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tions and preservation theorems of ad-totally continuous functions are in-
vestigated. Also ad-Totally open functions in topological spaces are intro-
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1. INTRODUCTION

The importance of general topological spaces rapidly increases in many fields of
applications such as data mining [4]. Information systems are basic tools for produc-
ing knowledge from data in any real-life field. Topological structures on the collection
of data are suitable mathematical models for mathematizing not only quantitative
data but also qualitative ones. Generalized open sets play a very important role in
General Topology and they are now the research topics of many topologists world-
wide. Indeed a significant theme in General Topology and Real analysis concerns
the variously modified forms of continuity, separation axioms etc. by utilizing gener-
alized open sets. One of the most well known notions and also an inspiration source
is the notion of ad-open [3] sets introduced by R.Devi, V.Kokilavani and P.Basker.
In this paper, we will continue the study of related functions with ad-open and ad-
closed sets. We introduce and characterize the concept of ad-derived set, ad-border,
ad-frontier, ad-exterior and ad-saturated and further the relationship between them
are derived. Also we introduce a new function called ad-Totally-Continuous Func-
tions. Furthermore, basic properties of these functions and preservation theorems of
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ad-totally continuous functions are investigated. Also ad-Totally open functions in
topological spaces are introduced and studied.

2. PRELIMINARIES

Throughout the present paper, spaces X and Y always mean topological spaces.
Let X be a topological space and A, a subset of X. The closure of A and the interior
of A are denoted by CI(A) and Int(A), respectively.

Definition 2.1. A subset A of a space (X, 7) is called
(1) regularopen [B] if A = int(cl(A)).
(2) semiopen [5] if A C cl(int(A)).
(3) a-open [3] if A C int(cl(int(A))).
(4) 0-semiopen [3] A C cl(Ints(A)).
The d-interior [2] of a subset A of X is the union of all regularopen sets of
X contained in A and is denoted by Ints(A). The subset A is called d-open [2]
if A = Ints(A), i.e., a set is d-open if it is the union of regular open sets. The
complement of a d-open set is called d-closed. Alternatively, aset A C (X, 7) is called
d-closed [2] if A = cl5(A), where cls(A) = {z/x € U € 7 = int(cl(U)) N A # ¢}.
The family of all §-open (resp. d-closed) sets in X is denoted by dO(X) (resp.
0C(X)).
The intersection of all semiclosed (resp. a-closed, d-semiclosed) sets containing A
is called the semi-closure (resp. a-closure, 6-semiclosure) of A and is denoted by
scl(A) (resp. acl(A), dscl(A)). Dually, semi-interior (resp. a-interior, §-semi-
interior) of A is defined to be the union of all semiopen (resp. a-open, d-semiopen)
sets contained in A and is denoted by sint(A) (resp. « int(A), §-sint(A)). Note
that d-scl(A)=A Uint(cls(A)) and §-sint(A)=A U cl(ints(A)).
We recall the following definition used in sequel.

Definition 2.2. A subset A of a space (X, 7) is called
e an a-generalized closed [1] (ag-closed) set if acl(A) C U whenever A C U and
U is a-open in (X, 7).
e an ad-closed set [1] if ¢ls(A) C U whenever A C U and U is ag-open in (X, 7).
(

Definition 2.3. A function f : (X,7) — (Y, 0) is called

e ad-continuous [1] if f=1(V) is ad-closed in (X, 1) for every closedset V of
(Y, o).

e ad-irresolute [1] if f=1(V) is ad-closed in (X, 7) for every ad-closed set V of
(v, 0).

