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1. Introduction

After the publication of the research paper on ‘Fuzzy Sets’ in 1965 by Lotfi A.
Zadeh, a paradigmatic change has occurred in understanding the concept of uncer-
tainty. Before the invention of fuzzy sets, probability theory was the only tool for
modeling uncertainty. But this traditional tool of mathematics can not handle all
different types of uncertainties present in our daily existence, especially those which
results from imprecise natural languages. Whenever we say that ‘today is very cold
and you should wear adequate warm clothing’, a person understands well and can
take necessary measures but a machine can not. Here the words ‘very cold’ are not
precise or in other words ‘vague’. Vagueness is another kind of uncertainty which is
present in our daily language but is different from ‘randomness’ and hence can not
be modeled using probability. Hence the need for a fundamentally different approach
to study uncertainty present in physical process motivated the development in this
area of Mathematics. But Fuzzy sets are not the only tool available for modeling
uncertainty. There are also other theories namely, intuitionistic fuzzy sets, rough
sets, vague sets etc, which are available and are quite useful in their domain of ap-
plications. But still these theories have certain limitations. Therefore research is
still going for finding better theories which can model the natural phenomena more



H. Hazra et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 6, 867–877

realistically. The problem with the fuzzy set is that it lacks parameterization of
tools. In 1999 Molodtsov [27] initiated the theory of soft sets as a new mathemati-
cal tool for dealing with uncertainties which traditional mathematical tools can not
handle. He has shown several applications of this theory in solving many practical
problems in economics, engineering, social science, medical science, etc. Later other
authors like Maji, Roy and Biswas [23] have further studied the theory of soft sets
and used this theory to solve some decision making problems. They have also in-
troduced the concept of fuzzy soft set and intuitionistic fuzzy soft set[24, 21, 20, 22]
a more generalized concept, which is a combination of fuzzy set and soft set and
studied its properties. In 2009, Ali et al [2] has defined some new operations on
soft sets. It also is interesting to see that soft sets are closely related to many other
soft computing models such as rough sets and fuzzy sets. Feng et al. [11] first con-
sidered the combination of soft sets, fuzzy sets and rough sets. Using soft sets as
the granulation structures, Feng et al. [12] initiated soft approximation spaces and
soft rough sets, which extended Pawlak’s rough set model using soft sets. In some
cases Feng’s soft rough set model could provide better approximations than classical
rough sets. Research in soft set theory (SST) has been done in many areas like
algebra, topology, applications etc. In 2007, Aktas & Cagman [1] have introduced
a notion of soft group. The idea of soft semirings has been introduced by Feng et
al [10]. Jun [16, 15] investigated soft BCK/BCI-Algebras and its applications. Ali
et al.[2] and in 2009, Shabir & Irfan Ali [32] studied soft semigroups and soft ideals
and idealistic soft semirings. Das and Samanta [8, 9] introduced the notions of soft
real and complex numbers and opened up the scope of studying soft real and com-
plex analysis. Authors like Kharal & Ahmed [17]and Majumdar & Samanta [25] has
introduced different notions of mappings on soft sets. Several authors like Shabir &
Naz [31], Hazra, Majumdar & Samanta [14] have studied the notion of soft topolog-
ical spaces. Also Aygunoglu & Aygun [3] have studied soft product topologies and
soft compactness. The notion of fuzzy soft topologies has been also studied by few
authors [29, 33, 30]. Kong et al [18, 19] have applied the soft set theoretic approach
in decision making problems. Recently, Feng et al. [13] ascertained the relationships
among five different types of soft subsets and considered the free soft algebras as-
sociated with soft product operations. It has been shown that soft sets have some
non-classical algebraic properties which are distinct from those of crisp sets or fuzzy
sets. On the other hand proximities have been studied by several authors in crisp
sense as well as in fuzzy sense. In [7], Chattopadhyay, Hazra and Samanta intro-
duced basic fuzzy proximities and Lodato fuzzy proximities and investigated some
properties concerning them and eventually proved that there is a bijection between
a class of Lodato fuzzy proximities compatible with a given strongly T1- topological
space of fuzzy sets (X, c) and the class of strongly T1 principal Type-II fuzzy linkage
compactifications of (X, c).
Here we have introduced the notion of proximity on soft sets. The rest of the paper
is constructed as follows: In Section 2, some preliminary definitions and results re-
garding soft sets, soft topology and crisp proximity are given which will be used in
the rest of the paper. In Section 3 the notion of proximities of soft sets is introduced
and some of their important properties are studied. Section 4 concludes the paper.
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2. Preliminaries

In this section some definitions, results and examples regarding soft sets are given
which will be used in the rest of this paper. The idea of soft sets was first given by
Molodtsov. Later Maji & Roy have defined operations on soft sets and studied their
properties.

