F(X) is a linear space over a field K, * is a continuous t-norm, \Diamond is a continuous t-conorm, N and M are fuzzy sets on $[F(X)]^2 \times (0,\infty)$ such that N denotes the degree of membership and M denotes the degree of non-membership of (f₁, f₂, t) \in [F(X)]²× (0,∞) satisfying the following conditions:

(1) N $(f_1, f_2, t) + M (f_1, f_2, t) \le 1$

(2) $N(f_1, f_2, t) > 0$

(3) $N(f_1, f_2, t) = 1$ if and only if f_1, f_2 are linearly dependent

(4) $N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2

(5) $N(f_1, f_2, t) : (0, \infty) \rightarrow [0,1]$ is continuous in t.

(6) N(f₁, cf₂, t) = N (f₁, f₂, $\frac{t}{|c|}$), if $c \neq 0, c \in K$

(7) N (f₁, f₂, s) * N(f₁, f₃, t) \leq N(f₁, f₂ + f₃, s + t) where * is a continuous t-norm (8) M (f₁, f₂, t)> 0

(9) $M(f_1, f_2, t) = 0$ if and only if f_1, f_2 are linearly dependent

(10) M (f_1 , f_2 , t) is invariant under any permutation of f_1 , f_2

(11) M (f₁, cf₂, t) = M (f₁, f₂, $\frac{t}{|c|}$) if c \neq 0, c \in k

(12) M (f₁, f₂, s) \Diamond M (f₁, f₃, t) \ge M (f₁, f₂ + f₂, s + t) where \Diamond is a continuous t-co-norm .

(13) M (f_1, f_2, t) : $(0, \infty) \rightarrow [0,1]$ is continuous in t.

3. INTUITIONISTIC 2-FUZZY STRONGLY WEAKLY CONTINUITY AND BOUNDEDNESS

Definition 3.1. A mapping T from (A, N_1, M_1) to (B, N_2, M_2) is said to be intuistionistic 2-fuzzy continuous at $f_0 \in A$ if for given $\in > 0$, $\alpha \in (0, 1)$, there exists $\delta = \delta(\alpha, \varepsilon) > 0$, $\beta = \beta(\alpha, \varepsilon) \in (0, 1)$, such that for every $f \in A$, $N_1(f - f_0, g_i, \delta) > 1 - \beta$ and $M_1(f - f_0, g_i, \delta) < \beta$ implies $N_2(Tf - Tf_0, g_i, \varepsilon) > 1 - \alpha$ and $M_2(Tf - Tf_0, g_i, \varepsilon) < \alpha$ where g_i are linearly independent for i=1,2.

Definition 3.2. A linear operator $T : A \to B$ where (A, N_1, M_1) , and (B, N_2, M_2) are IF 2-Banach spaces is said to be intuitionistic 2-fuzzy strongly continuous at $f_0 \in A$ if for each $\varepsilon > 0$, there exists $\delta > 0$ such that for every $f \in A$ $N_2(Tf - Tf_0, g_i, \varepsilon) \ge N_1(f - f_0, g_i, \delta)$ and $M_2(Tf - Tf_0, g_i, \varepsilon) \le M_1(f - f_0, g_i, \delta)$

Definition 3.3. A mapping $T : A \to B$ is said to be weakly fuzzy continuous at $f_0 \in A$ if for given $\varepsilon > 0$, $\alpha \in (0, 1)$ there exists $\delta = \delta(\alpha, \varepsilon) > 0$ such that for every $f \in A$, $N_1(f - f_0, g_i, \delta) \ge 1 - \beta$ and $M_1(f - f_0, g_i, \delta) < \beta$ implies $N_2(Tf - Tf_0, g_i, \varepsilon) \ge 1 - \alpha$ and $M_2(Tf - Tf_0, g_i, \varepsilon) < \alpha$ where g_i are linearly

 $N_2(If - If_0, g_i, \varepsilon) \ge 1 - \alpha$ and $M_2(If - If_0, g_i, \varepsilon) < \alpha$ where g_i are linearly dependent for i=1,2.

Definition 3.4. A mapping $T : A \to B$ is said to be intuitionistic sequentially 2-fuzzy continuous at $f_0 \in A$ if for any sequence $\{f_n\}$ in A,

 $\lim_{n\to\infty} N_1(f_n - f_0, g_i, t) = 1$ and $\lim_{n\to\infty} M_1(f_n - f_0, g_i, t) = 0$ for all t > 0implies $\lim_{n\to\infty} N_2(Tf_n - Tf_0, g_i, t) = 1$ and $\lim_{n\to\infty} M_2(Tf_n - Tf_0, g_i, t) = 0$ for all t > 0 If T is intuisionistic sequentially 2-fuzzy continuous at each point of A then T is said to be intuisionistic sequentially 2-fuzzy continuous on A.

