Annals of Fuzzy Mathematics and Informatics Volume 7, No. 5, (May 2014), pp. 851–858 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On $(\in, \in \lor q_k)$ -fuzzy filters of CI-algebras

Ameneh Namdar, Arsham Borumand Saeid, Ghazanfar Jabbari

Received 17 July 2013; Accepted 20 October 2013

ABSTRACT. In this paper, by considering the relationship between a fuzzy point and a fuzzy set we introduce the notion of $(\in, \in \lor q_k)$ -fuzzy filter in *CI*-algebras. We state and prove some theorems in $(\in, \in \lor q_k)$ -fuzzy filter of *CI*-algebras also we study relationship between $(\in, \in \lor q_k)$ -fuzzy filters and fuzzy filters.

2010 AMS Classification: 06F35, 03G25, 08A72

Keywords: CI-algebra, Fuzzy CI-algebra, $(\in, \in \lor q)$ -fuzzy filter.

Corresponding Author: Ameneh Namdar (namdar.amene@gmail.com)

1. INTRODUCTION

In 1966, Imai and Iseki defined a class of algebras of type (2,0) called *BCK*-algebras. There exist several generalizations of *BCK*-algebras such as *BCH*-algebras, *BCC*-algebras, *BH*-algebras, *d*-algebras, *BE*- algebras, etc.

In 2009, B. L. Meng introduced the notion of a CI-algebra as a generalization of BE-algebra and dual BCK/BCI/BCH-algebras[3]. For further study see [2, 4, 5].

The theory of fuzzy sets was first developed by Zadeh[7] and has been applied to many branches in mathematics. A new type of fuzzy subgroup, that is, the $(\in, \in \lor q)$ -fuzzy subgroup, was introduced in an earlier paper of Bhakat and Das [1] by using the combined notions of "belongingness" and "quasicoincidence" of fuzzy points and fuzzy sets which was introduced by Pu and Liu [6].

In this paper, we introduce the concept of $(\in, \in \lor q_k)$ -fuzzy filter of CI-algebras and deal with related properties. We investigate the relationship between $(\in, \in \lor q_k)$ fuzzy filter and fuzzy filters. We give some conditions for a fuzzy set μ to be an $(\in, \in \lor q_k)$ -fuzzy filter. We establish characterizations of an $(\in, \in \lor q_k)$ -fuzzy filter.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras of type $\tau = (2, 0)$.

Definition 2.1. An element $X \in K(\tau)$ is called a CI-algebra if it satisfies the following axioms:

(a1) x * x = 1, (a2) 1 * x = x, (a3) x * (y * z) = y * (x * z), for all $x, y, z \in X$. If a CI-algebra X satisfies: (a4) x * 1 = 1 for all $x \in X$, Then we say that X is a *BE*-algebra.

We can define a partial ordering \leq on X by $(\forall x, y \in X)(x \leq y \Leftrightarrow x * y = 1)$. In a CI-algebra X, the following hold (see[3]); (b1) y * ((y * x) * x) = 1(b2) (x * 1) * (y * 1) = (x * y) * 1(b3) $1 \leq x \Rightarrow x = 1$, for all $x, y \in X$.

A CI-algebra X is said to be self-distributive if x * (y * z) = (x * y) * (x * z), for all $x, y, z \in X$. A CI-algebra X is said to be transitive (see[3]) if it satisfies:

 $(\forall x, y, z \in X)((y * z) * ((x * y) * (x * z)) = 1).$ A subset F of a CI-algebra X is called a filter of X(see[3]) if it satisfies; (F1) $1 \in F$ (F2) $(\forall x, y \in X)(x * y \in F, x \in F \Rightarrow y \in F).$

Definition 2.2 ([4]). A Fuzzy set μ in a CI-algebra X is called a fuzzy filter of X if it satisfies;

(F3) $(\forall x \in X)(\mu(1) \ge \mu(x)),$ (F4) $(\forall x, y \in X)(\mu(y) \ge \min\{\mu(x * y), \mu(x)\}),$ For any fuzzy set μ in X and $t \in (0, 1]$, the set

$$U(\mu; t) = \{ x \in X \mid \mu(x) \ge t \}$$

is called a level subset of X. A fuzzy set μ in a set X of the form (1) y = x,

(1)
$$\mu(y) := \begin{cases} 0 & y \neq x \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by (x, t).

