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1. Introduction

The importance of general topological spaces rapidly increases in many fields of
applications such as data mining [4]. Information systems are basic tools for produc-
ing knowledge from data in any real-life field. Topological structures on the collection
of data are suitable mathematical models for mathematizing not only quantitative
data but also qualitative ones. Generalized open sets play a very important role in
General Topology and they are now the research topics of many topologists world-
wide. Indeed a significant theme in General Topology and Real analysis concerns
the variously modified forms of continuity, separation axioms etc. by utilizing gener-
alized open sets. One of the most well known notions and also an inspiration source
is the notion of αδ-open [3] sets introduced by R.Devi, V.Kokilavani and P.Basker.
In this paper, we will continue the study of related functions with αδ-open and αδ-
closed sets. We introduce and characterize the concept of αδ-derived set, αδ-border,
αδ-frontier, αδ-exterior and αδ-saturated and further the relationship between them
are derived. Also we introduce a new function called αδ-Totally-Continuous Func-
tions. Furthermore, basic properties of these functions and preservation theorems of
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αδ-totally continuous functions are investigated. Also αδ-Totally open functions in
topological spaces are introduced and studied.

2. Preliminaries

Throughout the present paper, spaces X and Y always mean topological spaces.
Let X be a topological space and A, a subset of X. The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively.

Definition 2.1. A subset A of a space (X, τ) is called
(1) regularopen [5] if A = int(cl(A)).
(2) semiopen [5] if A ⊂ cl(int(A)).
(3) α-open [3] if A ⊂ int(cl(int(A))).
(4) δ-semiopen [3] A ⊂ cl(Intδ(A)).
The δ-interior [2] of a subset A of X is the union of all regularopen sets of

X contained in A and is denoted by Intδ(A). The subset A is called δ-open [2]
if A = Intδ(A), i.e., a set is δ-open if it is the union of regular open sets. The
complement of a δ-open set is called δ-closed. Alternatively, a set A ⊂ (X, τ) is called
δ-closed [2] if A = clδ(A), where clδ(A) = {x/x ∈ U ∈ τ ⇒ int(cl(U)) ∩A 6= φ}.
The family of all δ-open (resp. δ-closed) sets in X is denoted by δO(X) (resp.
δC(X)).
The intersection of all semiclosed (resp. α-closed, δ-semiclosed) sets containing A
is called the semi-closure (resp. α-closure, δ-semiclosure) of A and is denoted by
scl(A) (resp. αcl(A), δscl(A)). Dually, semi-interior (resp. α-interior, δ-semi-
interior) of A is defined to be the union of all semiopen (resp. α-open, δ-semiopen)
sets contained in A and is denoted by sint(A) (resp. α int(A), δ-sint(A)). Note
that δ-scl(A)=A ∪ int(clδ(A)) and δ-sint(A)=A ∪ cl(intδ(A)).
We recall the following definition used in sequel.

Definition 2.2. A subset A of a space (X, τ) is called
• an α-generalized closed [1] (αg-closed) set if αcl(A) ⊆ U whenever A ⊆ U and

U is α-open in (X, τ).
• an αδ-closed set [1] if clδ(A) ⊆ U whenever A ⊆ U and U is αg-open in (X, τ).

Definition 2.3. A function f : (X, τ) → (Y, σ) is called
• αδ-continuous [1] if f−1(V ) is αδ-closed in (X, τ) for every closedset V of

(Y, σ).
• αδ-irresolute [1] if f−1(V ) is αδ-closed in (X, τ) for every αδ-closed set V of

(Y, σ).

