Annals of Fuzzy Mathematics and Informatics Volume 7, No. 6, (June 2014), pp. 879–890 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Homomorphism theorems in the new view of fuzzy rings

Mustafa Uçkun

Received 2 August 2013; Revised 20 September 2013; Accepted 14 October 2013

ABSTRACT. In this paper, we give an example of fuzzy binary operation, fuzzy group, a new fuzzy binary operation on a nonempty set, and a new fuzzy ring. Also, we give homomorphism theorems between two fuzzy rings and some related properties are investigated.

2010 AMS Classification: 16S99, 16Y99, 03E72, 08A72

Keywords: Fuzzy binary operation, Fuzzy ring, Fuzzy ideal, Fuzzy homomorphism.

Corresponding Author: Mustafa Uçkun (muckun@adiyaman.edu.tr)

1. INTRODUCTION

In 1965, L. A. Zadeh [7] introduced the notion of a fuzzy subset of a set as a method for representing uncertainty. Then, in 1971, A. Rosenfeld [5] used the notion of a fuzzy subset of a set to introduce the notion of a fuzzy subgroup of a group. Rosenfeld's paper inspired the development of fuzzy abstract algebra. After these studies, many mathematicians studied these subject. For more details, see [2].

In 2004, X. Yuan and E. S. Lee [6] presented a new kind of fuzzy group based on fuzzy binary operation. Recently, H. Aktaş and N. Çağman [1] considered, by the use of X. Yuan and E. S. Lee's definition of fuzzy group based on fuzzy binary operations, a new type of fuzzy ring. Also, in 2010, M. A. Öztürk, Y. B. Jun and H. Yazarlı [3] introduced a new kind of fuzzy gamma ring and discussed related results (see [4]).

In this paper, an example of a new kind of fuzzy group [6] and a new kind of fuzzy ring [1] is presented. Moreover, homomorphism theorems between two fuzzy rings are proved.

2. Preliminaries

In this section, we summarize the preliminary definitions that will be required in this paper.

Definition 2.1 ([6]). Let G be a nonempty set and R be a fuzzy subset of $G \times G \times G$. R is called a fuzzy binary operation on G if

(i) For all $a, b \in G$, there exists $c \in G$ such that $R(a, b, c) > \theta$;

(ii) For all $a, b, c_1, c_2 \in G$, $R(a, b, c_1) > \theta$ and $R(a, b, c_2) > \theta$ imply $c_1 = c_2$, where $\theta \in [0, 1)$ is fixed real number.

Let R be a fuzzy binary operation on G. Then we have a mapping $R: F(G) \times F(G) \to F(G)$ defined by R(A, B) where

$$F(G) = \{A \mid A : G \to [0,1] \text{ is a mapping} \}$$

and

(2.1)
$$R(A,B)(c) = \bigvee_{a,b\in G} (A(a) \land B(b) \land R(a,b,c))$$

for all $c \in G$.

Let $A = \{a\}, B = \{b\}$ and let R(A, B) be denoted as $a \circ b$. Then (2.2) $(a \circ b)(c) = R(a, b, c)$

for all $c \in G$. Also,

(2.3)
$$((a \circ b) \circ c)(z) = \bigvee_{d \in G} (R(a, b, d) \wedge R(d, c, z))$$

and

(2.4)
$$(a \circ (b \circ c))(z) = \bigvee_{d \in G} \left(R\left(b, c, d\right) \land R\left(a, d, z\right) \right)$$

for all $z \in G$.

Definition 2.2 ([6]). Let G be a nonempty set and R be a fuzzy binary operation on G. Then (G, R) is called a fuzzy group if the following conditions are true:

 (G_1) For all $a, b, c, z_1, z_2 \in G$, $((a \circ b) \circ c)(z_1) > \theta$ and $(a \circ (b \circ c))(z_2) > \theta$ imply $z_1 = z_2$;

 (G_2) There exists $e_{\circ} \in G$ such that $(e_{\circ} \circ a)(a) > \theta$ and $(a \circ e_{\circ})(a) > \theta$ for all $a \in G$ (e_{\circ} is called the identity element of G);

(G₃) There exists $b \in G$ such that $(a \circ b)(e_{\circ}) > \theta$ and $(b \circ a)(e_{\circ}) > \theta$ for all $a \in G$ (b is called the inverse of a and denoted as a^{-1}).

Remark 2.3 ([6]). Let (G, R) be a fuzzy group. Then

 $R(a,b,c) > \theta \Rightarrow R(c,b^{-1},a) > \theta$ and $R(a^{-1},c,b) > \theta$.

Let H be a nonempty set and R a fuzzy binary operation on H. Then R is a fuzzy subset of $H \times H \times H$. Let S be a fuzzy binary operation on H. In this case, we may regard S as the mapping

$$S: F(H) \times F(H) \to F(H), \ (A,B) \mapsto S(A,B)$$

880

where

and

$$F(H) = \{A \mid A : H \to [0,1] \text{ is a mapping} \}$$

(2.5)
$$S(A,B)(c) = \bigvee_{a,b\in H} (A(a) \wedge B(b) \wedge S(a,b,c))$$

for all $c \in H$.