For a fuzzy point (x,t) and a fuzzy set μ in a set X, Pu and Liu[6] introduced the symbol $(x,t)\alpha\mu$, where $\alpha \in \{\in, q, \in \lor q, \in \land q\}$. We say that $(x,t) \in \mu$ (resp. $(x,t)q\mu$, it means $\mu(x) \geq t(resp.\mu(x)+t>1)$, and in this case, (x,t) is said to belong to (resp. be quasi- coincident whit) a fuzzy set μ . To say that $(x,t) \in \lor q\mu(resp.(x,t) \in \land q\mu))$, we mean $(x,t) \in \mu$ or $(x,t)q\mu(resp.(x,t)\mu)$ and $(x,t)q\mu$.

3. Main results

In what follows, X is a CI-algebra and $\kappa \in [0, 1]$ unless otherwise specified. Also we define for $\alpha \in \{\in, \in \lor q_k\}$

852

(i) $(x,t)q_k\mu$, we mean $\mu(x) + t + k > 1$,

(ii) $(x,t) \in \forall q_k \mu$, means that $(x,t) \in \mu$ or $(x,t)q_k \mu$.

For say that $(x, t)\overline{\alpha}\mu$, we mean $(x, t)\alpha\mu$ dose not hold.

Definition 3.1. A fuzzy set μ in X is called an $(\in, \in \lor q_k)$ -fuzzy filter of X if it satisfies

 $(c_1)(x,t) \in \mu \Rightarrow (1,t) \in q_k \mu,$

 $(c_2)(x,t) \in \mu$ and $(x * y,r) \in \mu \Rightarrow (y,min\{t,r\}) \in \forall q_k \mu$ for all $x, y \in X$ and $t, r \in (0,1]$.

An $(\in, \in \lor q_k)$ -fuzzy filter of X with k = 0 is called $(\in, \in \lor q)$ -fuzzy filter of X.

Example 3.2. Let $X = \{1, a, b, c\}$ be a set with the following table:

*	1	a	b	c
1	1	a	b	c
a	1	1	b	c
b	1	a	1	c
c	c	c	c	1

Then (X, *, 0) is a CI-algebra. Define a fuzzy set $\mu : X \to [0, 1]$ on X, by $\mu(1) = 0.8, \mu(a) = \mu(b) = 0.4$ and $\mu(c) = 0.3$. Then μ is a $(\in, \in \lor q_k)$ -fuzzy filter of X.

Theorem 3.3. A fuzzy Set μ in X is an $(\in, \in \lor q_k)$ -fuzzy filter of X if and only if it satisfies two conditions:

 $\begin{array}{l} (c_3)(\forall x \in X, \mu(1) \geq \min\{\mu(x), \frac{1-k}{2}\}), \\ (c_4)(\forall x, y \in X, \mu(y) \geq \min\{\mu(x), \mu(x * y), \frac{1-k}{2}\}). \end{array}$