Definition 2.1 ([27]). Let U be an initial universal set and let E be a set of
parameters. Let P (U) denote the power set of U . Let A be a subset of E. A pair
(F, A) is called a soft set over U if F is a mapping given by F : A → P (U).

Definition 2.2 ([24] ). For two soft sets (F, A) and (G,B) over a common universe
U , we say that (F, A) is a soft subset of (G,B) if (i) A ⊂ B, (ii) ∀ε ∈ A,F (ε) ⊂ G(ε).

Definition 2.3 ([24]). Two soft sets (F, A) and (G,B) over a common universe U
are said to be soft equal if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset
of (F,A) .

In 2008, Majumdar & Samanta have given a new definition of complement of soft
sets as follows:

Definition 2.4 ([26]). The complement of a soft set (F,A) is denoted by (F,A)c

and is defined by (F, A)c = (F c, A), where F c : A → P (U) is a mapping given by
F c(α) = U − F (α), ∀α ∈ A.

Definition 2.5 ([24]). A soft set (F,A) over U is said to be null soft set denoted
by Φ if ∀ε ∈ A,F (ε) = φ.

Definition 2.6 ([24]). A soft set (F,A) over U is said to be absolute soft set denoted
by Ã if , if ∀ε ∈ A,F (ε) = U .

Definition 2.7 ([24]). The union of two soft sets (F,A) and (G,B) over a common
universe U is the soft set (H,C), where C = A ∪B and ∀e ∈ C,

H(e) = F (e) if e ∈ A−B
= G(e) if e ∈ B −A
= F (e) ∪G(e) if e ∈ A ∩B.

We write (F, A)∪̃(G,B).

Definition 2.8 ([24]). The intersection of two soft sets (F, A) and (G,B) over a
common universe U is the soft set (H,C), where C = A ∩B and

∀e ∈ C, H(e) = F (e) ∩G(e).
We write (F,A)∩̃(G,B) .

Definition 2.9 ([17]). Let f̃ : U1 → U2 and f̂ : E1 → E2 be two mappings. Then
the pair f = (f̃ , f̂) is said to be a soft mapping from P (U1)E1 to P (U2)E2 and the
image f(F ) of any F ∈ P (U1)E1 is defined as:

f(F )(e′) = f̃(
⋃

e∈f̂−1(e′)

F (e)) if f̂−1(e′) 6= φ

= φ if f̂−1(e′) = φ,∀e′ ∈ E2.

Definition 2.10 ([14]). Let τ be a family of soft sets over (U,E).
Define τ(e) = {F (e) : F ∈ τ} for e ∈ E.
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Then τ is said to be a topology of soft subsets over (U,E) if τ(e) is a crisp topology
on U, ∀e ∈ E.
In this case ((U,E), τ) is said to be a topological space of soft subsets.
If τ is a topology of soft subsets over (U,E) , then the members of τ are called open
soft sets and a soft set F over (U,E) is said to be closed if F c ∈ τ .

Theorem 2.11 ([14]). Let Ω be the family of all closed soft sets over (U,E) , then
(i)Φ̃, Ã ∈ Ω (ii) Fi ∈ Ω ⇒ ∩̃iFi ∈ Ω and (iii) F1, F2 ∈ Ω ⇒ F1∪̃F2 ∈ Ω.

Note 2.12. The family of all open soft sets over (U,E) will form a soft topology in
the sense of Shabir & Naz [31] .

Example 2.13 ([14]). Let U = {x1, x2, x3} and E = {e1, e2}.
Also let F1 ∈ P (U)E be defined as follows:
F1 = {F1(e1) = {x1}, F1(e2) = {x2, x3}}.
Here τ(e1) = {φ, U, {x1}} and τ(e2) = {φ,U, {x2, x3}} are crisp topologies on U .
Thus τ = {Φ̃, Ã, F1} ⊂ P (P (U)E) is a topology of soft subsets over (U,E).