3. αδ-deroved and αδ-border

Definition 3.1. Let A be a subset of a space X.
• A point x ∈ X is said to be αδ-limit point of A if for each αδ-open set U

containing x, U ∩ (A − {x}) 6= φ. The set of all αδ-limit point of A is called αδ-
derived (briefly.Dbαδc ) set of A and is denoted by Dbαδc(A).
• A point x ∈ X is said to be δ-limit point of A if for each δ-open set U containing

x, U ∩ (A − {x}) 6= φ. The set of all δ-limit point of A is called δ-derived set of A
and is denoted by dδ(A).
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Theorem 3.2. For subsets A,B of a space X, the following statements hold:
(1) Dbαδc(A) ⊂ dδ(A) where dδ(A) is the δ-derived set of A.
(2) If A ⊂ B, then Dbαδc(A) ⊂ Dbαδc(B).
(3) Dbαδc(A) ∪Dbαδc(B) ⊂ Dbαδc(A ∪B).
(4) Dbαδc(Dbαδc(A))−A ⊂ Dbαδc(A).
(5) Dbαδc(A ∪Dbαδc(A)) ⊂ A ∪Dbαδc(A).

Proof. (1) It suffices to observe that every δ-open set is αδ-open.
(2) It is obvious.
(3) It is an immediate consequence of (2).
(4) If x ∈ Dbαδc(Dbαδc(A)) − A and U is an αδ-open set containing x, then

U ∩ (Dbαδc(A)−{x}) 6= φ . Let y ∈ U ∩ (Dbαδc(A)−{x}). Then since y ∈ Dbαδc(A)
and y ∈ U , U ∩ (A−{y}) 6= φ. Let Z ∈ U ∩ (A−{y})). Then Z 6= x for Z ∈ A and
x /∈ A. Hence U ∩ (A− {x}) 6= φ. Therefore x ∈ Dbαδc(A).

(5) Let x ∈ Dbαδc(A ∪ Dbαδc(A)). If x ∈ A, the result is obvious. So let x ∈
Dbαδc(A∪Dbαδc(A))−A, then for αδ-open set U containing x, U ∩ (A∪Dbαδc(A)−
{x}) 6= φ. Thus U ∩ (A − {x}) 6= φ or U ∩ (Dbαδc(A) − {x}) 6= φ. Now it follows
(4) that U ∩ (A−{x}) 6= φ. Hence x ∈ Dbαδc(A). Therefore, in any case Dbαδc(A∪
Dbαδc(A)) ⊂ A ∪Dbαδc(A). ¤

Theorem 3.3. For any subset A of a space X, αδCl(A) = A ∪Dbαδc(A).

Proof. Since Dbαδc(A) ⊂ αδCl(A), A∪Dbαδc(A) ⊂ αδCl(A). On the other hand, let
x ∈ αδCl(A). If x ∈ A, then the proof is complete. If x /∈ A, then each αδ-open
set U containing x intersects A at a point distinct from x. Therefore x ∈ Dbαδc(A).
Thus αδCl(A) ⊂ A ∪ Dbαδc(A) which implies that αδCl(A) = A ∪ Dbαδc(A). This
completes the proof. ¤

Theorem 3.4. For subsets A, B of a space X, the following statements hold:
(1) αδInt(A) is the largest αδ-open set contained in A.
(2) A is an αδ-open if and only if A = αδInt(A).
(3) αδInt(αδInt(A)) = αδInt(A).
(4) αδInt(A) = A−Dbαδc(X −A).
(5) X − αδInt(A) = αδCl(X −A).
(6) X − αδCl(A) = αδInt(X −A).
(7) A ⊂ B, then αδInt(A) ⊂ αδInt(B).
(8) αδInt(A) ∪ αδInt(B) ⊂ αδInt(A ∪B).

Proof. (1), (2), (3) are obvious.
(4) If x ∈ A − Dbαδc(X − A), then x /∈ Dbαδc(X − A) and so there exists an

αδ-open set U containing x such that U ∩ (X −A) = φ. Then x ∈ U ⊂ A and hence
x ∈ αδInt(A), i.e., A−Dbαδc(X−A) ⊂ αδInt(A). On the other hand, if x ∈ αδInt(A),
then x /∈ Dbαδc(X −A). Since αδInt(A) is an αδ-open and αδInt(A)∩ (X −A) = φ.
Hence αδInt(A) = A−Dbαδc(X −A).