Proof. Assume that μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X, if (c_3) is not valid, then $\mu(1) < t_a \leq \min\{\mu(a), \frac{1-k}{2}\}$, for some $a \in X$ and $t_a \in (0, \frac{1-k}{2}]$. Thus $(a, t_a) \in \mu$ but $(1, t_a) \in \mu$. Also, $\mu(1) + t_a < 2t_a \leq 1-k$, i.e. $(1, t_a) \overline{q_k} \mu$. Therefore $(1, t_a) \in \overline{\forall q_k} \mu$, which is a contradiction. consequently, $\mu(1) \geq \min\{\mu(x), \frac{1-k}{2}\}$ for all $x \in X$. Assume that (c_4) is not valid. Then there exist $a, b \in X$ and $t \in (0, \frac{1-k}{2}]$ such that $\mu(b) \leq t \leq \min\{\mu(a), \mu(a * b), \frac{1-k}{2}\}$. If $\min\{\mu(a), \mu(a * b)\} < \frac{1-k}{2}$, then $\mu(b) < t \leq \min\{\mu(a), \mu(a * b)\}$, Hence $(a, t) \in \mu$ and $(a * b) \in \mu$ but $(y, t) \in \mu$. Moreover, $\mu(b) + t < 2t \leq 1-k$, and so $(b, t) \overline{q_k} \mu$. Therefore $(b, t) \in \overline{\forall q_k} \mu$, which is a contradiction, if $\min\{\mu(a), \mu(a + b) \geq \frac{1-k}{2}\}$ then $(a, \frac{1-k}{2}) \in \mu$ and $(a + b, \frac{1-k}{2}) \in \mu$ but $(b, \frac{1-k}{2}) \in \mu$. Also $\mu(b) + \frac{1-k}{2} < \frac{1-k}{2} + \frac{1-k}{2} = 1-k$, i.e. $(b, \frac{1-k}{2}) \overline{q_k} \mu$. Hence $(b, \frac{1-k}{2}) \in \overline{\forall q_k} \mu$ which is a contradiction. Consequently, $\mu(b) \geq \min\{\mu(a), \mu(a * b)\}$.

Conversely, let μ be a fuzzy set in X satisfying (c_3) and (c_4) , Let $x \in X$ and $t \in (0,1]$ be such that $(x,t) \in \mu$. Then $\mu(x) \ge t$, and so $\mu(1) \ge \min\{\mu(x), \frac{1-k}{2}\} \ge \min\{t, \frac{1-k}{2}\}$. If $t \le \frac{1-k}{2}$, then $\mu(1) \ge t$, i.e, $(1,t) \in \mu$. If $t > \frac{1-k}{2}$, then $\mu(1) \ge \frac{1-k}{2}$. Thus $\mu(1) + t > \frac{1-k}{2} + \frac{1-k}{2} = 1 - k$, i.e, $(1,t)q_k\mu$. Hence $(1,t) \in \forall q_k\mu$, which proves (c_1) . Let $x, y \in X$ and $t, r \in (0,1]$ be such that $(x,t) \in \mu$ and $(x * y, r) \in \mu$. Then $\mu(x) \ge t$ and $\mu(x * y) \ge r$. It follows from (c_4) that $\mu(y) \ge \min\{\mu(x), \mu(x, y), \frac{1-k}{2}\}$ $\ge \min\{t, r, \frac{1-k}{2}\} := \begin{cases} \min\{t, r\} & \text{if } t \le \frac{1-k}{2} & \text{or } r \le \frac{1-k}{2}, \\ \frac{1-k}{2} & \text{if } t > \frac{1-k}{2} & \text{or } r > \frac{1-k}{2} \end{cases}$

The case $\mu(y) \ge \min\{t, r\}$ implies that $(y, \min\{t, r\}) \in \mu$. From the $\mu(y) \ge \frac{1-k}{2}$ we have $\mu(y) + \min\{t, r\} > \frac{1-k}{2} + \frac{1-k}{2} = 1-k$,

i.e, $(y, min\{t, r\})q_k\mu$. Hence $(y, min\{t, r\}) \in \forall q_k\mu$. Therefore the condition (c_2) is valid. Consequently, μ is an $(\in, \in \lor q_k)$ -fuzzy filter of L.

Theorem 3.4. A fuzzy set μ in L is an $(\in, \in \lor q_k)$ -fuzzy filter of L if and only if it satisfies:

 $(*) \forall t \in (0, \frac{1-k}{2}] U(\mu; t) \neq \emptyset \Rightarrow U(\mu; t) \text{ is a filter of } L.$

Proof. Let μ be an $(\in, \in \forall q_k)$ -fuzzy filter of L. Let $t \in (0, \frac{1-k}{2}]$ be such that $U(\mu;t) \neq \emptyset. \text{ Obviously, } 1 \in U(\mu;t) \text{ for all } t \in (0, \frac{1-k}{2}]. \text{ Let } x, y \in X \text{ be Such that } x \in U(\mu;t) \text{ and } x * y \in U(\mu;t). \text{ Then } \mu(x) \ge t \text{ and } \mu(x*y) \ge t. \text{ It follows from } (c_4) \text{ that } \mu(x*y) \ge \min\{\mu(x), \mu(x*y), \frac{1-k}{2}\} \ge \min\{t, \frac{1-k}{2}\} = t \text{ so that } y \in U(\mu;t).$ Hence $U(\mu; t)$ is a filter of X.