Theorem 3.5. Let $T : (A, N_1, M_1) \to (B, N_2, M_2)$ be a mapping where (A, N_1, M_1) & (B, N_2, M_2) are intuitionistic 2-fuzzy normed linear spaces. If T is intuitionastic 2-fuzzy strongly continuous then it is intuitionistic sequentially 2-fuzzy continuous.

Proof. This is the proof of Theorem 3.5. Suppose that T is intutionistic 2-fuzzy strongly continuous at $f_0 \in A$.

Thus for each $\varepsilon > 0$, there exists a $\delta > 0$ such that for every $f \in A$.

(3.1)
$$N_2(Tf - Tf_0, g_i, \varepsilon) \ge N_1(f - f_0, g_i, \delta) \text{ and } M_2(Tf - Tf_0, g_i, \varepsilon) \ge M_1(f - f_0, g_i, \delta)$$

where g_i are linearly independent for i = 1,2 Let $\{f_n\}$ be a sequence in A such that $f_n \to f_0$ that is

(3.2)
$$\lim_{n \to \infty} N_1(f_n - f_0, g_i, \varepsilon) = 1 \text{ and } \lim_{n \to \infty} M_1(f_n - f_0, g_i, \varepsilon) = 0$$

for all t > 0 and g_i are linear independent for i = 1, 2 Now from (3.1) we have,

 $N_2(Tf_n - Tf_0, g_i, \varepsilon) \ge N_1(f_n - f_0, g_i, \delta), \text{ for } n=1, 2, \dots$

 $\implies \lim_{n \to \infty} N_2(Tf_n - Tf_0, g_i, \varepsilon) \ge \lim_{n \to \infty} N_1(f_n - f_0, g_i, \delta)$

 $\implies \lim_{n\to\infty} N_2(Tf_n - Tf_0, g_i, \varepsilon) = 1$ by (3.2) Since ε is arbitrary small number it follows that $Tf_n \to Tf_0$.

Theorem 3.6. Let $T: (A, N_1, M_1) \rightarrow (B, N_2, M_2)$ be a mapping where (A, N_1, M_1) & (B, N_2, M_2) are intutionistic 2-fuzzy normed linear spaces. Then T is intuitionistic 2-fuzzy continuous if and only if it is intuitionistic sequentially 2-fuzzy continuous.

Proof. This is the proof of Theorem 3.6. Suppose T is Intutionistic 2-fuzzy continuous at $f_0 \in A$. Let $\{f_n\}$ be a sequence in A such that $f_n \to f_0$.

Let $\varepsilon > 0$ be given. Choose $\alpha \in (0,1)$. Since T is Intutionistic 2-fuzzy continuous at f_0 there exists $\delta = \delta(\alpha, \varepsilon) > 0$ and $\beta = \beta(\alpha, \varepsilon)$ such that for every $f \in A$.

 $N_1(f - f_0, g_i, \delta) > 1 - \beta$ and $M_1(f - f_0, g_i, \delta) < \beta$

implies $N_2(Tf - Tf_0, g_i, \varepsilon) > 1 - \alpha$ and $M_2(Tf - Tf_0, g_i, \varepsilon) < \alpha$.

where g_i are linearly independent for i=1,2 since $f_n \to f_0$ in A there exists a positive integer n_0 such that $N_1(f_n f_0, g_i, \varepsilon) > 1 - \beta$ and $M_1(f_n - f_0, g_i, \varepsilon) < \beta$ for all $n \ge n_0$

Then $N_2(Tf_n - Tf_0, g_i, \varepsilon) > 1 - \alpha$ and $M_2(Tf_n - Tf_0, g_i, \varepsilon) < \alpha$ for all $n \ge n_0$. This implies $\lim_{n\to\infty} N_2(Tf_n - Tf_0, g_i, \varepsilon) \le 1$ and $\lim_{n\to\infty} M_2(Tf_n - Tf_0, g_i, \varepsilon) = 0$ Thus $Tf_n \to Tf_0$ in (A, N_2, M_2) since $\varepsilon > 0$ is arbitrary.