(5) X − αδInt(A) = X − (A − Dbαδc(X − A)) = (X − A) ∪ Dbαδc(X − A) =
αδCl(X −A).

(6), (7) and (8) are obvious. ¤

Definition 3.5. For a subset A of a space X,
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• Bd≺αδÂ(A) = A− αδInt(A) is said to be αδ-border of A.
• bδ(A) = A− δ-int(A) is said to be δ-border of A.

Theorem 3.6. For a subset A of a space X, the following statements hold:
(1) Bd≺αδÂ(A) ⊂ bδ(A),where bδ(A) denotes the δ-border of A.
(2) A = αδInt(A) ∪Bd≺αδÂ(A).
(3) αδInt(A) ∩Bd≺αδÂ(A) = φ.
(4) A is an αδ-open iff Bd≺αδÂ(A) = φ.
(5) Bd≺αδÂ(αδInt(A)) = φ.
(6) αδInt(Bd≺αδÂ(A)) = φ.
(7) Bd≺αδÂ(Bd≺αδÂ(A)) = Bd≺αδÂ(A).
(8) Bd≺αδÂ(A) = A ∩ αδCl(X −A)
(9) Bd≺αδÂ(A) = Dbαδc(X −A)

Proof. (1), (2), (3), (4), (5) and (7) are obvious.
(6) If x ∈ αδInt(Bd≺αδÂ(A)), then x ∈ Bd≺αδÂ(A). On the other hand, since

Bd≺αδÂ(A) ⊂ A, x ∈ αδInt(Bd≺αδÂ(A)) ⊂ αδInt(A). Hence x ∈ αδInt(A) ∩
Bd≺αδÂ(A), which contradicts (3). Thus αδInt(A) ∩Bd≺αδÂ(A) = φ.

(8) Bd≺αδÂ(A) = A− αδInt(A) = A− (X − αδCl(X −A)) = A ∩ αδCl(X −A)).
(9) Bd≺αδÂ(A) = A− αδInt(A) = A− (A−Dbαδc(X −A)) = Dbαδc(X −A)).
In general the converse of (1) may not be true by the following example. ¤

Example 3.7. Let X = {a, b, c} with topology τ = {ϕ,X, {a} , {b} , {a, b} , {a, c}},
δ-open= {ϕ, X, {b} , {a, c}} and αδ-open= {ϕ, X, {a} , {b} , {a, b} , {a, c}}.
If A = {a, b} Then Bd≺αδÂ({a, b}) = ϕ and bδ({a, b}) = {a} which implies that
bδ(A) doesnot contained in Bd≺αδÂ(A).

4. αδ-frontier and αδ-exterior

Definition 4.1. For a subset A of a space X,
• F≈αδ(A) = αδCl(A) ∩ αδCl(X/A) is said to be αδ-frontier of A.
• Frδ(A) = δ-cl(A) ∩ δ-cl(X/A) is said to be δ-frontier of A.

Theorem 4.2. For a subset A of a space X, the following statements hold:
(1) F≈αδ(A) ⊂ Frδ(A), where Frδ(A) denotes the δ-frontier of A.
(2) αδCl(A) = αδInt(A) ∪ F≈αδ(A).
(3) αδInt(A) ∩ F≈αδ(A) = ϕ.
(4) Bd≺αδÂ(A) ⊂ F≈αδ(A).
(5) F≈αδ(A) = Bd≺αδÂ(A) ∪Dbαδc(A).
(6) A is αδ-open set iff F≈αδ(A) = Dbαδc(A).
(7) F≈αδ(A) = αδCl(A) ∩ αδCl(X/A).
(8) F≈αδ(A) = F≈αδ(X/A).
(9) F≈αδ(A) is αδ-closed.
(10) F≈αδ(F≈αδ(A)) ⊂ F≈αδ(A).
(11) F≈αδ(αδInt(A)) ⊂ F≈αδ(A).
(12) F≈αδ(αδCl(A)) ⊂ F≈αδ(A).
(13) αδInt(A) = A− F≈αδ(A).