Conversely, let μ be a fuzzy set in X in which (*) is valid. If there exists a $a \in X$ such that $\mu(1) < \min\{\mu(a), \frac{1-k}{2}\}$, then $\mu(1) < t_a \leq \min\{\mu(a), \frac{1-k}{2}\}$ for some $t_a \in$ $(0, \frac{1-k}{2}]$. Thus $(a, t_a) \in \mu$ but $(1, t_a) \in \mu$. Also, $\mu(1) + t_a < 2t_a \le 1-k$, i.e, $(1, t_a) \overline{q_k} \mu$. Hence $(1, t_a) \in \forall q_k \mu$, which is a contradiction. Therefore $\mu(1) \geq \min\{\mu(x), \frac{1-k}{2}\}$ for all $x \in X$. Assume that exist $a, b \in X$ such that $\mu(b) < \min\{\mu(a), \mu(a * b), \frac{1-k}{2}\}$. Then $\mu(b) < t \le \min\{\mu(a), \mu(a * b), \frac{1-k}{2}\}$ for some $t \in (0, \frac{1-k}{2}]$, and so $a \in U(\mu; t)$ and $a * b \in U(\mu; t)$, but $b \notin U(\mu; t)$. Since $U(\mu; t)$ is a filter of X, it is a contradiction. Therefore $\mu(y) \ge \min\{\mu(x), \mu(x * y), \frac{1-k}{2}\}$ for all $x, y \in X$. Consequently, we conclude that μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X by Theorem 3.3.

Corollary 3.5. A fuzzy set μ in X is an $(\in, \in \lor q)$ fuzzy filter of X if and only if it satisfies:

 $\forall t \in (0, 0.5], U(\mu; t) \neq \varnothing \Rightarrow U(\mu; t) \text{ is a filter of } X.$

Theorem 3.6. If A is a filter of X, then a fuzzy set μ in X defined by $\mu: X \to [0,1], x := \begin{cases} t_1 & if \quad x \in A, \\ t_2 & otherwise \end{cases}$ where $t_1 \in [\frac{1-k}{2}, 1]$ and $t_2 \in (0, \frac{1-k}{2})$, is an $(\in, \in \lor q_k)$ -fuzzy filter of X.

Proof. Note that $U(\mu; r) := \begin{cases} A & if \quad r \in (t_2, \frac{1-k}{2}], \\ X & r \in (0, t_2] \\ f & \mathbf{V} & \text{It follows from} \end{cases}$ which is a filter of X. It follows from Theorem 3.4. That μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X.

Corollary 3.7. If A is a filter of X, then a fuzzy set μ in X defined by $\mu: L \to [0,1], x := \begin{cases} t_1 & if \quad x \in A, \\ t_2 & otherwise \end{cases}$ where $t_1 \in [0.5,1]$ and $t_2 \in (0,0.5)$, is an $(\in, \in \lor q_k)$ -fuzzy filter of X.

Theorem 3.8. Every fuzzy filter is an $(\in, \in \lor q_k)$ -fuzzy filter.

We show that the converse of above theorem is not true in general.

Example 3.9. Let $X = \{1, a, b, c\}$ be a set with the following table: 854

		a		
1	1	a	b	c
$a \\ b$	1	1	b	c
	1	a	1	c
c	1	a	b	1

Then (X, *, 0) is a CI-algebra. Define a fuzzy set $\mu : X \to [0, 1]$ on X, by $\mu(1) = \mu(a) = \mu(b) = 0.6$ and $\mu(c) = 0.5$ and k = 0.2. Then μ is a $(\in, \in \lor q_k)$ -fuzzy filter of X but is not a fuzzy filter because $\mu(c)$ is not $\geq \min\{\mu(b), \mu(c * b)\}$.