Next suppose T is intutionistic sequentially 2-fuzzy continuous at f_0 , there exists $\varepsilon > 0$ and $\alpha > 0$ such that for any $\delta > 0$ and $\beta \in (0,1)$ there exists h (depending on α, β) such that

(3.3)
$$N_1(f_0 - h, g_i, \delta) > 1 - \beta \text{ and } M_1(f_0 - h, g_i, \delta) < \beta$$

But $N_2(Tf - Th, g_i, \varepsilon) < 1 - \alpha$ and $M_2(Tf - Th, g_i, \varepsilon) > \alpha$. Thus for $\beta = \frac{1}{(n+1)}, \delta = fracn(n+1)$, for n=1, 2,... There exists hn such that $N_1(f_0 - hn, g_i, \frac{n}{(n+1)}) > 1 - \frac{1}{(n+1)},$ $M_1(f_0 - hn, g_i, \frac{1}{(n+1)}) < \frac{1}{(n+1)}$ But $N_2(Tf_0 - Th_n, g_i, \varepsilon) \le 1 - \alpha$ and $M_2(Tf_0 - Th_n, g_i, \varepsilon) > \alpha$ Taking $\delta > 0$, there exists n_0 such that $\frac{1}{(n+1)} < \delta$ for all $n \ge n_0$ then $N_1(f_0 - hn, g_i, \delta) \ge N_1(f_0 - hn, g_i, \frac{n}{(n+1)}) > 1 - \frac{1}{(n+1)}$ (3.4) $\Longrightarrow \lim_{n \to \infty} N_1(f_0 - h_n, g_i, \delta) \to 1$

But from (1) $N_2(Tf_0 - Th_n, g_i, \varepsilon) < 1 - \alpha$ So

(3.5)
$$N_2(Tf_0 - Th_n, g_i, \varepsilon) \not\rightarrow 1asn \rightarrow \infty$$

Also $M_1(f_0 - hn, g_i, \delta) \le M_2(f_0 - hn, g_i, \frac{n}{(n+1)}) < \frac{n}{(n+1)}$, for all $n \ge N$. 904 $\therefore \lim_{n \to \infty} M_1(f_0 - h_n, g_i, \delta) < \lim_{n \to \infty} \frac{n}{(n+1)}$

(3.6)
$$i.e. \lim_{n \to \infty} M_1(f_0 - h_n, g_i, \delta) \to 0$$

But from (3.3)

(3.7)
$$M_2(Tf_0 - Th_n, g_i, \varepsilon) > \frac{n}{(n+1)} \nrightarrow 0asn \to \infty$$

Thus combining (3.4) and (3.6) we get $h_n \to f_0$ but combining (3.5) and (3.7) we get $Th_n \to Tf_0$ which is a contradiction to our assumption. Hence T is Intuitionistic 2-fuzzy continuous at f_0 .

Definition 3.7. Let $T: (A, N_1, M_1) \to (B, N_2, M_2)$ be a linear operator where (A, N_1, M_1) and (B, N_2, M_2) are Intuitionistic 2-fuzzy normed linear spaces.

T is said to be intuitionistic 2-fuzzy strongly bounded if and only if there exists a positive real number M such that for every $f \in A$ and for every $t \in R$.

 $N_2(Tf, g_i, t) \ge N_1(f, g_i, \frac{t}{M})$ and $M_2(Tf, g_i, t) \ge M_1(f, g_i, \frac{t}{M})$ where g_i are linearly independent

Definition 3.8. $T: (A, N_1, M_1) \to (B, N_2, M_2)$ be a linear operator where (A, N_1, M_1) and (B, N_2, M_2) are Intuitionistic 2-fuzzy normed linear spaces.

T is said to be Intuitionistic 2-fuzzy weakly bounded on A if for any $\alpha \in (0,1)$ there exists $M_{\alpha} > 0$ such that for every $f \in A$, for all $t \in R N_1(f, g_i, \frac{t}{M_{\alpha}}) > 1 - \alpha$

$$\implies N_2(Tf, g_i, t) > 1 - \alpha \text{ and } M_1(f, g_i, \frac{t}{M_\alpha}) < \alpha$$

 $\implies M_2(Tf, g_i, \frac{t}{M_2}) < \alpha$ where gi are linearly independent.

Theorem 3.9. let $T : (A, N_1, M_1) \rightarrow (B, N_2, M_2)$ be a linear operator where (A, N_1, M_1) and (B, N_2, M_2) are Intuitionistic 2-fuzzy normed linear space. If T is intuitionistic strongly 2-fuzzy bounded then it is Intuitionistic 2-weakly fuzzy bounded.