Definition 2.14 ([14]). Let T1 and T2 be two soft topologies over (U1, E1) and
(U2, E2) respectively. A soft mapping f = (f̃ , f̂) from P (U1)E1 to P (U2)E2 is said
to be soft continuous if the inverse image of every e−open set of T2 under f is
f̂−1(e)-open in T1 ∀e ∈ E2.

Theorem 2.15 ([14]). f = (f̃ , f̂) is soft continuous if and only if inverse of each
e-closed set in T2 under f is f̂−1(e)-closed set in T1, ∀e ∈ E2.

Next we give some basic definitions regarding proximity of ordinary sets, i.e. crisp
sets. One may read [28, 5] for further details.

Definition 2.16. A basic proximity Π on X is a binary relation on P (X) satisfying
the following conditions:

(i) Π = Π−1

(ii) ∀A,B,C ⊂ X, (A ∪B, C) ∈ Π ⇔ (A,C) ∈ Π or (B,C) ∈ Π
(iii) ∀A,B ⊂ X, A ∩B 6= φ ⇒ (A,B) ∈ Π
(iv) (A,φ) 6∈ Π ∀A ⊂ X.
If Π is a basic proximity on X then the pair (X, Π) is called a basic proximity

space.

Definition 2.17. A basic proximity Π on X is called separated if for every x, y ∈
X, ({x}, {y}) ∈ Π ⇒ x = y.

Definition 2.18. A basic proximity Π on X is called Lodato proximity if for all
∀A,B, C ⊂ X, (A,B) ∈ Π and (b, C) ∈ Π ∀b ∈ B ⇒ (A, C) ∈ Π.

Definition 2.19. Let X be a set and P (X) be the power set of X. A mapping
c : P (X) → P (X) is called a Čech closure operator on X if it satisfies the following
conditions:

(i) c(φ) = φ
(ii) c(A) ⊃ A ∀A ⊂ X
(iii) c(A ∪B) = c(A) ∪ c(B) ∀A,B ⊂ X.
The pair (X, c) is called a closure space whenever c is a Čech closure operator on

X.
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Note 2.20. A Čech closure operator c on X satisfying the additional condition:
c(c(A)) = c(A) ∀A ⊂ X is called Kuratowski closure operator on X. The pair (X, c),
where c is a Kuratowski closure operator on X, is called a topological space.

Definition 2.21. A closure space (X, c) is called R0 if for any two points x, y in
X, x ∈ c({y}) implies y ∈ c({x}).

We now give the definitions of filters and grills. Filters were introduced by Carton
[4] and grills were introduced by Choquet [6].

Definition 2.22 ([4]). A filter F on X is a non-empty family of subsets of X
satisfying

(i) ∀A,B ⊂ X, B ∈ F and B ⊂ A ⇒ A ∈ F .
(ii) A,B ∈ F implies A ∩B ∈ F .
A filter F is called a proper filter if φ 6∈ F . A proper filter which is not contained

in any other filter is called an ultrafilter.

Definition 2.23 ( [6]). A grill G on X is a collection of subsets of X satisfying
(i) φ 6∈ G.
(ii) ∀A,B ⊂ X, B ∈ G and B ⊂ A ⇒ A ∈ G.
(iii) ∀A,B ⊂ X, A ∪B ∈ G implies A ∈ G or B ∈ G.
A grill G is called a proper grill if G 6= φ

Definition 2.24. Let Π be a basic proximity on X. Then for each A ⊂ X define
Π(A) = {B ⊂ X : (A, B) ∈ Π}.
Theorem 2.25. Let Π be a binary relation on P (X). Then Π is a basic proximity
on X if and only if

(i) Π = Π−1

(ii) for each A(6= φ) ⊂ X, Π(A) is a grill on X such that Π(A) ⊃ ⋃{ω ∈ Ω(X) :
A ∈ ω}, where Ω(X) is the set of all ultrafilters on X.

3. Soft proximity

In this section we introduce the notion of soft proximity and study its properties.