Theorem 3.10. If μ is an $(\in, \in \lor q_k)$ -fuzzy filter satisfying $\mu(1) < \frac{1-k}{2}$, then μ is a fuzzy filter.

Proof. Let μ be an $(\in, \in \lor q_k)$ -fuzzy filter of X such that $\mu(1) < \frac{1-k}{2}$, using (c_3) we have $min\{\mu(x), \frac{1-k}{2}\} \leq \mu(1) < \frac{1-k}{2}$ and so $\mu(x) \leq \frac{1-k}{2}$ for all $x \in X$. It follows from (c_3) and (c_4) that $\mu(1) \geq \mu(x)$ and $\mu(y) \geq min\{\mu(x), \mu(y*x)\}$ for all $x, y \in X$. Hence μ is a fuzzy filter of X.

Corollary 3.11. If μ is an $(\in, \in \lor q)$ -fuzzy filter satisfying $\mu(1) < 0.5$, then μ is a fuzzy filter.

Proposition 3.12. For any $k_1, k_2 \in (0, 1]$ with $k_1 < k_2$, every $(\in, \in \lor q_{k_1})$ -fuzzy filter is an $(\in, \in \lor q_{k_2})$ -fuzzy filter.

Example 3.13. Let $X = \{1, a, b, c\}$ be a set with the following table:

Then (X, *, 0) is a CI-algebra. Define a fuzzy set $\mu : X \to [0, 1]$ on X, by $\mu(1) = \mu(a) = \mu(b) = 0.6$ and $\mu(c) = 0.5$ and $k_1 = 0.1$. Then μ is a $(\in, \in \lor q_{k_1})$ -fuzzy filter of X. Also by $\mu(1) = \mu(a) = \mu(b) = 0.6$ and $\mu(c) = 0.4$ and $k_2 = 0.4$, then μ is a $(\in, \in \lor q_{k_2})$ -fuzzy filter of X, but $(\in, \in \lor q_{k_2})$ -fuzzy filter is not an $(\in, \in \lor q_{k_1})$ -fuzzy filter.

For any fuzzy set μ in X and any $t \in (0, 1]$, we consider for subsets:

$$Q(\mu;t) := \{x \in X \mid (x,t)q\mu\}, [\mu]_t := \{x \in X \mid (x,t) \in \forall q\mu\}, [\mu]_t := \{x \in X \mid (x,t) \in \forall q\mu\}, [\mu]_t \in \{x \in X \mid (x,t) \in \forall \{x \in X \mid (x,t) \in \forall \{x,t\}, \{x,t\},$$

$$Q^{k}(\mu;t) := \{x \in X | (x,t)q_{k}\mu\}, [\mu]_{t}^{k} := \{x \in X | (x,t) \in \forall q_{k}\mu\}$$

It is clear that $[\mu]_t = U(\mu; t) \bigcup Q(\mu; t)$ and $[\mu]_t^k = U(\mu; t) \bigcup Q^k(\mu; t)$.

Theorem 3.14. If μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X, then $Q^k(\mu; t)$ is a filter of X whenever $Q^k(\mu; t) \neq \emptyset$, for all $t \in (\frac{1-k}{2}, 1]$.

Proof. Assume that μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X and let $t \in (\frac{1-k}{2}, 1]$ be such that $Q^k(\mu; t) \neq \emptyset$. Then there exists $x \in Q^k(\mu; t)$, and so $\mu(x) + t + k > 1$. It follows (c_3) that $\mu(1) \ge \min\{\mu(x), \frac{1-k}{2}\} \ge \min\{1 - t - k, \frac{1-k}{2}\} = 1 - t - k$

so that $1 \in Q^k(\mu; t)$. Let $x, y \in X$ be such that $x \in Q^k(\mu; t)$ and $x * y \in Q^k(\mu; t)$. Then $(x, t)q_k\mu$ and $(x + y, t)q_k\mu$, i.e., $\mu(x) + t + k > 1$ and $\mu(x * y) + t + k > 1$. Using (c_4) , we have $\mu(y) \ge \min\{\mu(x), \mu(x * y), \frac{1-k}{2}\} \ge \min\{1 - t - k, \frac{1-k}{2}\} = 1 - t - k$ and so $(y, t)q_k\mu$, that is , $y \in Q^k(\mu; t)$. Therefore $Q^k(\mu; t)$ is a filter of X. \Box