Let $A = \{a\}$ and $B = \{b\}$. Let R(A, B) and S(A, B) be denoted as $a \circ b$ and $a \ast b$, respectively. We will use the following notation to simplify the calculations:

$$(2.6) \qquad (a \circ b) (c) = R (a, b, c)$$

and

(2.7)
$$(a * b) (c) = S (a, b, c)$$

for all $c \in H$. Also,

(2.8)
$$((a \circ b) \circ c)(z) = \bigvee_{d \in H} (R(a, b, d) \wedge R(d, c, z)),$$

(2.9)
$$(a \circ (b \circ c))(z) = \bigvee_{d \in H} (R(b, c, d) \wedge R(a, d, z)),$$

(2.10)
$$((a * b) * c) (z) = \bigvee_{d \in H} (S (a, b, d) \land S (d, c, z)),$$

(2.11)
$$(a * (b * c))(z) = \bigvee_{d \in H} (S(b, c, d) \land S(a, d, z)),$$

(2.12)
$$(a * (b \circ c))(z) = \bigvee_{d \in H} (R(b, c, d) \wedge S(a, d, z)),$$

(2.13)
$$((a * b) \circ (a * c))(z) = \bigvee_{d,e \in H} (S(a,b,d) \wedge S(a,c,e) \wedge R(d,e,z)),$$

(2.14)
$$((a \circ b) * c) (z) = \bigvee_{d \in H} (R (a, b, d) \land S (d, c, z)),$$

(2.15)
$$((a * c) \circ (b * c))(z) = \bigvee_{d,e \in H} (S(a,c,d) \land S(b,c,e) \land R(d,e,z))$$

for all $z \in H$.

Definition 2.4 ([1]). Let H be a nonempty set, R and S fuzzy binary operations on H, all with the same value of θ . Then (H, R, S) is called a fuzzy ring if the following conditions hold:

 (H_1) (H, R) is an abelian fuzzy group;

 (H_2) For all $a, b, c, z_1, z_2 \in H$, $((a * b) * c) (z_1) > \theta$ and $(a * (b * c)) (z_2) > \theta$ imply $z_1 = z_2$;

 (H_3) For all $a, b, c, z_1, z_2 \in H$,

- (i) $(a * (b \circ c))(z_1) > \theta$ and $((a * b) \circ (a * c))(z_2) > \theta$ imply $z_1 = z_2$,
- (ii) $((a \circ b) * c)(z_1) > \theta$ and $((a * c) \circ (b * c))(z_2) > \theta$ imply $z_1 = z_2$.

The identity element of the fuzzy group (H, R) is called the zero element of (H, R, S) and denoted by e_{\circ} . Let (H, R, S) be a fuzzy ring and H' be a nonempty subset of H. Let $R_{H'}(a, b, c) = R(a, b, c)$ and $S_{H'}(a, b, c) = S(a, b, c)$ for all $a, b, c \in H'$. In this case, we have

$$(a \circ b)(c) = R_{H'}(a, b, c) = R(a, b, c)$$

and

$$(a * b) (c) = S_{H'} (a, b, c) = S (a, b, c)$$

for all $a, b, c \in H'$.

Definition 2.5 ([1]). Let (H, R, S) be a fuzzy ring and H' be a nonempty subset of H for which

(i) $(a \circ b)(c) > \theta$ implies $c \in H'$ and $(a * b)(c) > \theta$ implies $c \in H'$ for all $a, b \in H'$ and $c \in H$;

(ii) (H', R, S) is a fuzzy ring.

Then (H', R, S) is called a fuzzy subring of (H, R, S).

Proposition 2.6 ([1]). Let (H, R, S) be a fuzzy ring and H' be a nonempty subset of H. Then (H', R, S) is a fuzzy subring of H if and only if

(i) $(a \circ b)(c) > \theta$ implies $c \in H'$ and $(a * b)(c) > \theta$ implies $c \in H'$ for all $a, b \in H'$ and $c \in H$;

(ii) $a^{-1} \in H'$ for all $a \in H'$.

Definition 2.7 ([1]). Let (H, R, S) be a fuzzy ring. A nonempty subset I of H is called a left (right) fuzzy ideal of H if

(i) $(a \circ b)(c) > \theta$ implies $c \in I$ for all $a, b \in I$ and $c \in H$;

(ii) $a^{-1} \in I$ for all $a \in I$;

(iii) $(h * a)(c) > \theta$ implies $c \in I$ $((a * h)(c) > \theta$ implies $c \in I$) for all $a \in I, h \in H$ and $c \in H$.

Also, a nonempty subset I of a fuzzy ring (H, R, S) is called a fuzzy ideal of H if I is both a left and a right fuzzy ideal of H.

Remark 2.8 ([1]). From the definition of a fuzzy left (right) ideal of (H, R, S), I is a fuzzy subring of (H, R, S).

Proposition 2.9 ([1]). Let I_i $(i \in \Lambda)$ be a fuzzy ideal of fuzzy ring (H, R, S), where Λ is an index set. Then $\bigcap_{i \in \Lambda} I_i$ is a fuzzy ideal of H.

Let I be a fuzzy ideal of fuzzy ring (H, R, S) and $\Delta = \{a \circ I \mid a \in H\}$. Define a relation over Δ by

$$a_1 \circ I \sim a_2 \circ I \Leftrightarrow \exists u \in I \text{ such that } R(a_1^{-1}, a_2, u) > \theta.$$

The fuzzy relation " ~ " on the set Δ is a fuzzy equivalence relation by [6, Theorem 4.1]. Let $[a \circ I] = \{a' \circ I \mid a' \circ I \sim a \circ I\}$, $\overline{a} = \{a' \mid a' \in H \text{ and } a' \circ I \sim a \circ I\}$ and $H/I = \{[a \circ I] \mid a \in H\}$. Also, (I, R) is a fuzzy subgroup of (H, R) and since (H, R) is abelian, (I, R) is a normal fuzzy group of (H, R) by [6, Theorem 3.1]. Hence, H/I

denotes the set of all coset $[a \circ I]$ such that $(a \circ I)(u) = \bigvee R(a, x, u)$ for all $a \in H$,

 $(H/I, \overline{R})$ is a commutative fuzzy group by [6, Theorem 4.2], where (2.16)

$$([a \circ I] \oplus [b \circ I]) (c \circ I) = \overline{R} ([a \circ I], [b \circ I], [c \circ I]) = \bigvee_{(a', b', c') \in \overline{a} \times \overline{b} \times \overline{c}} R(a', b', c')$$

Theorem 2.10 ([1]). Let (H, R, S) be a fuzzy ring and I be a fuzzy ideal of H. Then the fuzzy quotient group $(H/I, \overline{R})$ is a fuzzy ring with

$$([a \circ I] \otimes [b \circ I]) ([c \circ I]) = \overline{S} ([a \circ I], [b \circ I], [c \circ I])$$
$$= \bigvee_{(a',b',c')\in\overline{a}\times\overline{b}\times\overline{c}} S(a',b',c') .$$

Definition 2.11 ([1]). If (H, R, S) is a fuzzy ring and I is a fuzzy ideal of H, then the fuzzy ring $(H/I, \overline{R}, \overline{S})$ is called the fuzzy quotient ring of H by I.