Definition 3.1. Let E be a set of parameters and X be a nonempty set and A be
a set of basic proximities on X. Then the pair (π, E) is called a basic soft proximity
on (X,E) if π is a mapping given by π : E → A.
The set of all basic soft proximities on (X, E) will be denoted by MS(X, E)

If (π,E) ∈ MS(X,E), then ((X, E), π) is called a basic proximity space.

Example 3.2. Let X = {x1, x2, x3}, E = {e1, e2}.
Define π(e1) = {(F (e1), G(e1)) : F, G ∈ P (X)E}−{(F1(e1), G1(e1)), (F2(e1), G2(e1))},
where F1(e1) = {x1}, G1(e1) = {x2}, F2(e1) = {x2}, G2(e1) = {x1}
and π(e2) = {(F (e2), G(e2)) : F, G ∈ P (X)E}−{(F3(e2), G3(e2)), (F4(e2), G4(e2))},
where F3(e2) = {x1}, G3(e2) = {x3}, F4(e2) = {x3}, G4(e2) = {x1}.
Clearly π(e1), π(e2) are proximities on X ( in the crisp sense). Thus (π, E) is a basic
soft proximity on (X, E).

Definition 3.3. The pair (G, E) is said to be a soft grill on X if G is a mapping
given by G : E → B, where B is the set of all grills on X.
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Example 3.4. Let X = {x1, x2, x3}, E = {e1, e2}.
Define G(e1) = {{x1}, {x3}, {x1, x2}, {x2, x3}, {x1, x3}, X}
and G(e2) = {{x2}, {x3}, {x1, x2}, {x2, x3}, {x1, x3}, X}.
Clearly G(e1),G(e2) are grills on X ( in the crisp sense). Thus (G, E) is a soft grill
on (X,E).

Definition 3.5. Let (π, E) be a basic soft proximity on X and (F, E) be a soft set.
Define π(F ) : E → B by
π(F )(e) = π(e)(F (e)).
Clearly (π(F ), E) is a soft grill on X.

Definition 3.6. A mapping c : P (X)E → P (X)E is said to be a Čech closure
operator of soft sets on (X, E) if

(i) c(Φ̃) = Φ̃,
(ii) c(F ) ⊃ F, ∀F ∈ P (X)E ,
(iii) c(F ∪̃G) = c(F )∪̃c(G), ∀F,G ∈ P (X)E .
Moreover if c satisfies the additional condition c(c(F )) = c(F ), ∀F ∈ P (X)E ,

then c said to be a Kuratowski closure operator of soft sets on (X, E). If c is a Čech
closure operator of soft sets, then ((X, E), c) is called closure space of soft sets.

Theorem 3.7. Let c be a Kuratowski closure operator of soft sets on (X, E). Let
us define τc = {F ∈ P (X)E : c(F ′) = F ′}, where F ′ is the complement of the soft
set F .
Then τc forms a topology of soft sets (in the sense of [31]) and the closure operator
induced by τc coincides with c.

Proof. It can be easily checked that τc is a topology of soft sets.
Let F ∈ P (X)E . Then
clτcF =

⋂̃{G : G is a closed soft set in ((X, E), τc) such that G ⊃ F}
=

⋂̃{G : c((G′)′) = (G′)′ such that G ⊃ F}
=

⋂̃{G : c(G) = G such that G ⊃ F}
=

⋂̃{c(G) : G ⊃ F}
= c(F ).
This completes the proof. ¤

Hence without any loss of generality, where c is a Kuratowski closure operator
of soft sets on (X, E), the triple ((X,E), c) will be called a topological space of soft
sets.

Theorem 3.8. A soft set F is closed if and only if c(F ) = F .

Definition 3.9. Let (π, E) ∈ MS(X, E). For F ∈ P (X)E , and e ∈ E define
cπ(F )(e) = {x ∈ X : {x} ∈ π(e)(F (e))} i.e., cπ(F )(e) = cπ(e)(F (e)).

Definition 3.10. Let x ∈ X and e ∈ E. A soft point {x}e is a soft set on E such
that {x}e(e1) = {x} if e1 = e and = φ if e1 6= e.