Corollary 3.15. If μ is an $(\in, \in \lor q)$ -fuzzy filter of X, then $\forall t \in (0.5, 1], Q(\mu; t) \neq \emptyset \Rightarrow Q(\mu; t)$ is a filter of X.

Proof. It is obvious by taking k = 0 in Theorem 3.14.

Corollary 3.16. Let $k, r \in (0, 1]$ with k < r. If μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X, then $Q^r(\mu; t)$ is an filter of X whenever $Q^r(\mu; t) \neq \emptyset$ for all $t \in (\frac{1-r}{1}, 1]$.

Proof. It is clear by Proposition 3.12 and Theorem 3.14.

Theorem 3.17. For any fuzzy μ in X, the following are equivalent:

(1) μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X.

(2) $\forall t \in (0,1]; [\mu]_t^k \neq \emptyset \Rightarrow [\mu]_t^k \text{ is a filter of } X.$

Proof. Assume that μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X and let $t \in (0, 1]$ be such that $[\mu]_t^k \neq \emptyset$. Then there exists $x \in [\mu]_t^k = U(\mu; t) \bigcup Q^k(\mu; t)$, and so $x \in U(\mu; t)$ or $x \in Q^k(\mu; t)$, If $x \in U(\mu; t)$. then (c_3) implies that

$$\begin{split} \mu(1) &\geq \min\{\mu(x), \frac{1-k}{2}\} \geq \min\{t, \frac{1-k}{2}\} \\ &= \begin{cases} t & if \quad t \leq \frac{1-k}{2} \\ \frac{1-k}{2} > 1-t-k & if \quad t > \frac{1-k}{2} \end{cases} \end{split}$$

Thus $1 \in U(\mu; t) \bigcup Q^k(\mu; t) = [\mu]_t^k$.

Assume that $x \in Q^k(\mu; t)$. Then $(x, t)q_k\mu$, i.e., $\mu(x) + t + k > 1$. Thus if $t > \frac{1-k}{2}$, then

$$\mu(1) \ge \min\{\mu(x), \frac{1-k}{2}\} := \begin{cases} \mu(x) > 1 - t - k & if \\ \frac{1-k}{2} > 1 - k - t & if \\ \mu(x) \ge \frac{1-k}{2} \end{cases}$$
and so $1 \in Q^k(\mu; t) \subseteq [\mu]_t^k$. If $t \le \frac{1-k}{2}$, then
$$\mu(1) \ge \min\{\mu(x), \frac{1-k}{2}\} := \begin{cases} \mu(x) > 1 - t - k & if \\ \frac{1-k}{2} \ge t & if \\ \frac{1-k}{2} \ge t & if \\ \mu(x) \ge \frac{1-k}{2} \end{cases}$$

which implies that $1 \in U(\mu; t) \bigcup Q^k(\mu; t) = [\mu]_t^k$. Let $x, y \in X$ be such $x \in [\mu]_t^k$ and $x + y \in [\mu]_t^k$. Then

$$\begin{split} \mu(x) &\geq t \text{ or } \mu(x) + t + k > 1, \\ \text{and} \\ \mu(x+y) &\geq t \text{ or } \mu(x+y) + t + k > 1 \\ \text{we can consider four cases:} \\ (1) & \mu(x) \geq t \text{ and } \mu(x*y) \geq t \\ (2) & \mu(x) \geq t \text{ and } \mu(x*y) + t + k > 1, \\ (3) & \mu(x) + t + k > 1 \text{ and } \mu(x*y) \geq t, \\ (4) & \mu(x) + t + k > 1 \text{ and } \mu(x*y) + t + k > 1. \\ \text{for the first case, } (c_4) \text{ implies that} \\ \mu(y) &\geq \min\{\mu(x), \mu(x*y), \frac{1-k}{2}\} \\ &\geq \min\{t, \frac{1-k}{2}\} := \begin{cases} \frac{1-k}{2} & if \quad t > \frac{1-k}{2}, \\ t & if \quad t \leq \frac{1-k}{2} \end{cases} \end{split}$$