Proof. This is the proof of Theorem 3.9. suppose T is intuitionistic 2-fuzzy strongly bounded, there exists M > 0 such that for $f \in A$ and for all $t \in R$ we have,

 $N_2(Tf, g_i, t) \ge N_1(f, g_i, \frac{t}{M})$ and $M_2(Tf, g_i, t) \le M_1(f, g_i, \frac{t}{M})$

Thus for any $\alpha \in (0, 1)$, there exists $M_{\alpha}(=M) > 0$ such that

$$N_1(f, g_i, \frac{\iota}{M_{\alpha}}) \ge 1 - \alpha$$

 $\implies N_2(Tf, g_i, t) > 1 - \alpha \text{ and } M_1(f, g_i, \frac{t}{M_\alpha}) < \alpha$

 $\implies M_2(Tf, g_i, \frac{t}{M_\alpha}) < \alpha \text{ for all } f \in A \text{ and } t \in R.$

This implies T is intuitionistic 2-fuzzy weakly bounded.

Theorem 3.10. Let (A, N_1, M_1) and (B, N_2, M_2) be two Intuitionistic 2-fuzzy normed linear spaces. Let T be a linear operator from A to B. Then

i. T is intuitionistic strongly 2-fuzzy continuous on A of T is intuitionistic strongly 2-fuzzy continuous at $f_0 \in A$.

ii. T is intuitionistic strongly 2-fuzzy continuous if and only if T is intuitionistic strongly 2-fuzzy bounded.

Proof. This is the proof of Theorem 3.10. Since T is intuitionistic strongly 2-fuzzy continuous at $f_0 \in A$ for each $\varepsilon > 0$ there exists $\delta > 0$ such that for $f \in A$, we have $N_2(Tf - Tf_0, g_i, \varepsilon) \ge N_1(f - f_0, g_i, \delta)$ and $M_2(Tf - Tf_0, g_i, \varepsilon) \le M_1(f - f_0, g_i, \delta)$

Taking any $h \in A$ and replacing f by $f + f_0 - h$

we get, $N_2(T(f+f_0-h)-Tf_0, g_i, \varepsilon) \ge N_1(f+f_0-h-f_0, g_i, \delta)$ $\implies N_2(Tf+Tf_0-Th-Tf_0, g_i, \varepsilon) \ge N_1(f-h, g_i, \delta)$ $\implies N_2(Tf-Th, g_i, \varepsilon) \ge N_1(f-h, g_i, \delta)$ and $M_2(T(f+f_0-h)-Tf_0, g_i, \varepsilon) \le M_1(f+f_0-h-f_0, g_i, \delta)$ $\implies M_2(Tf+Tf_0-Th-Tf_0, g_i, \varepsilon) \le M_1(f-h, g_i, \delta)$ $\implies M_2(Tf-Th, g_i, \varepsilon) \le M_1(f-h, g_i, \delta)$ Since h is arbitrary, it follows that T is intuitionistic strongly 2-fuzzy continuous

Since h is arbitrary, it follows that 1 is intuitionistic strongly 2-fuzzy continuous on A. \Box

References

- T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear space, J. Fuzzy Math. 11(3) (2003) 687–705.
- [2] T. Beaula and D. Lilly Esthar Rani, Some aspects of intuitionistic 2-fuzzy 2-normed linear spaces, J. Fuzzy Math. 20(2) (2012) 371–378.
- [3] T. Beaula and R. Angeline Sarguna Gifta, Some aspects of 2-fuzzy inner product space, Ann. Fuzzy Math. Inform. 4(2) (2012) 335–342.
- [4] S. Gahler, Lineare 2-normierte Raume, Math. Nachr. 28 (1964) 1–43.
- [5] R. M. Somasundaram and Thangaraj Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, Bull. Malays. Math. Sci. Soc. (2) 32 (2009) 211–221.
- [6] N. Thillaigovindan, S. Anita Shanthi and Y. B. Jun, On lacunary statistical convergence in intuitionistic fuzzy n-normed linear space, Ann. Fuzzy Math. Inform. 1(1) (2011) 119–131.
- [7] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

THANGARAJ BEAULA (edwinbeaula@yahoo.co.in)

Department of Mathematics, Faculty of Arts and Science, TBML College, Porayar, Tamil Nadu, India

D. LILLY ESTHAR RANI (jestharrani@gmail.com)

Department of Mathematics, Faculty of Arts and Science, TBML College, Porayar, Tamil Nadu, India