Definition 3.11. Let c be a Čech closure operator of soft sets on (X,E). Then c is
said to be R0 if for any x, y ∈ X and ∀P ∈ P (X)E with P (e) = {x}, y ∈ c(P )(e) ⇒
x ∈ c(Q)(e) ∀Q ∈ P (X)E with Q(e) = {y}.
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Theorem 3.12. Let (π,E) ∈ MS(X, E). Then cπ is a R0 − Čech closure operator
of soft sets.

Proof. Clearly cπ(Φ̃)(e) = φ ∀e ∈ E. Therefore cπ(Φ̃) = Φ̃.
Let F ∈ P (X)E and e ∈ E.
Therefore x ∈ F (e) ⇒ {x} ∩ F (e) 6= φ ⇒ {x} ∈ π(e)(F (e)) ⇒ x ∈ cπ(F )(e).
Therefore F (e) ⊂ cπ(F )(e). This is true for all e ∈ E. Therefore F ⊂ cπ(F ).
Let F, G ∈ P (X)E and e ∈ E.
Therefore cπ(F ∪̃G)(e) = {x ∈ X : {x} ∈ π(e)(F ∪̃G(e))} = {x ∈ X : {x} ∈
π(e)(F (e) ∪G(e))} = {x ∈ X : ({x}, F (e) ∪G(e)) ∈ π(e)} = {x ∈ X : ({x}, F (e)) ∈
π(e) or ({x}, G(e)) ∈ π(e)} = {x ∈ X : ({x}, F (e)) ∈ π(e)} ∪ {x ∈ X : ({x}, G(e)) ∈
π(e)} = {x ∈ X : {x} ∈ π(e)(F (e))} ∪ {x ∈ X : {x} ∈ π(e)(G(e))} = cπ(F )(e) ∪
cπ(G)(e) = (cπ(F )∪̃cπ(G))(e).
Therefore cπ(F ∪̃G) = cπ(F )∪̃cπ(G).
Thus cπ is a Čech closure operator of soft sets on (X, E).
Let x, y ∈ X. Let P ∈ P (X)E such that P (e) = {x}. Then
y ∈ cπ(P )(e) ⇔ {y} ∈ π(e)(P (e)) ⇔ ({y}, P (e)) ∈ π(e) ⇔ ({y}, {x}) ∈ π(e) ⇔
({x}, {y}) ∈ π(e) ⇔ {x} ∈ π(e)({y}) ⇔ {x} ∈ π(e)(Q(e)) ∀Q ∈ P (X)E with
Q(e) = {y} ⇔ x ∈ cπ(Q)(e) ∀Q ∈ P (X)E with Q(e) = {y}.
Therefore cπ is a R0 − Čech closure operator of soft sets on (X, E). ¤

Theorem 3.13. If c be a R0 − Čech closure operator of soft sets on (X,E). Then
there is a basic soft proximity π on (X,E) such that cπ = c.