and so $\mu(y) + t + k > \frac{1-k}{2} + \frac{1-k}{2} + k = 1$, i.e, $(y,t)q_k\mu$, or $y \in U(\mu;t)$. Therefore $y \in U(\mu;t) \bigcup Q^k(\mu;t) = [\mu]_t^k$. For the case (3), $\mu(y) \ge \min\{\mu(x), \mu(x*y), \frac{1-k}{2}\} = \min\{\mu(x*y), \frac{1-k}{2}\} > 1 - t - k$

we have $min\{\mu(x * y), \frac{1-k}{2}\} \le \mu(x)$; and $\mu(y) \ge min\{\mu(x), \mu(x * y), \frac{1-k}{2}\} =$ $\mu(x) \ge t$

whenever $\min\{\mu(x * y), \frac{1-k}{2}\} \le \mu(x)$; and $\mu(y) \ge \min\{\mu(x), \mu(x * y), \frac{1-k}{2}\} =$ $\mu(x) \ge t$

whenever $\min\{\mu(x*y), \frac{1-k}{2}\} > \mu(x)$. Thus $y \in U(\mu; t) \bigcup Q^k(\mu; t) = [\mu]_t^k$. suppose that $t \leq \frac{1-k}{2}$. Then $1 - t \geq \frac{1-k}{2}$, which implies that $\mu(y) \geq \min\{\mu(x), \mu(x*y), \frac{1-k}{2}\} = \min\{\mu(x), \frac{1-k}{2}\} \geq t$ whenever $\min\{\mu(x), \frac{1-k}{2}\} > \mu(x*y)$ and thus $y \in U(\mu; t) \bigcup Q^k(\mu; t) = [\mu]_t^k.$

We have similar result of the case (4), for the final case , if $t > \frac{1-k}{2}$, then $1 - t - k \le 1 - t < \frac{1-k}{2}$. Hence $\mu(y) \ge \min\{\mu(x), \mu(x * y), \frac{1-k}{2}\} = \min\{\mu(x), \mu(x * y)\} > 1 - t - k$ whenever $\min\{\mu(x), \mu(x * y)\} < \frac{1-k}{2}$. Hence $y \in Q^k(\mu; t) \subseteq [\mu]_t^k$. If $t \le \frac{1-k}{2}$. then

 $\begin{array}{l} \mu(y) \geq \min\{\mu(x), \mu(x*y), \frac{1-k}{2}\} = \frac{1-k}{2} \geq t \\ \text{whenever } \min\{\mu(x), \mu(x*y)\} \geq \frac{1-k}{2}; \text{ and} \\ \mu(y) \geq \min\{\mu(x), \mu(x*y), \frac{1-k}{2}\} = \min\{\mu(x), \mu(x*y)\} > 1-t-k \\ \text{whenever } \min\{\mu(x), \mu(x*y)\} < \frac{1-k}{2}. \text{ Thus } y \in U(\mu;t) \bigcup Q^k(\mu;t) = [\mu]_t^k, \text{ there-} \\ \mu(y) \leq \mu(y) \leq \frac{1-k}{2}. \end{array}$ fore $[\mu]_t^k$ is a filter of X.