3. ad-DEROVED AND «d-BORDER

Definition 3.1. Let A be a subset of a space X.

e A point z € X is said to be «ad-limit point of A if for each ad-open set U
containing x, U N (A — {z}) # ¢. The set of all ad-limit point of A is called ad-
derived (briefly. D|,s) ) set of A and is denoted by D45 (A).

e A point x € X is said to be §-limit point of A if for each §-open set U containing
x, UN (A —{z}) # ¢. The set of all §-limit point of A is called §-derived set of A
and is denoted by ds(A).
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Theorem 3.2. For subsets A, B of a space X, the following statements hold:
(1) Dyas|(A) C ds(A) where ds(A) is the §-derived set of A.
( ) If A C B, then D[aé] (A) C DLO«;J (B)
(3) Dyas) (A )UDLOASJ( ) C Dias) (AU B).
(4) Dias)(Dyas)(A)) = A C Dias)(A).
(5) Dias| (AU D|as)(A)) € AU D|a5)(A).

Proof. (1) It suffices to observe that every d-open set is ad-open.

(2) It is obvious.

(3) It is an immediate consequence of (2).

(4) If € Dias5)(D]as)(A)) — A and U is an ad-open set containing z, then
UN(Das(A)—{z}) # ¢ . Let y € UN(D|q5)(A) —{x}). Then since y € D|,5/(A)
andy e U, UN(A—{y}) #¢. Let Ze UN(A—{y})). Then Z # z for Z € A and
¢ A. Hence UN (A —{z}) # ¢. Therefore x € D|,5)(A).

(5) Let © € D|as)(AU D|ss)(A)). If x € A, the result is obvious. So let x €
Das5)(AUD|45](A)) — A, then for ad-open set U containing x, UN (AU D|q5)(A) —
{z}) # ¢. Thus UN (A —{z}) # ¢ or UN (D|qs)(A) — {z}) # ¢. Now it follows
(4) that UN (A —{z}) # ¢. Hence & € D|45/(A). Therefore, in any case D|,45)(AU
D\as5)(A)) € AU D|a5)(4). 0

Theorem 3.3. For any subset A of a space X, adci(A) = AU D|q5)(A).

Proof. Since D|45((A) C adci(A), AUD)|45/(A) C adci(A). On the other hand, let
x € adei(A). If x € A, then the proof is complete. If z ¢ A, then each ad-open
set U containing x intersects A at a point distinct from x. Therefore z € D|q5)(A).
Thus adci(A) C AU D|q5)(A) which implies that adci(A) = AU D|4s/(A). This
completes the proof. O

Theorem 3.4. For subsets A, B of a space X, the following statements hold:
1) adrni(A) is the largest ad-open set contained in A.

) A is an ad-open if and only if A = adrni(A).

) 5[nt(a51nt (A)) = aélnt (A)

) Oé(S]nt(A) =A- DLM;J (X — A)

) X — aéjnt(A) = aéCl(X — A)

) X — a501<A) = Oz(S]nt<X — A).

) A C B, then adrni(A) C adrn(B).

(8) adrni(A)Uadrne(B) C adrni(AU B).

Proof. (1), (2), (3) are obvious.

(4) If v € A~ Dyos)(X — A), then © ¢ D|45/(X — A) and so there exists an
ad-open set U containing = such that UN (X — A) = ¢. Then z € U C A and hence
T € abrnt(A), ie., A=D| 5] (X—A) C adrnt(A). Onthe other hand, if x € adrn¢(A),
then z ¢ D45/ (X — A). Since adrni(A) is an ad-open and adrnt(A) N (X — A) = ¢.
Hence adrnt(A) = A — Das) (X — A).

(5) X - a(slnt(A) =X - (A - D\_a(SJ(X - A)) = (X - A) U DI_a(H(X - A) =
a5Cl(X — A)

(6), (7) and (8) are obvious. O

Definition 3.5. For a subset A of a space X,
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e Bd=*"(A) = A — adrns(A) is said to be ad-border of A.
e 1°(A) = A — 5-int(A) is said to be d-border of A.

Theorem 3.6. For a subset A of a space X, the following statements hold:
) Bd=®%"(A) C bO(A),where b°(A) denotes the §-border of A.

) A = abrni(A) U Bd="(A).

) alpni(A) N Bd=*" (A) = ¢.