Proof. Let c be a R0 − Čech closure operator of soft sets on (X, E).
Define ∀e ∈ E,
π(e) = {(F (e), G(e)) : F, G ∈ P (X)E , (c(F )(e) ∩G(e)) ∪ (F (e) ∩ c(G)(e)) 6= φ}.
Clearly π(e) = {π(e)}−1 ∀e ∈ E.
Let e ∈ E and F, G,H ∈ P (X)E . Then,
(F (e), G(e) ∪H(e)) ∈ π(e) ⇔ {c(F )(e) ∩ (G∪̃H)(e)} ∪ {F (e) ∩ c(G∪̃H)(e)} 6= φ ⇔
{(c(F )(e)∩(G(e)∪H(e))}∪{(F (e)∩(c(G)(e)∪c(H)(e))} 6= φ ⇔ {(c(F )(e)∩G(e)}∪
{(c(F )(e)∩H(e)}∪{(F (e)∩c(G)(e)}∪{(F (e)∩c(H)(e)} 6= φ ⇔ {(c(F )(e)∩G(e)}∪
{(F (e)∩c(G)(e)} 6= φ or {(c(F )(e)∩H(e)}∪{(F (e)∩c(H)(e)} 6= φ ⇔ (F (e), G(e)) ∈
π(e) or (F (e),H(e)) ∈ π(e).
Let F, G ∈ P (X)E such that F (e)∩G(e) 6= φ. Therefore {(c(F )(e)∩G(e)}∪{(F (e)∩
c(G)(e)} 6= φ. Thus (F (e), G(e)) ∈ π(e).
Let F ∈ P (X)E . Then {(c(F )(e) ∩ Φ̃(e)} ∪ {(F (e) ∩ c(Φ̃)(e)} = φ. Therefore
(F (e), Φ̃(e)) 6∈ π(e). i.e., (F (e), φ) 6∈ π(e).
Hence π(e) is a basic proximity on X. Therefore π : E → A is a mapping.
Therefore (π,E) is a basic soft proximity on (X, E).
Let F ∈ P (X)E and e ∈ E.
Then cπ(F )(e) = {x ∈ X : {x} ∈ π(e)(F (e))} = {x ∈ X : ({x}, F (e)) ∈ π(e)}.
Therefore x ∈ cπ(F )(e) ⇒ ∃P ∈ P (X)E such that P (e) = {x} and (c(P )(e)∩F (e))∪
(P (e) ∩ c(F )(e)) 6= φ.
Now P (e) ∩ c(F )(e) 6= φ ⇒ {x} ∩ c(F )(e) 6= φ ⇒ x ∈ c(F )(e).
Again c(P )(e) ∩ F (e) 6= φ ⇒ ∃y ∈ c(P )(e) ∩ F (e) ⇒ y ∈ c(P )(e) and y ∈ F (e) ⇒
x ∈ c(Q)(e)∀Q ∈ P (X)E with Q(e) = {y} ⇒ x ∈ c({y}e)(e) and y ∈ F (e) ⇒ x ∈
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c({y}e)(e) and {y}e ⊂ F ⇒ x ∈ c(F )(e).
Also x ∈ c(F )(e) ⇒ {x} ∩ c(F )(e) 6= φ ⇒ ({x}, F (e)) ∈ π(e) ⇒ x ∈ cπ(F )(e).
Thus x ∈ cπ(F )(e) ⇔ x ∈ c(F )(e). Therefore cπ(F )(e) = c(F )(e). Thus cπ(F ) =
c(F ) and hence cπ = c. ¤
Definition 3.14. Let E be a set of parameters and X be a nonempty set and L be
the set of all Lodato proximities on X. Then the pair (π, E) is called a Lodato soft
proximities on (X, E) if π is a mapping given by π : E → L.
The set of all Lodato soft proximities will be denoted by MLO

S (X, E).

Theorem 3.15. If (π, E) ∈ MLO
S (X, E), then cπ is a Kuratowski closure operator

of soft sets on (X,E) i.e., ((X, E), cπ) is a topological space of soft sets .

Proof. Let (π, E) ∈ MLO
S (X, E). Then cπ is a Čech closure operator of soft sets on

(X, E).
Let F ∈ P (X)E . Then cπ(cπ(F )) ⊃ cπ(F ).
Let e ∈ E. Then cπ(F )(e) = {x ∈ X : {x} ∈ π(e)(F (e))}.
Since π(e) is a Lodato proximity on X, for x ∈ X,
{x} ∈ π(e)(cπ(F )(e)) ⇒ {x} ∈ π(e)(F (e)).
Therefore x ∈ cπ(cπ(F ))(e) ⇒ x ∈ cπ(F )(e). Thus cπ(cπ(F ))(e) ⊂ cπ(F )(e).
Therefore cπ(cπ(F )) ⊂ cπ(F ). Hence cπ(cπ(F )) = cπ(F ).
Therefore cπ is a Kuratowski closure operator of soft sets on (X, E). ¤
Theorem 3.16. If c is a R0-Kuratowski closure operator of soft sets on (X,E).
Then there is a Lodato soft proximity π on (X,E) such that cπ = c.