Proof. (1), (4), (6), (8) and (11) are obvious.
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(2) αδInt(A) ∪ F≈αδ(A) = αδInt(A) ∪ (αδCl(A)− αδInt(A)) = αδCl(A)
(3) αδInt(A) ∩ F≈αδ(A) = αδInt(A) ∩ (αδCl(A)− αδInt(A)) = ϕ.
(5) Since αδInt(A) ∪ F≈αδ(A) = αδInt(A) ∪ Bd≺αδÂ(A) ∪Dbαδc(A), F≈αδ(A) =

Bd≺αδÂ(A) ∪Dbαδc(A).
(7) F≈αδ(A) = αδCl(A)− αδInt(A) = αδCl(A) ∩ αδCl(X/A).
(9) αδCl(F≈αδ(A)) = αδCl(αδCl(A) ∩ αδCl(X/A)) ⊂ αδCl(αδCl(A)) ∩ αδCl(αδCl

((X/A))) = F≈αδ(A). Hence F≈αδ(A) is αδ-closed.
(10) F≈αδ(F≈αδ(A)) = αδCl(F≈αδ(A))∩αδCl(X −F≈αδ(A)) ⊂ αδCl(F≈αδ(A)) =

F≈αδ(A).
(12) F≈αδ(αδCl(A)) = αδCl(αδCl(A))− αδInt(αδCl(A)) = αδCl(A)− αδInt(αδCl

(A)) = αδCl(A)− αδInt(A) = F≈αδ(A).
(13) A− F≈αδ(A) = A− (αδCl(A)− αδInt(A)) = αδInt(A).
In general the converse of (1) and (4) may not be true by the following example.

¤

Example 4.3. Let X = {a, b, c} with topology τ = {ϕ,X, {a} , {b} , {a, b} , {a, c}},
δ-closed set= {ϕ,X, {b} , {a, c}} and αδ-closed set= {ϕ,X, {b} , {c} , {b, c} , {c, a}}.

(1) If A = {a, b} Then F≈αδ({a, b}) = {c} and Frδ({a, b}) = {a, c} which
implies that Frδ(A) doesnot contained in F≈αδ(A).

(4) If A = {a, b} Then F≈αδ({a, b}) = {c} and Bd≺αδÂ({a, b}) = ϕ which
implies that F≈αδ(A) doesnot contained in Bd≺αδÂ(A).

In the following theorem αδÂÂC denote the set of points x of X for which a
function f : (X, τ) → (Y, σ) is not αδ-continuous.

Theorem 4.4. αδÂÂC is identical with the union of the αδ-frontiers of the inverse
images of αδ-open sets containing f(x).

Proof. Suppose that f is not αδ-continuous at a point x of X. Then there exists an
open set V ⊂ Y containing f(x) such that f(U) is not a subset of V for every U ∈
αδO(X) containing x. Hence we have U ∩ (X− f−1(V )) 6= ϕ for every U ∈ αδO(X)
containing x. It follows that x ∈ αδCl(X − f−1(A)). We also have x ∈ f−1(V ) ⊂
αδCl(f−1(A)). This means that x ∈ F≈αδ(f−1(V )). Now, let f be αδ-continuous at
x ∈ X and V ⊂ Y be any open set containing f(x). Then x ∈ f−1(V ) is a αδ-open
set of X. Thus x ∈ αδInt(f−1(V )) and therefore x /∈ F≈αδ(f−1(V )) for every open
set V containing f(x). ¤

Definition 4.5. For a subset A of a space X,
• ξxt〈αδ〉(A) = αδInt(X −A) is said to be αδ-exterior of A.
• Extδ(A) = δ-int(X −A) is said to be δ-exterior of A.