) A is an a5 open iff Bd=*"(A) = ¢.
) Bd=0(ab 1 (A)) = o

) abp (B2~ (4)) = ¢,

) Bd<a6>(Bd<a6>(A)) — Bd'<o‘6>(A),
) Bd_<a6>( ) AN Oé(SCl(X - A)

) Bd**"(A) = D45 (X — A)

Proof. (1), (2), (3), (4), (5) and (7) are obvious.

(6) If © € adrn(Bd=*0"(A)), then x € Bd=*®(A). On the other hand, since
Bd=*"(A) C A, v € adr,(Bd=*"(A)) C adrni(A). Hence x € adrui(A) N
Bd=2°~(A), which contradicts (3). Thus adr,:(A) N Bd=*"(A) = ¢.

(8) Bd=*"(A) = A — adrnt(A) = A — (X —adci(X — A)) = AN adoi(X — A)).

(9) BdZ*"(A) = A — abni(A) = A— (A= Da5)(X — A)) = Dias) (X — A)).

In general the converse of (1) may not be true by the following example. O

(1
(2
(3
(4
(5
(6
(7
(8
9

Example 3.7. Let X = {a,b,c} with topology 7 = {¢, X, {a}, {b},{a,b},{a,c}},
d-open= {¢p, X, {b}, {a, c}} and ad-open= {p, X, {a}, {b}, {a, b}, {a, c}}.
If A= {a, b} Then Bd=*({a, b}) = ¢ and v’({a, b}) = {a} which implies that
b%(A) doesnot contained in Bd=*~(A).

4. a)-FRONTIER AND «d-EXTERIOR

Definition 4.1. For a subset A of a space X,
o Funs(A) = ader(A) Nader(X/A) is said to be ad-frontier of A.
o I'rs(A) = 6-cl(A) Nd-cl(X/A) is said to be d-frontier of A.

Theorem 4.2. For a subset A of a space X, the following statements hold:

) Fras(A) C Frs(A), where Frs(A) denotes the §-frontier of A.

) 04§Cl( ) = Oz(SInt(A) U Fzm;(A)

) adrni(A) N Fras(A) = ¢.

) Bd=*"(A) C Fras(A).

) Fras(A) = Bd™*" (A) U D|a5(A).

) A is ad-open set iff Fras(A) = Dias)(A).

) Fzm;( ) = Oz(SCl(A) N aéCl(X/A).

)FN(MS( ) Fwaé(X/A)

) Fras(A) is ad-closed.

0) FNaé(FNOx&(A)) C ané(A)

]-) FNaé(aélnt(A)) C an(;(A)

2) Fras(adci(A)) C Fras(A).

3) Of(s[nt( ) A_F%aé( )
)

Proof. (1), (4), (6), (8) and (11

(1

(2
(3
4
(5
(6
(7
(8
9
(1
(1
(1
(1

are obvious.
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( ) OC(SInt( U Feus (A) = alrnt (A) U (Oé(SCl(A) — alnt (A)) = Oé(SCl(A)

(3) adrnit(A) N Fras(A) = adrni(A) N (ader(A) — adrni(A)) = .

(5) Since adrni(A) U Fras(A) = adpni(A) U Bd=(A) U D\as5)(A), Fras(A) =
Bd=®%~ (A)U DLMSJ (A).
(7) Feus (A) = Oé(SCl(A) — alrnt (A) = Oz(SCl(A) n Oé(SCl(X/A).
(9) adci(Fras(A)) = adoi(adci(A) N adei(X/A)) C adei(adci(A)) Nader(ade
((X/A))) = Fras(A). Hence Fros(A) is ad-closed.

(1(2) I)Tzazs(ané(A)) = adci(Fras(A)) Nador(X — Fras(A)) C adei(Fras(A)) =
Fras A).

(12) ang(a(SCl(A)) = adci(adoi(A)) — 04(517“5(05(50[(14)) = Oz(SCl(A) — adrne(adey
(A)) = adci(A) — adrni(A) = Fras(A).

(13) A — Fyuas(A) = A — (adci(A) — adrni(A)) = adrni(A).

In general the converse of (1) and (4) may not be true by the following example.