Proof. Let c be a R0-Kuratowski closure operator of soft sets on (X, E).
Define for all e ∈ E,
π(e) = {(F (e), G(e)) : F, G ∈ P (X)E , c(F )(e) ∩ c(G)(e) 6= φ}.
Clearly π(e) = (π(e))−1 ∀e ∈ E.
Let e ∈ E and F, G,H ∈ P (X)E . Then
(F (e), (G∪̃H)(e)) ∈ π(e) ⇔ c(F )(e)∩c(G∪̃H)(e) 6= φ ⇔ c(F )(e)∩(c(G)∪̃c(H))(e) 6=
φ ⇔ (c(F )(e) ∩ c(G)(e)) ∪ (c(F )(e) ∩ c(H)(e)) 6= φ ⇔ c(F )(e) ∩ c(G)(e) 6= φ or
c(F )(e) ∩ c(H)(e) 6= φ ⇔ (F (e), G(e)) ∈ π(e) or (F (e),H(e)) ∈ π(e).
Let F, G ∈ P (X)E such that F (e) ∩G(e) 6= φ.
Therefore c(F )(e) ∩ c(G)(e) 6= φ and hence (F (e), G(e)) ∈ π(e).
Clearly (F (e), φ) 6∈ π(e), since c(F )(e) ∩ c(Φ̃)(e) = φ.
Thus π(e) is a basic proximity on X.
Let F ∈ P (X)E and e ∈ E. Then
cπ(F )(e) = {x : {x} ∈ π(e)(F (e))} = {x : ({x}, F (e)) ∈ π(e)}.
Therefore x ∈ cπ(F )(e) ⇒ ∃P ∈ P (X)E such that P (e) = {x} and c(P )(e) ∩
c(F )(e) 6= φ ⇒ ∃P ∈ P (X)E such that P (e) = {x} and ∃y ∈ c(P )(e) ∩ c(F )(e) ⇒
∃P ∈ P (X)E such that P (e) = {x} and ∃y ∈ c(P )(e), y ∈ c(F )(e) ⇒ x ∈
c(Q)(e)∀Q ∈ P (X)E with Q(e) = {y} and y ∈ c(F )(e) ( since c is R0 ) ⇒ x ∈
c({y}e)(e) and {y}e ⊂ c(F ) ⇒ x ∈ c(c(F ))(e) ⇒ x ∈ c(F )(e).
Again x ∈ c(F )(e) ⇒ {x}e(e) ∩ c(F )(e) 6= φ ⇒ c({x}e)(e) ∩ c(F )(e) 6= φ ⇒
({x}e(e), F (e)) ∈ π(e) ⇒ ({x}, F (e)) ∈ π(e) ⇒ x ∈ cπ(F )(e).
Thus c(F )(e) ⊂ cπ(F )(e). Hence cπ(F )(e) = c(F )(e).
This is true ∀e ∈ E. Therefore cπ(F ) = c(F ). This is true ∀F ∈ P (X)E . Thus
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cπ = c.
It is clear that ∀F, G ∈ P (X)E , ∀e ∈ E,
(F (e), G(e)) ∈ π(e) ⇒ (cπ(F )(e), cπ(G)(e)) ∈ π(e).
Let F, G ∈ P (X)E , e ∈ E such that (cπ(F )(e), cπ(G)(e)) ∈ π(e).
Therefore (c(F )(e), c(G)(e)) ∈ π(e). Therefore c(c(F ))(e) ∩ c(c(G))(e)) 6= φ.
Therefore c(F )(e) ∩ c(G)(e)) 6= φ. Thus (F (e), G(e)) ∈ π(e).
Therefore π(e) is a Lodato proximity on X ∀e ∈ E.
Hence (π,E) is a Lodato soft proximity on (X, E) and cπ = c. ¤

Definition 3.17. A soft mapping f = (f̃ , f̂) : ((X1, E1), π1) → ((X2, E2), π2) is
said to be soft proximally continuous if for each F, G ∈ P (X1)E1 ,
(F (e), G(e)) ∈ π1(e) ⇒ (f̃(F (e)), f̃(G(e))) ∈ π2(f̂(e)), ∀e ∈ E1.

Theorem 3.18. Every soft proximally continuous mapping is soft continuous.

Proof. Let f = (f̃ , f̂) : ((X1, E1), π1) → ((X2, E2), π2) be soft proximally continu-
ous.
Let F ∈ P (X1)E1 . Let e′ ∈ E2 such that f̂−1(e′) 6= φ.
Therefore f(cπ1(F ))(e′) = f̃(

⋃

e∈f̂−1(e′)

cπ1(F )(e)) = f̃(
⋃

e∈f̂−1(e′)

cπ1(e)(F (e))).

Let x ∈
⋃

e∈f̂−1(e′)

cπ1(e)(F (e)).