Theorem 4.6. For a subset A of a space X, the following statements hold:
(1) Extδ(A) ⊂ ξxt〈αδ〉(A), where Extδ(A) denotes the δ-exterior of A.
(2) ξxt〈αδ〉(A) is αδ-open.
(3) ξxt〈αδ〉(A) = αδInt(X −A) = X − αδCl(A).
(4) ξxt〈αδ〉(ξxt〈αδ〉(A)) = αδInt(αδCl(A)).
(5) If A ⊂ B, then ξxt〈αδ〉(A) ⊃ ξxt〈αδ〉(B).
(6) ξxt〈αδ〉(A ∪B) ⊂ ξxt〈αδ〉(A) ∪ ξxt〈αδ〉(B).
(7) ξxt〈αδ〉(X) = ϕ.
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(8) ξxt〈αδ〉(ϕ) = X.
(9) ξxt〈αδ〉(A) = ξxt〈αδ〉(X − ξxt〈αδ〉(A)).
(10) αδInt(A) ⊂ ξxt〈αδ〉(ξxt〈αδ〉(A)).
(11) X = αδInt(A) ∪ ξxt〈αδ〉(A) ∪ F≈αδ(A).

Proof. (1), (2), (3), (5), (6), (7), (8) and (11) are obvious.
(4) ξxt〈αδ〉(ξxt〈αδ〉(A)) = ξxt〈αδ〉(X − αδCl(A)) = αδInt(X − (X − αδCl(A))) =

αδInt(αδCl(A)).
(9) ξxt〈αδ〉(X − ξxt〈αδ〉(A)) = ξxt〈αδ〉(X − αδInt(X − A)) = αδInt(X − (X −

αδInt(X −A))) = αδInt(αδInt(X −A)) = αδInt(X −A) = ξxt〈αδ〉(A).
(10) αδInt(A) ⊂ αδInt(αδCl(A)) = αδInt(X − αδInt(X − A)) = αδInt(X −

ξxt〈αδ〉(A)) = ξxt〈αδ〉(ξxt〈αδ〉(A)).
In general the converse of (1) and (6) may not be true by the following example.

¤
Example 4.7. (1) Let X = {a, b, c} with topology τ = {ϕ,X, {a} , {b} , {a, b} , {a, c}},
δ-closed set= {ϕ,X, {b} , {a, c}} and αδ-closed set= {ϕ,X, {b} , {c} , {b, c} , {c, a}}.
If A = {c} Then ξxt〈αδ〉({c}) = {a, b} and Extδ({c}) = {b} which implies that
ξxt〈αδ〉(A) doesnot contained in Extδ(A).

(6) Let X = {a, b, c, d} with topology τ = {ϕ, X, {a} , {c} , {a, c} , {a, c, d}}
and αδ-closed set= {ϕ, X, {b, d} , {a, b, d} , {b, c, d}}. If A = {a} and B = {b},
then ξxt〈αδ〉(A) = {c}, ξxt〈αδ〉(B) = {a, c} and ξxt〈αδ〉(A∪B) = {c} which implies
that ξxt〈αδ〉(A) ∪ ξxt〈αδ〉(B) doesnot contained in ξxt〈αδ〉(A ∪B).

Definition 4.8. Let X be a topological space. A set A ⊂ X is said to be αδ-
saturated if for every x ∈ A it follows αδCl({x}) ⊂ A. The set of all αδ-saturated
sets in X we denote by Sat??αδ(X).

Theorem 4.9. Let X be a topological space. Then Sat??αδ(X) is a complete
Boolean set algebra.