Conversely, let μ be a fuzzy set in X such that $[\mu]_t^k$ is a filter of X for all $t \in$ (0,1]. If there exists $a \in X$ such that $\mu(1) < \min\{\mu(a), \frac{1-k}{2}\}$, then $\mu(1) < t_a \leq 1$ $\begin{array}{l} (0,1] \quad \text{If } If (a), \frac{1-k}{2} \} \text{ for some } t_a \in (0, \frac{1-k}{2}]. \text{ If follows that } a \in U(\mu; t_a) \subseteq [\mu]_{t_a}^k \text{ but } \\ 1 \notin U(\mu; t_a). \text{ Also, } \mu(1) + t_a < 2t_a \leq 1-k, \text{ and so } (1, t_a)\overline{q_k}\mu, \text{ i.e, } 1 \notin Q^k(\mu; t_a). \\ \text{Therefore } 1 \notin [\mu]_{t_a}^k, \text{ which is a contradiction.} \\ \text{Hence } \mu(1) \geq \min\{\mu(x), \frac{1-k}{2}\} \text{ for all } x \in X. \text{ Suppose that there exist } a, b \in X \\ \text{Intermodel} (1) \geq \min\{\mu(x), \frac{1-k}{2}\} \text{ for all } x \in X. \end{array}$

such that $\mu(b) < \min(\mu(a), \mu(a * b), \frac{1-k}{2})$. Then

(5) $\mu(b) < t_b \le \min\{\mu(a), \mu(a * b), \frac{\tilde{1}-k}{2}\}$

(5) $\mu(c) \in c_b \subseteq \min\{\mu(a), \mu(a+b), \frac{1}{2}\}$ for some $t_b \in (0, \frac{1-k}{2}]$, which implies $a, a * b \in U(\mu; t_b) \subseteq [\mu]_{t_b}^k$ so from (b_2) that $b \in [\mu]_{t_b}^k = U(\mu; t_b) \bigcup Q^k(\mu; t_b)$ since $[\mu]_{t_b}^k$ is a filter of X. But , (5) implies that $b \notin U(\mu; t_b)$ and $\mu(b) + t_b < 2t_b \leq 1 - k$ i.e., $b \notin Q^k(\mu; t_b)$. Which is a contradiction. Therefore $\mu(y) \geq \min\{\mu(x), \mu(x * y), \frac{1-k}{2}\}$ for all $x, y \in X$. By Theorem 3.3, we conclude that μ is an $(\in, \in \lor q_k)$ -fuzzy filter of X. \square

Corollary 3.18. For any fuzzy set μ in X, the following conditions are equivalent (1) μ is an $(\in, \in \lor q)$ -fuzzy filter of X,

(2) $\forall \in [0,1]; [\mu]_t \neq \emptyset \Rightarrow [\mu]_t$ is a filter of X.

4. Conclusions

In this paper, we defined some types of $(\in, \in \lor q_k)$ -fuzzy filter of CI-algebra and investigated the relationship between filters and $(\in, \in \lor q_k)$ -fuzzy filter which seems to be a good support for future study. The other direction of future study is an investigation of $(\in, \in \lor q)$ -fuzzy filter on interval valued.

Acknowledgements. The authors wish to thank the reviewers for their excellent suggestions that have been incorporated into this paper.

References

- [1] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroups, Fuzzy sets and systems 80 (1996) 359–368.
- [2] K. H. Kim, A note on CI-algebras, Int. Math. Forum 6(1-4) (2011) 1–5.
- [3] B. L. Meng, CI-algebras, Sci. Math. Jpn. 71(1) (2009) 695–701.
- [4] B. L. Meng, Closed filters in CI-algebras, Sci. Math. Jpn. 71(3) (2010) 265–270.
- [5] B. Piekart and A. Walendziak, On filters and upper sets in CI-algebras, Algebra Discrete Math. 11(1) (2011) 109–115.
- [6] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 5711–599.
- [7] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

<u>AMENEH NAMDAR</u> (namdar.amene@gmail.com)

Department of Mathematics, Zarrin Dasht Branch, Islamic Azad University, Zarrin Dasht, Iran

<u>ARSHAM BORUMAND SAEID</u> (arsham@mail.uk.ac.ir) Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

<u>GHAZANFAR JABBARI</u> (Mm-Jabbari@gmail.com)

Department of Mathematics, Zarrin Dasht Branch, Islamic Azad University, Zarrin Dasht, Iran