Definition 2.12 ([1]). Let (H_1, R_1, S_1) and (H_2, R_2, S_2) be two fuzzy rings and φ be a function from H_1 into H_2 . Then φ is called a fuzzy homomorphism of H_1 into H_2 if

- (i) $R_1(a, b, c) > \theta$ implies $R_2(\varphi(a), \varphi(b), \varphi(c)) > \theta$ for all $a, b, c \in H_1$;
- (ii) $S_1(a, b, c) > \theta$ implies $S_2(\varphi(a), \varphi(b), \varphi(c)) > \theta$ for all $a, b, c \in H_1$.

Definition 2.13 ([1]). A homomorphism φ of a fuzzy ring H_1 into a fuzzy ring H_2 is called

- (i) a monomorphism if φ is one to one;
- (ii) an epimorphism if φ is onto;
- (iii) an isomorphism if φ is both one to one and onto.

If φ is an isomorphism of H_1 onto H_2 , then two fuzzy rings H_1 and H_2 are called isomorphic and we denote this by $H_1 \cong H_2$.

Theorem 2.14 ([1]). Let (H_1, R_1, S_1) and (H_2, R_2, S_2) be two fuzzy rings and let φ be a fuzzy homomorphism of H_1 into H_2 . Then

(i) $\varphi(e_{\circ}) = e'_{\circ}$, where e'_{\circ} is the zero of H_2 . (ii) $\varphi(a^{-1}) = (\varphi(a))^{-1}$ for all $a \in H_1$.

Theorem 2.15 ([1]). Let (H_1, R_1, S_1) and (H_2, R_2, S_2) be two fuzzy rings and let φ be a fuzzy homomorphism of H_1 into H_2 . Then

(i) $Ker\varphi = \{a \in H_1 \mid \varphi(a) = e'_{\circ}\}$ is a fuzzy ideal of H_1 .

(ii) Im $\varphi = \{\varphi(a) \mid a \in H_1\}$ is a fuzzy subring of H_2 .

Theorem 2.16 ([1]). Let $\varphi : (H_1, R_1, S_1) \to (H_2, R_2, S_2)$ be a fuzzy epimorphism. Then $H_1/N \cong H_2$, where $N = Ker\varphi$.

3. An example of a new view of fuzzy rings

In [6], Yuan and Lee introduced concept of fuzzy binary operation and fuzzy group. In [1], Aktaş and Çağman introduced a new fuzzy binary operation on Hand a new fuzzy ring. In this section, we give an example of fuzzy binary operation, fuzzy group, a new fuzzy binary operation on H and a new fuzzy ring.

Example 3.1. Let

 $H = \left\{ \begin{bmatrix} \bar{0} & \bar{0} & \bar{0} \end{bmatrix}, \begin{bmatrix} \bar{1} & \bar{0} & \bar{0} \end{bmatrix}, \begin{bmatrix} \bar{1} & \bar{1} & \bar{0} \end{bmatrix}, \begin{bmatrix} \bar{0} & \bar{1} & \bar{0} \end{bmatrix} \right\} \subset (\mathbb{Z}_2)_{1 \times 3}$

be a nonempty set. We will use the following notation to simplify the calculations:

$$a = \left[\begin{array}{ccc} \bar{0} & \bar{0} \end{array} \right], b = \left[\begin{array}{ccc} \bar{1} & \bar{0} \end{array} \right], c = \left[\begin{array}{cccc} \bar{1} & \bar{1} & \bar{0} \end{array} \right], d = \left[\begin{array}{cccc} \bar{0} & \bar{1} & \bar{0} \end{array} \right].$$

Let us define R and S fuzzy binary operations on H, all with the same value of $\theta = 0.7$, as follows:

$R\left(a,a,a\right) = 0.9$	$R\left(b,a,a\right) = 0.2$	$R\left(c,a,a\right) = 0.2$	$R\left(d,a,a\right) = 0.4$	
$R\left(a,a,b\right) = 0.3$	$R\left(b,a,b\right) = 0.9$	$R\left(c,a,b\right) = 0.3$	$R\left(d,a,b\right) = 0.1$	
$R\left(a,a,c\right) = 0.2$	$R\left(b,a,c\right) = 0.4$	$R\left(c,a,c\right) = 0.9$	$R\left(d,a,c\right) = 0.2$	
$R\left(a, a, d\right) = 0.0$	$R\left(b,a,d\right) = 0.2$	$R\left(c,a,d\right) = 0.2$	$R\left(d,a,d\right) = 0.8$	
$R\left(a,b,a\right) = 0.2$	$R\left(b,b,a\right) = 0.8$	$R\left(c,b,a\right) = 0.4$	$R\left(d,b,a\right) = 0.1$	
$R\left(a,b,b\right) = 0.8$	$R\left(b,b,b\right) = 0.2$	$R\left(c,b,b\right) = 0.1$	$R\left(d,b,b\right) = 0.4$	
$R\left(a,b,c\right) = 0.2$	$R\left(b, b, c\right) = 0.1$	$R\left(c,b,c\right) = 0.9$	R(d, b, c) = 0.3	
$R\left(a, b, d\right) = 0.2$	$R\left(b, b, d\right) = 0.3$	$R\left(c,b,d\right) = 0.4$	R(d, b, d) = 0.9	
$R\left(a,c,a\right) = 0.1$	$R\left(b,c,a\right) = 0.4$	$R\left(c,c,a\right) = 0.8$	R(d, c, a) = 0.2	
$R\left(a,c,b\right) = 0.3$	$R\left(b,c,b\right) = 0.9$	$R\left(c,c,b\right) = 0.1$	R(d,c,b) = 0.1	
$R\left(a,c,c\right) = 0.9$	$R\left(b,c,c\right) = 0.4$	$R\left(c,c,c\right) = 0.0$	R(d, c, c) = 0.3	
$R\left(a,c,d\right) = 0.1$	$R\left(b,c,d\right) = 0.1$	$R\left(c,c,d\right) = 0.3$	R(d, c, d) = 0.9	
$R\left(a, d, a\right) = 0.4$	R(b, d, a) = 0.2	$R\left(c,d,a\right) = 0.2$	R(d, d, a) = 0.8	
R(a, d, b) = 0.1	R(b,d,b) = 0.9	R(c, d, b) = 0.1	R(d, d, b) = 0.4	
$R\left(a,d,c\right) = 0.3$	R(b, d, c) = 0.3	$R\left(c,d,c\right) = 0.9$	$R\left(d, d, c\right) = 0.2$	
$R\left(a,d,d\right) = 0.9$	R(b, d, d) = 0.1	R(c, d, d) = 0.3	$R\left(d, d, d\right) = 0.1$	
(H, R) is a fuzzy group, since the following conditions are true:				