O

Example 4.3. Let X = {a,b, ¢} with topology 7 = {¢, X, {a},{b},{a,b},{a,c}},
d-closed set= {p, X, {b},{a,c}} and ad-closed set= {p, X, {b},{c},{b,c},{c,a}}.

(1) If A = {a, b} Then Fya5({a, b}) = {c} and Frs({a, b}) = {a, ¢} which
implies that Frs(A) doesnot contained in Frqs(A).

(4) If A = {a, b} Then Fuus({a, b}) = {c} and Bd=**~({a, b}) = ¢ which
implies that Fras(A) doesnot contained in Bd=®%~ (A).

In the following theorem «d””C denote the set of points z of X for which a
function f: (X, 7) — (Y, o) is not ad-continuous.

Theorem 4.4. ad~ "~ C is identical with the union of the ad-frontiers of the inverse
images of ad-open sets containing f(x).

Proof. Suppose that f is not ad-continuous at a point x of X. Then there exists an
open set V C Y containing f(z) such that f(U) is not a subset of V for every U €
adO(X) containing x. Hence we have U N (X — f=1(V)) # ¢ for every U € adO(X)
containing x. It follows that z € adci(X — f~1(A4)). We also have z € f~Y(V) C
adci(f~1(A)). This means that € Fyas(f~1(V)). Now, let f be ad-continuous at
r € X and V C Y be any open set containing f(z). Then x € f~1(V) is a ad-open
set of X. Thus € ad,:(f~1(V)) and therefore x ¢ Fyos(f~1(V)) for every open
set V containing f(x). O

Definition 4.5. For a subset A of a space X,
o xtf@(A) = adp, (X — A) is said to be ad-exterior of A.
o Exts(A) = d-int(X — A) is said to be d-exterior of A.

Theorem 4.6. For a subset A of a space X, the following statements hold:
(1) Exts(A) C &xtl@d (A), where Exts(A) denotes the 5-exterior of A.
(2) ExttoO (A) is ad-open.

(3) €2l (A) = adp(X — A) = X — adoi(A).

(4) Extlod) (€2l (A)) = adrni(ader(A)).

(5) If A C B, then Ext'®® (A) D £xt{*®)(B).

(6) Ext{®) (AU B) C €xt(*)(A) U Eatled) (B).

(7) €t (X) = .
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(8) Eat!*(p) = X.

(9) £xt(©9) (A) = Ext©D (X — £t (4)).
(10) adrni(A) C Extlad) (cat(@d)(A)).

(11) X = adrns(A) U a2 (A) U Frns(A).

Proof. (1), (2), (3), (5), (6), (7), (8) and (11) are obvious.

(4) Extlod (€xtla0) (A)) = €xt{ @M (X — adei(A)) = adr (X — (X — adei(A))) =
adrnt(adci(A)).

(9) Extl@)(X — £xtlod(A)) = €t X — adpp(X — A)) = b (X — (X —
aéjnt(X A))) = aélm(aéjnt(X — A)) = Oé(S[nt(X — A) = g.’L‘t<a5> (A)
(10) adrn(A) C adrme(adoi(A)) = adme(X — adm(X — A)) = adrm(X —
Ext(*0 (A)) = Eat(®® (Ext*0) (A)).

In general the converse of (1) and (6) may not be true by the following example.

O

Example 4.7. (1) Let X = {a, b, ¢} with topology 7 = {p, X, {a}, {b},{a,b},{a,c}},
d-closed set= {p, X, {b},{a,c}} and ad-closed set= {p, X, {b},{c},{b,c},{c,a}}.
If A = {c} Then &xt'*?({c}) = {a,b} and Exts({c}) = {b} which implies that
£xt(*9) (A) doesnot contained in Exts(A).

(6) Let X = {a, b, ¢, d} withtopology 7 = {¢, X, {a}, {c}, {qa, ¢}, {a, ¢, d}}
and ad-closed set= {¢, X, {b, d}, {a, b, d}, {b, ¢, d}}. If A= {a} and B = {b},
then £xt(@®) (A) = {c}, &xt'*)(B) = {a, c} and &zt (AU B) = {c} which implies
that £2t(*9) (A) U xt{*9 (B) doesnot contained in £xt{*® (AU B).