Therefore x ∈ cπ1(e0)(F (e0)) for some e0 ∈ f̂−1(e′). Therefore ({x}, F (e0)) ∈ π1(e0).
Thus (f̃({x}), f̃(F (e0))) ∈ π2(f̂(e0)), by soft proximal continuity.
Therefore ({f̃(x)}, f̃(F (e0))) ∈ π2(e′).
Thus f̃(x) ∈ cπ2(e′)f̃(

⋃

e∈f̂−1(e′)

F (e)), since f̃(
⋃

e∈f̂−1(e′)

F (e)) ⊃ f̃(F (e0)).

Therefore f̃(
⋃

e∈f̂−1(e′)

cπ1(e)(F (e))) ⊂ cπ2(e′)f̃(
⋃

e∈f̂−1(e′)

F (e)).

Thus f(cπ1(F ))(e′) ⊂ cπ2(e′)f(F )(e′) = (cπ2f(F ))(e′).
Therefore f(cπ1(F )) ⊂ cπ2f(F ).
Hence f is soft continuous. ¤

Definition 3.19. Let (π,E) ∈ MS(X,E) and F,G ∈ P (X)E . Then G is said to be a
soft proximal neighbourhood of F , denoted by G À F if X−G(e) 6∈ π(e)(F (e)) ∀e ∈
E.
The set of all soft proximal neighbourhoods of F w.r.t π will be denoted by N (π, F ).

Remark 3.20. Let (π,E) ∈ MS(X,E), F ∈ P (X)E , x ∈ X and e ∈ E.
Then F À {x}e if and only if (X − F (e′), {x}e(e′)) 6∈ π(e′) ∀e′ ∈ E if and only
if (X − F (e), {x}) 6∈ π(e) if and only if {x} 6∈ π(e)(X − F (e)) if and only if x 6∈
cπ(e)(X − F (e)) if and only if {x} ∩ cπ(e)(X − F (e)) = φ if and only if F (e) is a
neighbourhood of x in the closure space (X, cπ(e)).

Theorem 3.21. The following results hold:
(i) For each F, G ∈ P (X)E , G ∈ N (π, F ) ⇒ F ′ ∈ N (π, G′).
(ii) For each F ∈ P (X)E , cπ(F ) = ∩̃{G : G ∈ N (π, F )}.
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Proof. (i) Let F,G ∈ P (X)E . Then
G ∈ N (π, F ) ⇒ X − G(e) 6∈ π(e)(F (e)) ∀e ∈ E ⇒ (F (e), X − G(e)) 6∈ π(e) ∀e ∈
E ⇒ (X −G(e), F (e)) 6∈ π(e) ∀e ∈ E ⇒ F (e) 6∈ π(e)(G′(e)) ∀e ∈ E ⇒ X − F ′(e) 6∈
π(e)(G′(e)) ∀e ∈ E ⇒ F ′ ∈ N (π,G′).

(ii) Let e ∈ E. Then cπ(F )(e) = cπ(e)F (e) = {x ∈ X : ({x}, F (e)) ∈ π(e)}.
Therefore x ∈ cπ(F )(e) ⇔ ({x}, F (e)) ∈ π(e) ⇔ X − ({x}e)′(e) ∈ π(e)(F (e)) ⇔
({x}e)′ 6∈ N (π, F ) ⇔ ∀G ∈ N (π, F ), G 6⊂ ({x}e)′ ⇔ ∀G ∈ N (π, F ), x ∈ G(e),
since G 6⊂ ({x}e)′ ⇔ ∃e′ ∈ E such that G(e′) 6⊂ ({x}e)′(e′) ⇔ ∃e′ ∈ E such that
G(e′) 6⊂ X − {x}e(e′) ⇔ G(e) 6⊂ X − {x} ⇔ x ∈ G(e).
Thus cπ(F )(e) = ∩̃{G : G ∈ N (π, F )}(e).
Since e ∈ E is arbitrary, cπ(F ) = ∩̃{G : G ∈ N (π, F )}. ¤

4. Conclusions

Proximity is a structure which plays a crucial role in the compactification /ex-
tension problems of topological spaces. The fuzzyfication of this structure has been
studied by many authors. In this paper an attempt has been made, for the first
time, to introduce this structure in soft set setting. In the field of soft topology,
studies on soft proximities will be a potential area of research.
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