(H, R) is a fuzzy group, since the following conditions are true:

- (G_1) $((a \circ b) \circ c)(z_1) > 0.7$ and $(a \circ (b \circ c))(z_2) > 0.7$ imply $z_1 = z_2$ for all $a, b, c, z_1, z_2 \in H$;
- (G₂) There exists $e_{\circ} \in H$ such that $(e_{\circ} \circ a)(a) > 0.7$ and $(a \circ e_{\circ})(a) > 0.7$ for all $a \in H$ (e_{\circ} is called an identity element of H);
- (G₃) There exists $b \in H$ such that $(a \circ b) (e_{\circ}) > 0.7$ and $(b \circ a) (e_{\circ}) > 0.7$ for all $a \in H$ (b is called an inverse element of a and denoted as a^{-1}).

Furthermore,

S(a, a, a) = 0.8	S(b, a, a) = 0.9	S(c, a, a) = 0.9	S(d, a, a) = 0.8
$S(a, \alpha, b) = 0.1$	S(b, a, b) = 0.3	S(c, a, b) = 0.2	S(d, a, b) = 0.1
$S(a, \alpha, c) = 0.3$	S(b, a, c) = 0.1	S(c, a, c) = 0.4	S(d, a, c) = 0.3
$S(a, \alpha, d) = 0.5$	S(b, a, d) = 0.2	S(c, a, d) = 0.3	S(d, a, d) = 0.2
S(a, b, a) = 0.9	S(b, b, a) = 0.8	S(c, b, a) = 0.8	S(d, b, a) = 0.9
S(a, b, b) = 0.2	S(b,b,b) = 0.4	S(c,b,b) = 0.3	S(d, b, b) = 0.2
S(a, b, c) = 0.4	S(b, b, c) = 0.2	S(c, b, c) = 0.2	S(d, b, c) = 0.4
S(a, b, d) = 0.1	S(b, b, d) = 0.1	S(c, b, d) = 0.4	S(d, b, d) = 0.1
S(a,c,a) = 0.9	S(b,c,a) = 0.8	S(c, c, a) = 0.8	S(d,c,a) = 0.9
S(a,c,b) = 0.1	S(b,c,b) = 0.5	S(c,c,b) = 0.1	S(d,c,b) = 0.3
S(a,c,c) = 0.2	S(b,c,c) = 0.1	S(c,c,c) = 0.2	S(d,c,c) = 0.5
S(a,c,d) = 0.4	S(b, c, d) = 0.2	S(c,c,d) = 0.3	S(d, c, d) = 0.2
S(a, d, a) = 0.8	S(b, d, a) = 0.9	S(c, d, a) = 0.9	S(d, d, a) = 0.8
		884	

 $\begin{array}{lll} S(a,d,b) = 0.4 & S(b,d,b) = 0.3 & S(c,d,b) = 0.4 & S(d,d,b) = 0.1 \\ S(a,d,c) = 0.3 & S(b,d,c) = 0.1 & S(c,d,c) = 0.1 & S(d,d,c) = 0.3 \\ S(a,d,d) = 0.1 & S(b,d,d) = 0.4 & S(c,d,d) = 0.3 & S(d,d,d) = 0.4 \end{array}$

(H, R, S) is a fuzzy ring, since the following conditions are hold:

 (H_1) (H, R) is an abelian fuzzy group;

(*H*₂) For all $a, b, c, z_1, z_2 \in H$, $((a * b) * c) (z_1) > 0.7$ and $(a * (b * c)) (z_2) > 0.7$ imply $z_1 = z_2$;

 (H_3) For all $a, b, c, z_1, z_2 \in H$,

(i) $(a * (b \circ c))(z_1) > 0.7$ and $((a * b) \circ (a * c))(z_2) > 0.7$ imply $z_1 = z_2$,

(ii) $((a \circ b) * c)(z_1) > 0.7$ and $((a * c) \circ (b * c))(z_2) > 0.7$ imply $z_1 = z_2$.

4. Homomorphism theorems

Theorem 4.1. (H_1, R_1, S_1) and (H_2, R_2, S_2) be fuzzy rings and let φ be a fuzzy homomorphism of H_1 into H_2 . Then

(i) If J is a fuzzy ideal of H_2 , then $\varphi^{-1}(J)$ is a fuzzy ideal of H_1 containing Ker φ .

(ii) If I is a fuzzy ideal of H_1 containing $Ker\varphi$, then $\varphi^{-1}(\varphi(I)) = I$.

(iii) If φ is surjective and I is a fuzzy ideal of H_1 , then $\varphi(I)$ is a fuzzy ideal of H_2 .