Definition 4.8. Let X be a topological space. A set A C X is said to be ad-
saturated if for every z € A it follows adc;({z}) C A. The set of all ad-saturated
sets in X we denote by Sat**ad(X).

Theorem 4.9. Let X be a topological space. Then Sat**ad(X) is a complete
Boolean set algebra.

Proof. We will prove that all the unions and complements of elements of Sat**«d(X)
are members of Sat**«d(X). Obviously, only the proof regarding the complements
is not trivial. Let A € Sat**ad(X) and suppose that adc;({z}) does not contained
in X — A for some z € X — A. Then there exists y € A such that y € adc;({z}).
It follows that 2, y have no disjoint neighbourhoods. Then x € ad¢;({y}). But this
is a contradiction, because by the definition of Sat**ad(X) we have adc;({y}) C
A. Hence, adci({z}) € X — A for every v € X — A, which implies X — A €
Sat**ad(X). O

Corollary 4.10. Sat**ad(X) contains every union and every intersection of ad-
closed and ad-open sets in X.

5. ad-TOTALLY CONTINUOUS FUNCTIONS

Definition 5.1. A function f: (X, 7) — (Y, o) is called
(1) «ad-Totally-Continuous at a point z € X if for each open subset V in YV
containing f(z), there exists a ad-clopen subset U in X containing z such that
fU)cv.
(2) ad-Totally-Continuous, if it has this property at each point of X.
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Theorem 5.2. The following statements are equivalent for a function f: (X, 1) —
(Y, 0):

(1) f is ad-Totally-Continuous.

(2) for every open set V of Y, f=1(V) is ad-clopen in X.

Proof. (1) = (2) Let V be an open subset of Y and let z € f~*(V). Since f(x) € V,
by (1), there exists a ad-clopen set U, in X containing x such that U, C f~1(V).
We obtain f~(V) = U,cs-1(yy Us- Thus, f~'(V) is ad-clopen in X.

(2) = (1) Clear. O

Remark 5.3. It is clear that every ad-Totally-Continuous function is ad-continuous.
But the converse is false.

Example 5.4. The identity function on the real line with the usual topology is
continuous and hence ad-continuous. The inverse image of (0, 1) is not ad-closed
and the function is not ad-Totally-Continuous.

Definition 5.5. A space (X, 7) is said to be ad-space if every ad-open set of X is
open in X.

Theorem 5.6. If a function f : (X,7) — (Y,0) is totally continuous and X is a
ad-space, then f is ad-Totally-Continuous.

Proof. Straightforward. O

Definition 5.7 ([I]). A topological space (X, 7) is said to be ad-connected if it
cannot be written as the union of two nonempty disjoint ad-open sets.

Theorem 5.8. If f is a ad-Totally-Continuous function from a ad-connected space
X onto any space Y, then Y is an indiscrete space.

Proof. If possible, suppose that Y is not indiscrete. Let A be a proper non-empty
open subset of Y. Then f~1(A) is a proper non-empty ad-clopen subset of (X,7),
which is a contradiction to the fact that X is ad-connected. 0

Theorem 5.9. The set of all points © € X in which a function f: (X,7) — (Y,0)
is not an ad-Totally-Continuous is the union of ad-frontier of the inverse images of
open sets containing f(x).

Proof. Suppose that f is not an ad-Totally-Continuous function at = € X. Then
there exists an open set V of Y containing f(z) such that f(U) is not contained in
V for each U € adO(X) containing = and hence x € adci(X/f~1(V)). On the other
hand, X € f~1(V) C adci(f~1(V)) and hence X € Fruns(f~1H(V)). 0

Conversely, suppose that f is an ad-Totally-Continuous at z € X and let V' be
an open set of Y containing f(z). Then there exists U € adO(X) containing = such
that U C f=3(V). Hence z € adrnt(f~1(V)). Therefore, X € Fuas(f~1(V)) for
each open set V of Y containing f(z).
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