Proof. We will prove that all the unions and complements of elements of Sat??αδ(X)
are members of Sat??αδ(X). Obviously, only the proof regarding the complements
is not trivial. Let A ∈ Sat??αδ(X) and suppose that αδCl({x}) does not contained
in X − A for some x ∈ X − A. Then there exists y ∈ A such that y ∈ αδCl({x}).
It follows that x, y have no disjoint neighbourhoods. Then x ∈ αδCl({y}). But this
is a contradiction, because by the definition of Sat??αδ(X) we have αδCl({y}) ⊂
A. Hence, αδCl({x}) ⊂ X − A for every x ∈ X − A, which implies X − A ∈
Sat??αδ(X). ¤
Corollary 4.10. Sat??αδ(X) contains every union and every intersection of αδ-
closed and αδ-open sets in X.

5. αδ-totally continuous functions

Definition 5.1. A function f : (X, τ) → (Y, σ) is called
(1) αδ-Totally-Continuous at a point x ∈ X if for each open subset V in Y

containing f(x), there exists a αδ-clopen subset U in X containing x such that
f(U) ⊂ V .

(2) αδ-Totally-Continuous, if it has this property at each point of X.
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Theorem 5.2. The following statements are equivalent for a function f : (X, τ) →
(Y, σ):

(1) f is αδ-Totally-Continuous.
(2) for every open set V of Y , f−1(V ) is αδ-clopen in X.

Proof. (1) ⇒ (2) Let V be an open subset of Y and let x ∈ f−1(V ). Since f(x) ∈ V ,
by (1), there exists a αδ-clopen set Ux in X containing x such that Ux ⊂ f−1(V ).
We obtain f−1(V ) =

⋃
x∈f−1(V ) Ux. Thus, f−1(V ) is αδ-clopen in X.

(2) ⇒ (1) Clear. ¤

Remark 5.3. It is clear that every αδ-Totally-Continuous function is αδ-continuous.
But the converse is false.

Example 5.4. The identity function on the real line with the usual topology is
continuous and hence αδ-continuous. The inverse image of (0, 1) is not αδ-closed
and the function is not αδ-Totally-Continuous.

Definition 5.5. A space (X, τ) is said to be αδ-space if every αδ-open set of X is
open in X.

Theorem 5.6. If a function f : (X, τ) → (Y, σ) is totally continuous and X is a
αδ-space, then f is αδ-Totally-Continuous.

Proof. Straightforward. ¤

Definition 5.7 ([1]). A topological space (X, τ) is said to be αδ-connected if it
cannot be written as the union of two nonempty disjoint αδ-open sets.

Theorem 5.8. If f is a αδ-Totally-Continuous function from a αδ-connected space
X onto any space Y , then Y is an indiscrete space.

Proof. If possible, suppose that Y is not indiscrete. Let A be a proper non-empty
open subset of Y . Then f−1(A) is a proper non-empty αδ-clopen subset of (X, τ),
which is a contradiction to the fact that X is αδ-connected. ¤

Theorem 5.9. The set of all points x ∈ X in which a function f : (X, τ) → (Y, σ)
is not an αδ-Totally-Continuous is the union of αδ-frontier of the inverse images of
open sets containing f(x).

Proof. Suppose that f is not an αδ-Totally-Continuous function at x ∈ X. Then
there exists an open set V of Y containing f(x) such that f(U) is not contained in
V for each U ∈ αδO(X) containing x and hence x ∈ αδCl(X/f−1(V )). On the other
hand, X ∈ f−1(V ) ⊂ αδCl(f−1(V )) and hence X ∈ F≈αδ(f−1(V )). ¤

Conversely, suppose that f is an αδ-Totally-Continuous at x ∈ X and let V be
an open set of Y containing f(x). Then there exists U ∈ αδO(X) containing x such
that U ⊂ f−1(V ). Hence x ∈ αδInt(f−1(V )). Therefore, X ∈ F≈αδ(f−1(V )) for
each open set V of Y containing f(x).
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