(iv) φ induces a one-one inclusion preserving correspondence between the fuzzy ideals of H_1 containing $Ker\varphi$, and the fuzzy ideals of H_2 in such a way that if I is a fuzzy ideal of H_1 containing $Ker\varphi$, then $\varphi(I)$ is the corresponding fuzzy ideal of H_2 and if J is a fuzzy ideal of H_2 , then $\varphi^{-1}(J)$ is the corresponding fuzzy ideal of H_1 .

Proof. (i) Let J be a fuzzy ideal of H_2 . Since $\varphi(e_\circ) = e'_\circ \in J$, $e_\circ \in \varphi^{-1}(J)$ and so $\varphi^{-1}(J) \neq \emptyset$. Let $x_1, x_2 \in \varphi^{-1}(J)$ and $h \in H_1$ such that $R_1(x_1, x_2, h) > \theta$. Since φ is a fuzzy homomorphism, we have $R_2(\varphi(x_1), \varphi(x_2), \varphi(h)) > \theta$. Therefore, from the hypothesis, $\varphi(h) \in J$ and so $h \in \varphi^{-1}(J)$.

Let $x \in \varphi^{-1}(J)$. Then $\varphi(x) \in J$ and so $(\varphi(x))^{-1} \in J$ from the hypothesis. In that case, since φ is a fuzzy homomorphism, we get $\varphi(x^{-1}) \in J$. Thus $x^{-1} \in \varphi^{-1}(J)$.

On the other hand, let $x \in \varphi^{-1}(J)$ and $h, h' \in H_1$ such that $S_1(x, h', h) > \theta$. Since φ is a fuzzy homomorphism, we obtain $S_2(\varphi(x), \varphi(h'), \varphi(h)) > \theta$. From the hypothesis and $\varphi(x) \in J$, $\varphi(h) \in J$ and so $h \in \varphi^{-1}(J)$. Similarly, if $x \in \varphi^{-1}(J)$ and $S_1(h', x, h) > \theta$ for all $h, h' \in H_1$, then $h \in \varphi^{-1}(J)$. Therefore $\varphi^{-1}(J)$ is a fuzzy ideal of H_1 . Moreover, let $x \in Ker\varphi$. Since J is a fuzzy ideal of $H_2, \varphi(x) = e'_0 \in J$ and so $x \in \varphi^{-1}(J)$. Hence $Ker\varphi \subseteq \varphi^{-1}(J)$.

(ii) Since $\varphi(x) \in \varphi(I)$ for all $x \in I$, we have $x \in \varphi^{-1}(\varphi(I))$. Thus $I \subseteq \varphi^{-1}(\varphi(I))$. Let $x \in \varphi^{-1}(\varphi(I))$. Therefore $\varphi(x) \in \varphi(I)$ and so there exists $a \in I$ such that $\varphi(x) = \varphi(a)$. Since $\varphi(x) = \varphi(a)$, we get $R_2(\varphi(a), (\varphi(x))^{-1}, e'_0) > \theta$. Since H_1 is a fuzzy ring and $a, x \in H_1$, there exists $c \in H_1$ such that $R_1(a, x^{-1}, c) > \theta$. Since φ is a fuzzy homomorphism, we obtain

 $R_{2}\left(\varphi\left(a\right),\varphi\left(x^{-1}\right),\varphi\left(c\right)\right)=R_{2}(\varphi\left(a\right),\left(\varphi\left(x\right)\right)^{-1},\varphi\left(c\right))>\theta.$

Hence $\varphi(c) = e'_{\circ}$, that is, $c \in Ker\varphi$. Since $Ker\varphi \subseteq I$, we have $c \in I$. Since I is a fuzzy ideal of H_1 and $R_1(a, x^{-1}, c) > \theta$, we get $x \in I$. Hence $\varphi^{-1}(\varphi(I)) \subseteq I$.

(iii) Let φ is surjective and I is a fuzzy ideal of H_1 . Since $e_{\circ} \in I$ and $\varphi(e_{\circ}) = e'_{\circ}$, $e'_{\circ} \in \varphi(I)$ and so $\varphi(I) \neq \emptyset$. Let $y_1, y_2 \in \varphi(I)$. Then there exist $x_1, x_2 \in I$ such that $y_1 = \varphi(x_1)$ and $y_2 = \varphi(x_2)$. Since I is a fuzzy ideal of H_1 , there exists $x \in I$ such that $R_1(x_1, x_2, x) > \theta$. Since φ is a fuzzy homomorphism, we obtain $R_2(\varphi(x_1), \varphi(x_2), \varphi(x)) > \theta$ and $\varphi(x) \in \varphi(I)$.

Let $y \in \varphi(I)$. Thus there exists $x \in I$ such that $y = \varphi(x)$. Since I is a fuzzy ideal of H_1 , $x^{-1} \in I$ and so $R_1(x, x^{-1}, e_\circ) > \theta$. In that case, since φ is a fuzzy homomorphism, we have

$$R_{2}\left(\varphi\left(x\right),\varphi\left(x^{-1}\right),\varphi\left(e_{\circ}\right)\right) = R_{2}\left(\varphi\left(x\right),\varphi\left(x^{-1}\right),e_{\circ}'\right) > \theta$$

from Theorem 2.14. Then $y^{-1} = \varphi(x^{-1}) \in \varphi(I)$.

Let $y \in \varphi(I)$ and $h, h' \in H_2$ such that $S_2(h', y, h) > \theta$. Since $y \in \varphi(I)$ and φ is surjective, there exist $x \in I$ and $k' \in H_1$ such that $y = \varphi(x)$ and $h' = \varphi(k')$. Since I is a fuzzy ideal of H_1 , there exists $k \in I$ such that $S_1(k', x, k) > \theta$. Thus $\varphi(k) \in \varphi(I)$. Also, since φ is a fuzzy homomorphism, we get $S_2(\varphi(k'), \varphi(x), \varphi(k)) > \theta$. Then $h = \varphi(k) \in \varphi(I)$ since S_2 is a fuzzy binary operation on H_2 . Hence $\varphi(I)$ is a left fuzzy ideal of H_2 . Similarly, it can be shown that $\varphi(I)$ is a right fuzzy ideal of H_2 . Therefore $\varphi(I)$ is a fuzzy ideal of H_2 .

(iv) Let N_1 be the set of all fuzzy ideals of H_1 containing $Ker\varphi$ and N_2 be the set of all fuzzy ideals of H_2 . Let ψ be a mapping of N_1 into N_2 defined by $\psi(I) = \varphi(I)$ for all $I \in N_1$. Since φ is well-defined, ψ is well-defined. Let $\psi(I_1) = \psi(I_2)$ for $I_1, I_2 \in N_1$. Now, $\varphi(I_1) = \varphi(I_2)$ for $I_1, I_2 \in N_1$. Since $\varphi^{-1}(\varphi(I_1)) = \varphi^{-1}(\varphi(I_2))$, we obtain $I_1 = I_2$ from (ii). Therefore ψ is one-one. Let $J \in N_2$. Then $\varphi^{-1}(J) \in N_1$ from (i). Let $y \in \varphi(\varphi^{-1}(J))$. Thus there exists $x \in \varphi^{-1}(J)$ such that $y = \varphi(x)$. Since $y = \varphi(x)$, that is, $\varphi(x) \in J$, we have $\varphi(\varphi^{-1}(J)) \subseteq J$. On the other hand, let $x \in J$. Since $x \in J \subseteq H_2 = \varphi(H_1)$, there exists $a \in H_1$ such that $\varphi(a) = x$. Therefore $\varphi(a) \in J$ and so $a \in \varphi^{-1}(J)$. Hence $x = \varphi(a) \in \varphi(\varphi^{-1}(J))$ and so $J \subseteq \varphi(\varphi^{-1}(J))$. Thus $\psi(\varphi^{-1}(J)) = \varphi(\varphi^{-1}(J)) = J$. Hence ψ is surjective.

Let I_1 and I_2 be fuzzy ideals of H_1 such that $I_1 \subset I_2$. Then $\varphi(I_1) \subseteq \varphi(I_2)$, that is, $\psi(I_1) \subseteq \psi(I_2)$. If $\psi(I_1) = \psi(I_2)$, then $I_1 = I_2$ since the mapping $\psi: N_1 \to N_2$ is one-one. This is a contradiction. Hence $\psi(I_1) \neq \psi(I_2)$. Therefore $\psi(I_1) \subset \psi(I_2)$.

Conversely, let $\psi(I_1) \subset \psi(I_2)$, that is, $\varphi(I_1) \subset \varphi(I_2)$. Therefore $\varphi^{-1}(\varphi(I_1)) \subseteq \varphi^{-1}(\varphi(I_2))$. From (ii), $I_1 \subseteq I_2$. Since $\varphi(I_1) \subset \varphi(I_2)$, we get $I_1 \neq I_2$. Hence $I_1 \subset I_2$.

Let (H, R, S) be a fuzzy ring, I_1 and I_2 be fuzzy ideals of H. Then

$$I_1 \circ I_2 := \{ c \in H \mid (a_1 \circ a_2) (c) > \theta, \, \forall a_1 \in I_1 \text{ and } \forall a_2 \in I_2 \}.$$

Lemma 4.2. Let (H, R, S) be a fuzzy ring, I_1 and I_2 be fuzzy ideals of H. Then $I_1 \circ I_2$ is a fuzzy ideal of H.

Proof. Since I_1 and I_2 are fuzzy ideals of H, $e_{\circ} \in I_1$ and $e_{\circ} \in I_2$. Since $(e_{\circ} \circ e_{\circ})(e_{\circ}) > \theta$, $e_{\circ} \in I_1 \circ I_2$ and so $I_1 \circ I_2 \neq \emptyset$.

(i) For all $c_1, c_2 \in I_1 \circ I_2$ and $c \in H$, $(c_1 \circ c_2)(c) > \theta$ implies $c \in I_1 \circ I_2$:

Let $c_1, c_2 \in I_1 \circ I_2$. Then there exist $a_1, b_1 \in I_1$ and $a_2, b_2 \in I_2$ such that $(a_1 \circ a_2)(c_1) > \theta$ and $(b_1 \circ b_2)(c_2) > \theta$. Hence $R(a_1, a_2, c_1) > \theta$ and $R(b_1, b_2, c_2) > \theta$.

Since I_1 and I_2 are fuzzy ideals of H, there exist $d_1 \in I_1$ and $d_2 \in I_2$ such that $R(a_1, b_1, d_1) > \theta$ and $R(a_2, b_2, d_2) > \theta$. Let $t \in H$ such that $R(d_1, d_2, t) > \theta$. Since $d_1 \in I_1$ and $d_2 \in I_2$, $t \in I_1 \circ I_2$.

Since $R(a_1, b_1, d_1) > \theta$, we obtain $R(d_1, b_1^{-1}, a_1) > \theta$ from Remark 2.3. Let $t_1, t_2 \in H$ such that $R(a_2, d_1, t_1) > \theta$ and $R(t_1, b_1^{-1}, t_2) > \theta$. Then we have

$$(a_2 \circ (d_1 \circ b_1^{-1}))(c_1) \ge R(d_1, b_1^{-1}, a_1) \land R(a_1, a_2, c_1) > \theta$$

since (H, R) is an abelian fuzzy group, and

$$\left((a_2 \circ d_1) \circ b_1^{-1} \right) (t_2) \ge R (a_2, d_1, t_1) \land R \left(t_1, b_1^{-1}, t_2 \right) > \theta.$$

Thus $c_1 = t_2$ and so $R(c_1, b_1, t_1) > \theta$.

Let $c_3 \in H$ such that $R(t_1, b_2, c_3) > \theta$. Then we get

$$(c_1 \circ (b_1 \circ b_2))(c) \ge R(b_1, b_2, c_2) \land R(c_1, c_2, c) > \theta$$

and

$$((c_1 \circ b_1) \circ b_2)(c_3) \ge R(c_1, b_1, t_1) \land R(t_1, b_2, c_3) > \theta.$$

Therefore $c = c_3$ and so $R(t_1, b_2, c) > \theta$. Also, since

$$(b_2 \circ (a_2 \circ d_1))(c) \ge R(a_2, d_1, t_1) \land R(t_1, b_2, c) > \theta$$

and

$$((b_2 \circ a_2) \circ d_1)(t) \ge R(a_2, b_2, d_2) \land R(d_1, d_2, t) > \theta,$$

c = t. Hence $c \in I_1 \circ I_2$.

(ii) For all $c \in I_1 \circ I_2$, $c^{-1} \in I_1 \circ I_2$:

Since $c \in I_1 \circ I_2$, there exist $a_1 \in I_1$ and $a_2 \in I_2$ such that $R(a_1, a_2, c) > \theta$. Since I_1 and I_2 are fuzzy ideals of H, we obtain $a_1^{-1} \in I_1$ and $a_2^{-1} \in I_2$. Since $R(a_1^{-1}, a_2^{-1}, c^{-1}) > \theta$, we have $c^{-1} \in I_1 \circ I_2$.

(iii) For all $c \in I_1 \circ I_2$ and $h \in H$, $(c * h)(k) > \theta$ $(k \in H)$ implies $k \in I_1 \circ I_2$:

Since $c \in I_1 \circ I_2$, there exist $a_1 \in I_1$ and $a_2 \in I_2$ such that $R(a_1, a_2, c) > \theta$. Since I_1 and I_2 are fuzzy ideals of H, there exist $k_1 \in I_1$ and $k_2 \in I_2$ such that $S(a_1, h, k_1) > \theta$ and $S(a_2, h, k_2) > \theta$ for all $h \in H$. Let $t \in H$ such that $R(k_1, k_2, t) > \theta$. Since $k_1 \in I_1$ and $k_2 \in I_2$, we get $t \in I_1 \circ I_2$. Then

$$((a_1 \circ a_2) * h)(k) \ge R(a_1, a_2, c) \land S(c, h, k) > \theta$$

and

$$((a_1 * h) \circ (a_2 * h))(t) > S(a_1, h, k_1) \wedge S(a_2, h, k_2)$$

 $\wedge R(k_1, k_2, t) > \theta.$

Thus t = k and so $k \in I_1 \circ I_2$. Therefore $I_1 \circ I_2$ is a right fuzzy ideal of H. Similarly, it can be shown that $I_1 \circ I_2$ is a left fuzzy ideal of H. Hence $I_1 \circ I_2$ is a fuzzy ideal of H. \Box

Definition 4.3. Let (H, R, S) be a fuzzy ring, I_1 and I_2 be fuzzy ideals of H. Then

$$I_1 \circ I_2 = \{ c \in H \mid (a_1 \circ a_2) (c) > \theta, \, \forall a_1 \in I_1 \text{ and } \forall a_2 \in I_2 \}$$

is called a fuzzy addition of two fuzzy ideals of H.

Theorem 4.4. Let (H, R, S) be a fuzzy ring and I be a fuzzy ideal of H. Then the mapping $\Pi : H \to H/I$ by $\Pi(a) = [a \circ I]$ for all $a \in H$ is a fuzzy homomorphism, called the fuzzy canonical homomorphism.

Proof. Let $a, b, c \in H$ such that $R(a, b, c) > \theta$. Therefore

$$\begin{split} \overline{R} \left(\Pi \left(a \right), \Pi \left(b \right), \Pi \left(c \right) \right) &= \overline{R} \left(\left[a \circ I \right], \left[b \circ I \right], \left[c \circ I \right] \right) \\ &= \left(\left[a \circ I \right] \oplus \left[b \circ I \right] \right) \left(c \circ I \right) \\ &= \bigvee_{\left(a', b', c' \right) \in \overline{a} \times \overline{b} \times \overline{c}} R \left(a', b', c' \right) \\ &\geq R \left(a, b, c \right) > \theta \end{split}$$

by 2.16.

Let $a, b, c \in H$ such that $S(a, b, c) > \theta$. Then

$$\overline{S} (\Pi (a), \Pi (b), \Pi (c)) = \overline{S} ([a \circ I], [b \circ I], [c \circ I])$$
$$= ([a \circ I] \otimes [b \circ I]) (c \circ I)$$
$$= \bigvee_{(a',b',c')\in \overline{a}\times \overline{b}\times \overline{c}} S (a',b',c')$$
$$\ge S (a,b,c) > \theta$$

from Theorem 2.10. Thus Π is a fuzzy homomorphism from Definition 2.12.

Theorem 4.5. Let (H, R, S) be a fuzzy ring, I_1 and I_2 be fuzzy ideals of H. Then $(I_1 \circ I_2)/I_2 \cong I_1/(I_1 \cap I_2)$.

Proof. For all $a \in I_2$, $R(e_\circ, a, a) > \theta$. Thus $I_2 \subseteq I_1 \circ I_2$ since $e_\circ \in I_1$. Therefore I_2 is a fuzzy ideal of $I_1 \circ I_2$.

Let $\varphi: I_1 \to (I_1 \circ I_2) / I_2, \varphi(a) = [a \circ I_2]$. It is clear that φ is surjective.

(1) Let a = b for $a, b \in I_1$. Since $R(a, b^{-1}, e_\circ) > \theta$ and $e_\circ \in I_2$, we obtain $a \circ I_2 \sim b \circ I_2$ and so $[a \circ I_2] = [b \circ I_2]$. Thus φ is well-defined.

(2) Let $a, b, c \in I_1$ such that $R(a, b, c) > \theta$. Then we have

$$\begin{split} \overline{R}\left(\left[a\circ I_{2}\right],\left[b\circ I_{2}\right],\left[c\circ I_{2}\right]\right) &= \bigvee_{\substack{\left(a',b',c'\right)\in\overline{a}\times\overline{b}\times\overline{c}\\ \geq R\left(a,b,c\right) > \theta. \end{split}} R\left(a',b',c'\right) \end{split}$$

Thus $\overline{R}(\varphi(a),\varphi(b),\varphi(c)) > \theta$.

(3) Let $a, b, c \in I_1$ such that $S(a, b, c) > \theta$. Then we get

$$\overline{S}\left(\left[a\circ I_{2}\right],\left[b\circ I_{2}\right],\left[c\circ I_{2}\right]\right) = \bigvee_{\substack{\left(a',b',c'\right)\in\overline{a}\times\overline{b}\times\overline{c}\\\geq S\left(a,b,c\right)>\theta.}} S\left(a',b',c'\right)$$

Thus $\overline{S}(\varphi(a),\varphi(b),\varphi(c)) > \theta$.

(4)

$$Ker\varphi = \{a \in I_1 \mid \varphi(a) = [e_{\circ} \circ I_2]\} \\ = \{a \in I_1 \mid [a \circ I_2] = [e_{\circ} \circ I_2]\} \\ = \{a \in I_1 \mid a \circ I_2 \sim e_{\circ} \circ I_2\} \\ = \{a \in I_1 \mid R(a^{-1}, e_{\circ}, h) > \theta, \text{ for some } h \in I_2\} \\ = \{a \in I_1 \mid a \in I_2\} \\ = I_1 \cap I_2.$$

Therefore we obtain $(I_1 \circ I_2)/I_2 \cong I_1/(I_1 \cap I_2)$ from Theorem 2.16.

Theorem 4.6. Let (H, R, S) be a fuzzy ring, I_1 and I_2 be fuzzy ideals of H such that $I_1 \subseteq I_2$. Then $(H/I_1) / (I_2/I_1) \cong H/I_2$.

Proof. Let $\varphi: H/I_1 \to H/I_2, \varphi([a \circ I_1]) = [a \circ I_2]$. It is clear that φ is surjective.

(1) Let $[a \circ I_1] = [b \circ I_1]$ for $a, b \in H$. There exists $h \in I_1$ such that $R(a^{-1}, b, h) > \theta$ since $a \circ I_1 \sim b \circ I_1$. Since $I_1 \subseteq I_2$, $h \in I_2$. Hence $a \circ I_2 \sim b \circ I_2$ and so $[a \circ I_2] = [b \circ I_2]$.

(2) Let $\overline{R}([a \circ I_1], [b \circ I_1], [c \circ I_1]) > \theta$. We have that there exist $a_1 \in \overline{a}, b_1 \in \overline{b}, c_1 \in \overline{c}$ such that $R(a_1, b_1, c_1) > \theta$. Therefore $a_1 \circ I_1 \sim a \circ I_1, b_1 \circ I_1 \sim b \circ I_1$ and $c_1 \circ I_1 \sim c \circ I_1$, and so there exist $h_1, h_2, h_3 \in I_1$ such that $R(a_1, h_1, a) > \theta$, $R(b_1, h_2, b) > \theta$ and $R(c_1, h_3, c) > \theta$. Also, $h_1, h_2, h_3 \in I_2$ since $I_1 \subseteq I_2$.

Let $u \in H$ such that $R(a, b, u) > \theta$. Similar to the proof of [6, Theorem 4.2], we get $h \in I_2$ such that $R(c_1, h, u) > \theta$. Then $c \circ I_2 \sim u \circ I_2$ and consequently, $\overline{R}([a \circ I_2], [b \circ I_2], [u \circ I_2]) = \overline{R}([a \circ I_2], [b \circ I_2], [c \circ I_2]) > \theta$.

(3) Let $\overline{S}([a \circ I_1], [b \circ I_1], [c \circ I_1]) > \theta$. Similar to the proof of (2), we obtain $\overline{S}([a \circ I_2], [b \circ I_2], [c \circ I_2]) > \theta$.

(4)

$$Ker\varphi = \{ [a \circ I_1] \in H/I_1 \mid \varphi ([a \circ I_1]) = [e_{\circ} \circ I_2] \}$$

= $\{ [a \circ I_1] \in H/I_1 \mid [a \circ I_2] = [e_{\circ} \circ I_2] \}$
= $\{ [a \circ I_1] \in H/I_1 \mid a \circ I_2 \sim e_{\circ} \circ I_2 \}$
= $\{ [a \circ I_1] \in H/I_1 \mid R (a^{-1}, e_{\circ}, h) > \theta, \text{ for some } h \in I_2 \}$
= $\{ [a \circ I_1] \in H/I_1 \mid a \in I_2 \}$
= $I_2/I_1.$

Thus we have $(H/I_1)/(I_2/I_1) \cong H/I_2$ from Theorem 2.16.

 \square

References

- [1] H. Aktaş and N. Çağman, A type of fuzzy ring, Arch. Math. Logic 46 (2007) 165–177.
- J. N. Mordeson and D. S. Malik, Fuzzy commutative algebra, World Scientific Publishing Co. Pte. Ltd. 1998.
- [3] M. A. Öztürk, Y. B. Jun and H. Yazarlı, A new view of fuzzy gamma rings, Hacet. J. Math. Stat. 39(3) (2010) 365–378.
- [4] M. A. Öztürk and E. İnan, Soft Γ-rings and idealistic soft Γ-rings, Ann. Fuzzy Math. Inform. 1(1) (2011) 71–80.
- [5] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512–517.

- [6] X. Yuan and E. S. Lee, Fuzzy group based on fuzzy binary operation, Comput. Math. Appl. 47 (2004) 631–641.
- [7] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

 $Mustafa ~ U \mbox{\tt CKUN} ~ (\texttt{muckun@adiyaman.edu.tr})$

Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey