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1. Introduction

The concept of 2−metric spaces was introduced by Gähler in 1963 [8], where the
role of the distance function in a metric space representing linear separation of points
is replaced by a function representing area-separation of three points. Subsequently
in 1965, he extended the idea of 2−metric spaces to 2−normed spaces [9]. The
subject has been studied by several mathematicians like A. White and Y. J. Cho
[27], R. W. Freese [6], and others. Later, Gähler himself initiated (see [10]) the idea
of an n−norm on a linear space. Afterwards, Gunawan and Mashadi [11], Kim and
Cho [13], Malceski [17], and Misiak [18] enriched the theory of fuzzy n−spaces.

On the other hand, after Lotfi Zadeh [28] introduced the idea of fuzzy subset in
1965 in order to formulate a theoretical background of machine intelligence, its de-
mand has enormously increased day-by-day for its applicability in real life problems
involving uncertainty, inconsistency, and vagueness.

It is well-known that metric and norm structures play vital role in the subject of
functional analysis. So, in order to develop fuzzy functional analysis, one has to take
care about the suitable extension of these structures. Historically, the problem of
the fuzzification of the metric structure came first. In 1975, Kramosil and Michalek
[14] introduced an idea of a fuzzy metric on a nonempty set X by a mapping which
assigns some grade α ∈ (0, 1] associated with the distance of a pair of points x, y ∈ X
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and a non negative real number t. Also Zi-Ke Deng [4] introduced an idea of distance
in the set of all fuzzy points of X and defined fuzzy pseudometric space in 1982.
In 1984, Kaleva and Seikkala [15] defined fuzzy metric on X as a mapping which
associates a fuzzy real number for each pair of elements x, y of X. In the same year,
studies on fuzzy normed linear spaces were introduced by A. K. Katasaras [16] while
he was studying fuzzy topological vector spaces. In 1992, Felbin [5] introduced an
idea of a fuzzy norm on a linear space by assigning a fuzzy real number to each
element of the linear space so that the corresponding fuzzy metric associated to
this fuzzy norm is of Kaleva and Seikkala type. In 1994, Cheng and Mordeson [3]
introduced another idea of a fuzzy norm on a linear space in such a manner that the
corresponding fuzzy metric is of Kramosil and Michalek type. Following Cheng and
Mordeson, Bag and Samanta [1] introduced the concept of a fuzzy norm on a linear
space in 2003. In 2005, Vijayabalaji and Narayanan [19] extended Bag and Samanta
type fuzzy normed linear spaces to fuzzy n−normed linear spaces. Also there are
some papers and book published by S. Vijayabalaji, N. Thillaigovindan, Young Bae
Jun and S. Anita Shanthi which are relevant to our paper ( for reference please see
[21, 24, 25]). There are also some papers and books which are relevant to our paper
(for reference please see [7, 12, 20, 22, 26]).

It is worth mentioning that in Bag-Samanta type fuzzy normed spaces a decom-
position theorem is derived, which actually expresses a fuzzy norm into a family
of crisp norms in a unique manner and subsequently, these decomposition theorem
was instrumental in developing the theory of fuzzy normed linear spaces and their
duals with applications in stability theory of functional equations and fixed point
theory. But ironically Bag and Samanta had to restrict the t−norm associated with
the triangle inequality of fuzzy norm as tmin. Recently in Bag and Samanta [2] tried
to derive results on finite dimensional fuzzy normed linear spaces by waiving this re-
striction on the t−norm. Along this line of thought, in this paper, we have extended
the results of Bag and Samanta in fuzzy n−normed linear spaces. The organisation
of this paper is as follows:

Section 2 is the preliminary section. In Section 3 we first extend a crucial lemma
to fuzzy n−normed linear space setting and afterwards derive the completeness and
compactness of finite dimensional fuzzy n−normed linear spaces.

2. Preliminaries

In this section we discuss definitions of fuzzy norms, examples of fuzzy normed
linear spaces and we state some of the results on finite dimensional fuzzy normed lin-
ear spaces regarding its compactness, completeness. More over this section contains
definitions of fuzzy n−norm and some known results involving them.

2.1. n−norm and fuzzy n−norm.

Definition 2.1 (n−Normed Linear Space [19]). Let n ∈ N (The set of all Natural
numbers) and X be a real linear space of dimension d ≥ n. (d can be infinite). A
real valued function ‖ ., ., . . . . , . ‖ on Xn satisfying the following four properties is
called an n−norm on the linear space X.

(1) ‖ x1, x2, ......., xn ‖= 0 if and only if x1, x2, ......., xn are linearly dependent.
(2) ‖ x1, x2, ......., xn ‖ is invariant under any permutation of x1, x2, ........, xn.
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(3) ‖ x1, x2, ........., cxn ‖=| c |‖ x1, x2, .........., xn ‖, for any real c.
(4) ‖ x1, x2, ........, xn−1, y+z ‖≤‖ x1, x2, ........, xn−1, y ‖ + ‖ x1, x2, ........., xn−1,

z ‖ ∀y, z ∈ X.
The pair (X, ‖ ., ., ......., ‖) is called an n−normed linear space.

The definition of fuzzy n−normed linear spaces as introduced by A. L. Narayanan
and S. Vijayabalaji is given below.

Definition 2.2 (Fuzzy n−Normed Linear Space [19]). Let X be a linear space over
a real field F. A fuzzy subset N of X ×X × ....×X × R is called a fuzzy n−norm
on X iff,

(N1) For all t ∈ R with t ≤ 0, N(x1, x2, .........., xn, t) = 0;
(N2) For all t ∈ R with t > 0, N(x1, x2, ........., xn, t) = 1 iff x1, x2, .........., xn are

linearly dependent.
(N3) N(x1, x2, ........, xn, t) is invariant under any permutation of x1, x2, ......, xn.
(N4) For all t ∈ R with t > 0, N(x1, x2, ......., cxn, t) =N(x1, x2, ......, xn, t

|c| ), if
c ∈ F and c 6= 0.

(N5) For all s, t ∈ R, N(x1, x2, ....., xn + x
/
n, s + t) ≥ min{N(x1, x2, ......, xn, s),

N(x1, x2, ......., x, t)}.
(N6) N(x1, x2, ......, x, t) is a non decreasing function of R and
lim

t→∞
N(x1, x2, ....., xn, t) = 1.

Then the pair (X,N) is called a fuzzy n−normed linear space.

In [19] S. Vijayabalaji and A. L. Narayanan have introduced fuzzy n−norm and
they decomposed a fuzzy n−norm to a family of crisp n−norms.

Later in[23], S. Vijayabalaji and N. Thillaigovindan took the following definition
of a fuzzy n−normed linear space with general t-norm.

Definition 2.3 (Fuzzy n−Normed Linear Space [23]). Let X be a linear space over
a real field F. A fuzzy subset N of Xn × [0,∞) is called a fuzzy n− norm on X iff,

(N1)/ N(x1, x2, ...., xn, t) > 0;
(N2)/ N(x1 , x2, ...., xn, t) = 1 iff x1, x2, ........., xn are linearly dependent.
(N3)/ N(x1, x2, ...., xn , t) is invariant under any permutation of x1, x2, ..., xn.
(N4)/ N(x1, x2, ...cxn, t) = N(x1, x2, ..., xn, t

|c| ) if c ∈ F,c 6= 0
(N5)/N(x1, x2, ..., xn + x′n, s + t) ≥ N(x1, x2, ..., xn, s) ∗N(x1, x2, ..., x

′
n, t)

(N6)/N(x1, x2, ..., xn, t) is left continuous and non-decreasing such that
lim

t→∞
N(x1, x2, ...xn, t) = 1.

Then the pair (X, N) is called a fuzzy n−normed linear space.

Definition 2.4 ([23]). A sequence {xn}in a fuzzy n−normed linear space (X, N)
is said to converge to x if for each y1, y2, . . ., yn−1 ∈ X, r ∈ (0, 1) , t > 0, ∃ a n0 ∈ N
s.t. N(y1, y2, ..., yn−1, xn − x, t) > 1− r ∀n ≥ n0.

Theorem 2.5 ([23]). In a fuzzy n−normed linear space (X,N) a sequence {xn}
converge to x iff for each y1, y2, . . ., yn−1 ∈ X, N(y1, y2, ..., yn−1, xn−x, t) → 1 as
n →∞.

Definition 2.6 ([23]). A sequence {xn} in a fuzzy n−normed linear space (X, N) is
said to be a Cauchy sequence if for each y1, y2, . . ., yn−1 ∈ X and ε ∈ (0, 1) , t > 0, ∃
an integer no ∈ N such that N(y1, y2, ..., yn−1, xn−xk, t) > 1− ε ∀n, k ≥ n0.
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Theorem 2.7 ([23]). In a fuzzy n−normed linear space (X,N) every convergent
sequence is Cauchy.

Definition 2.8 ([23]). A fuzzy n−normed linear space is said to be complete if
every Cauchy sequence in it is convergent.

Definition 2.9. A fuzzy n−normed linear space (X,N) is said to be compact if
every sequence in (X, N) has a convergent subsequence.

Definition 2.10. Let (X, N) be a fuzzy n−normed linear space. A⊆ X is said
to be bounded if for each y1, y2, . . ., yn−1 ∈ X and r ∈ (0, 1)∃t0 > 0 such that
N (y1, y2, . . . , yn−1, x, t0) > 1− r ∀x ∈ A.

3. Completeness and compactness

Firstly we take the definition of fuzzy n−norm in our sense.

Definition 3.1. Let X be a linear space over a field F (R or C) of dimension
d ≥ n, and∗ be a t−norm. A fuzzy subset N of Xn×R is called a fuzzy n−norm
on X if the following conditions are satisfied:

(N1) for all t ∈ R with t ≤ 0, N (x1, x2, . . . ., xn, t) = 0;
(N2) for all t ∈ R with t > 0, N (x1, x2, . . . ., xn, t) = 1, if and only if x1, x2, . . . ,

xn are linearly dependent;
(N3) N (x1, x2, . . . ., xn, t) is invariant under any permutation of x1, x2, . . . , xn;
(N4) for all t ∈ R with t > 0 and c ∈ F & c 6= 0,

N (x1, x2, . . . ., cxn, t) = N

(
x1, x2, . . . ., xn,

t

| c |
)

;

(N5) for all s, t ∈ R,

N (x1, x2, . . . ., xn + x′n, s + t) ≥ N (x1, x2, . . . ., xn, s) ∗N (x1, x2, . . . ., x′n, t) ;

(N6)

lim
t→∞

N (x1, x2, . . . ., xn, t) = 1.

Then (X, N) is called a fuzzy n−normed linear space.

Remark 3.2. The non-decreasing property of N (x1, x2, . . ., xn, ◦) follows from
(N2) and (N5). In fact, for s > t,

N (x1, x2, . . . ., xn−1, x, s) = N (x1, x2, . . . ., xn−1, x + 0, t + (s− t))
≥ N (x1, x2, . . ., xn−1, x, t) ∗N (x1, x2, . . ., xn−1, 0, (s− t))
= N (x1, x2, . . ., xn−1, x, t) ∗ 1 = N (x1, x2, . . ., xn−1, t)

Example 3.3 ([19]). Let (X, ‖•, •, , , , •‖) be an n−normed spaces as in Definition
2.1. Define

N (x1, x2, . . ., xn, t) =

{
t

t+‖x1, x2, . . ., xn‖ when t ∈ R+, (x1, x2, . . ., xn) ∈ Xn

0 when t ≤ 0

Then (X, N)is a fuzzy n−normed linear space.
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Example 3.4. Let (X, N) be a fuzzy n−normed linear space with underlying t −
norm = min. Define,N/ : Xn × R→[0, 1] by,

N/ (x1, x2, . . ., xn, t) =

{
N(x1, x2, . . .,xn,t)+1

2 t > 0
0 t ≤ 0

Then (X, N) is a fuzzy n−normed linear space.

Theorem 3.5. In a fuzzy n−normed linear space with the continuity of the under-
lying t-norm at the point (1, 1), limit of a convergent sequence is unique.

Proof. Let (U, N) be a fuzzy n−normed linear space. Let {xp}be a convergent se-
quence in U. If possible, let for x, y ∈ X (x 6= y), {xp} → x and {xp} → y as p →∞.
As x 6= y and dimU ≥ n, thus ∃ a linearly independent set of vectors {u1, u2, u3, ...,
un−1, x− y} in U. Now,

N(u1, u2, ..., un−1, x− y, 2s)
= N(u1, u2, ..., un−1, x− xp + xp − y, 2s)
≥ N(u1, u2, ..., un−1, x− xp, s) ∗N(u1, u2, ..., un−1, xp − y, s)

→ 1 ∗ 1 = 1 as p →∞∀s ∈ R+ (since t− norm is continuous at (1, 1))
⇒ {u1, u2, ..., un−1,x− y}

is a linearly dependent set of vectors, which is a contradiction. ¤

Theorem 3.6. Let (U,N) be a fuzzy n−normed linear space with underlying t−norm
being continuous at(1, 1). Let {xp} be a Cauchy sequence in (U,N) having a conver-
gent subsequence. Then{xp} is convergent.

Proof. Let ε > 0 be chosen arbitrarily. By the continuity of the t−norm at (1, 1), it
follows that ∃ δ > 0 s.t.

(1− δ) ∗ (1− δ) > (1− ε) . . . . . (1)

Let {xpl
} be a convergent subsequence of {xp} converging to x “say” in U. Since

xpl
→ x as l →∞, for fixed y1, y2, . . . ., yn−1 ∈ U and for any given t ∈ R+, ∃ k1 ∈

N such that

N (y1, y2, . . ., yn−1, xpl
− x, t) > 1− δ ∀ l ≥ k1

Since {xp}is Cauchy, ∃ k2 ∈ N such that

N (y1, y2, . . ., yn−1, xm − xk, t) > 1− δ ∀m, k ∈ N ≥ k1 withm ≥ k2, k ≥ k2, ∀t ∈ R+.

Let k′ = max {k1, k2} .

∴ N (y1, y2, . . ., yn−1, xp − x, 2t)
= N (y1, y2, . . ., yn−1, xp − xpl

+ xpl
− x, t)

≥ N (y1, y2, . . ., yn−1, xp − xpl
, t)

∗N (y1, y2, . . ., yn−1, xpl
− x, t)

≥ (1− δ) ∗ (1− δ) > (1− ε) (From (1))
∀ p, l ∈ N with p ≥ k′ , l ≥ k′.

841



Upasana Samanta et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 5, 837–850

Thus lim
p→∞

N (y1, y2, . . ., yn−1, xp − x, 2t) = 1. Since this is true for any y1, y2, . . .,

yn−1, and t ∈ R+, it follows that {xp} → x. ¤
Lemma 3.7. Let (U,N) be a fuzzy n−normed linear space with underlying t− norm
associated with the fuzzy n−norm N be continuous at (1, 1). If {x1, x2, ..., xk} be a
linearly independent set of vectors in U, then ∃c > 0, δ > 0 such that for each set of
scalars {α1, α2, ..., αk} ∃ y1, y2, ..., yn−1 ∈ U such that

N

(
y1, y2, . . ., yn−1,

k∑
i=1

αixi, c
k∑ | αi |

i=1

)
< 1− δ . . . . . (1)

Proof. Let S =
k∑

i=1

| αi |. If S = 0, then | αi |= 0, ∀i = 1, 2, . . ., k. Now N(y1,

y2, . . ., yn−1, θ, 0) = 0 and the result holds for any c > 0 and δ ∈ (0, 1). Next let
S 6= 0. Then (1) is equivalent to

N

(
y1, y2, . . ., yn−1,

k∑

i=1

βixi, c

)
< 1− δ.. . . . .(2).

where βi = αi

S , i = 1, 2, ..., k, so that
k∑

i=1

| βi |= 1. If possible, let (2) does not hold.

Then for any c > 0 and δ ∈ (0, 1),∃ a set of scalars β1, β2, ..., βk with
k∑

i=1

| βi |= 1

such that for any y1, y2, . . . ., yn−1 ∈ U

N

(
y1, y2, . . ., yn−1,

k∑

i=1

βixi, c

)
≥ 1− δ.. . . . .(3).

In particular, for each positive integer m, if we choose c = δ = 1
m then ∃ a set of

scalars
{

β
(m)
1 , β

(m)
2 , . . . β

(m)
k

}
with

k∑
i=1

| β(m)
i |= 1 such that for each y1, y2, . . . ., yn−1

∈ U

N

(
y1, y2, . . . yn−1, zm,

1
m

)
≥ 1− 1

m

where,

zm = β
(m)
1 x1 + β

(m)
2 x2 + β

(m)
3 x3 + . . . + β

(m)
k xk, m = 1, 2, . .

Since,
k∑

i=1

| β(m)
i |= 1, m = 1, 2, . .

we have,

0 ≤| β(m)
i |≤ 1, i = 1, 2, . . .k; m = 1, 2, . . .

So, for each fixed i,
{

β
(m)
i

}∞
m=1

is bounded and hence, in particular,
{

β
(m)
1

}∞
m=1

is

also so. Thus,
{

β
(m)
1

}∞
m=1

has a convergent subsequence converging to β1. Let {z1,m}
842
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denote the corresponding subsequence of {zm}. By the same argument, as above
{z1,m} has a subsequence {z2,m} for which the corresponding subsequence of scalars{

β
(m)
2

}
converges to β2. Continuing in this way after k steps we obtain a subsequence

{zk,m}∞m=1 , where zk,m =
k∑

i=1

γ
(m)
i xi with

k∑
i=1

| γ
(m)
i |= 1 and γ

(m)
i → βi as m →

∞ i = 1, 2, . . , k. Let y = β1x1 + β2x2 + . . . + βkxk. Then we have, ∀t ∈ R+

and∀ y1, y2, . . . ., yn−1 ∈ U,

lim
m→∞

N(y1, y2, . . , yn−1, (zk,m − y), t)

= lim
m→∞

N(y1, y2, . . , yn−1, (γ
(m)
1 − β1)x1

+(γ(m)
2 − β2)x2 + . . . + (γ(m)

k − βk)xk,
nt

t
)

≥ lim
m→∞

(N(y1, y2, . . ., yn−1, (γ
(m)
1 − β1)x1,

t

n
))

∗(N(y1, y2, . . ., yn−1, (γ
(m)
2 − β2)x2,

t

n
))

.

.

.

∗
(

N

(
y1, y2, . . ., yn−1,

(
γ

(m)
k − βk

)
xk,

t

n

))

= lim
m→∞

{N
(

y1, y2, . . ., yn−1, x1,
t

n | γ(m)
1 − β1 |

)

N

(
y1, y2, . . ., yn−1, x2,

t

n | γ(m)
2 − β2 |

)

.

.

.

N

(
y1, y2, . . ., yn−1, xk,

t

n | γ(m)
k − βk |

)
}

= lim
m→∞

N

(
y1, y2, . . ., yn−1, x1,

t

n | γ(m)
1 − β1 |

)

lim
m→∞

N

(
y1, y2, . . ., yn−1, x2,

t

n | γ(m)
2 − β2 |

)

.

.

.

lim
m→∞

N

(
y1, y2, . . ., yn−1, xk,

t

n | γ(m)
k − βk |

)
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= 1 ∗ 1 ∗ . . . . ∗ 1 (By the continuity of t− norm at (1, 1)).
= 1.

Hence lim
m→∞

N (y1, y2, . . ., yn−1, (zk,m − y) , t) = 1, ∀t ≥ 0. Now for s > 0, choose m

such that 1
m < s. Then we have,

N (y1, y2, . . ., yn−1, zkm, s)

= N

(
y1, y2, . . ., yn−1, zkm + 0, s +

1
m
− 1

m

)

≥ N

(
y1, y2, . . ., yn−1, zkm,

1
m

)

∗N
(

y1, y2, . . ., yn−1, 0, s− 1
m

)

≥
(

1− 1
m

)
∗N

(
y1, y2, . . ., yn−1, 0, s− 1

m

)

=
(

1− 1
m

)
∗ 1

{ since y1, y2, . . ., yn−1, 0 are linearly dependent so that N(y1, y2, . . ., yn−1, 0, t) =
1,∀t ∈ R+.}

Thus zk,m → 0 as m →∞.
But we have seen that zk,m → y as m →∞. Also, limit of a convergent sequence

in (U,N) is unique. So y = 0 ⇒ β1 = β2 = . . . = βk = 0.

Nowγ
(m)
i → βi as m → ∞ for i = 1, 2, . . , ., k, where

k∑
i=1

| γ
(m)
i |= 1, m =

1, 2, . . .. ..

Thus
k∑

i=1

| βi |= 1, which contradicts the fact that β1 = β2 = . . . = βk = 0.

So (2) holds. ¤

Theorem 3.8. Let (U,N) be a finite dimensional fuzzy n−normed linear space with
underlying t−norm being continuous at (1, 1). Then (U,N) is complete.

Proof. Let dimU = k and {e1, e2, . . , ek} be a basis for U. Let {xn} be a Cauchy
sequence in (U,N). Then ∃ scalars β

(n)
i , i = 1, 2, . . , k ; n = 1, 2, . . , s.t.

xn =
k∑

i=1

eiβ
(n)
i , n = 1, 2, . .

Since {xn} is Cauchy, so, for each y1, y2, . . , yn−1 ∈ U ,

lim
r,s→∞

N (y1, y2, . . ., yn−1, xr − xs, t) = 1 ∀ t ∈ R+ . . . . . .(1)

Now by Lemma 3.7, ∃c > 0 and δ ∈ (0, 1) such that

N

(
y1, y2, . . ., yn−1,

k∑

i=1

ei

(
β

(r)
i − β

(s)
i

)
, c

k∑

i=1

| β(r)
i − β

(s)
i |

)
< 1− δ
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(1) implies that for t > 0 and s > 0 ∃p ∈ N such that

N (y1, y2 , . . ., yn−1, xr − xs, t) > 1− δ ∀ r, s ∈ N, r ≥ p, s ≥ p and ∀t > 0.

Hence,

N

(
y1, y2, . . ., yn−1,

k∑

i=1

ei

(
β

(r)
i − β

(s)
i

)
, c

k∑

i=1

| β(r)
i − β

(s)
i |

)

< 1− δ < N (y1, y2, . . .yn−1, xr − xs, t) ,

∀r, s ∈ N with r ≥ p, s ≥ p and ∀t > 0. Hence,

c

k∑

i=1

| β(r)
i − β

(s)
i |≤ t ∀r, s∈ N with r ≥ p, s ≥ p &∀t > 0.

i.e,
k∑

i=1

| β(r)
i − β

(s)
i |≤ t

c
∀ r, s∈ N with r ≥ p, s ≥ p & ∀t > 0.

i.e,

⇒| β(r)
i − β

(s)
i |≤ t

c
∀r, s ∈ Nwith r ≥ p, s ≥ p & ∀t > 0, for i = 1, 2, . . , k.

Thus, for each i = 1, 2, . . , k ,
{

β
(n)
i

}
is a Cauchy sequence in C. As C is complete so,

{
β

(n)
i

}∞
n=1

is convergent,∀ i = 1, 2, . . , k. Let y =
k∑

i=1

βiei.

So for y1, y2, . . . ., yn−1 ∈ U,

N (y1, y2, . . ., yn−1, xp − x, t)

= N

(
y1, y2, . . ., yn−1,

k∑

i=1

ei

(
β

(p)
i − βi

)
, t

)

= N

(
y1, y2, . . ., yn−1,

k∑

i=1

ei

(
β

(p)
i − βi

)
,

kt

k

)

≥ N

(
y1, y2, . . ., yn−1, e1,

t

k | β(p)
1 − β1 |

)

∗N
(

y1, y2, . . ., yn−1, e2,
t

k | β(p)
2 − β2 |

)

.

.

.
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∗N
(

y1, y2, . . ., yn−1, ek,
t

k | β(p)
k − βk |

)

Now as p →∞, t

k|β(p)
i −β|→∞ for i = 1, 2, . . ., k.

So,

lim
p→∞

N

(
y1, y2, . . ., yn−1, ei,

t

k | β(p)
i − βi |

)
= 1for i = 1, 2, . . ., k.

Using continuity of t− norm at (1, 1), we get

lim
p→∞

N (y1, y2, . . ., yn−1, xp − x, t) = 1

Thus (U,N) is complete. ¤

Theorem 3.9. Let (U,N) be a fuzzy n−normed linear space. Let M be a finite
dimensional subspace of U of dimension at least n then M is closed.

Proof. For simplicity of notation the restriction of N on Mn×[0, 1] is also denoted by
N. By Theorem 3.8, M is complete. Let {xn} be a sequence in M converging to x in
U. As{xn}is convergent so is Cauchy. But(M, N) is complete, hence {xn}converges
to a point in M. But limit of a convergent sequence is unique so x ∈ M. Thus M is
closed. ¤

Theorem 3.10. Let (U,N) be a fuzzy n−normed linear space, with underlying
t−norm is continuous at (1, 1). Then a subset A of U is compact implies A is closed
and bounded.

Proof. First we establish thatA is bounded. If possible, suppose that A is not
bounded. Then ∃y1, y2, . . ., yn−1 ∈ U and r ∈ (0, 1) such that for each m >
0, ∃xm ∈ A such that

N (y1, y2, . . ., xm, m) ≤ 1− r . . . . .(1)

Now {xm} is a Cauchy sequence in A. As A is compact and{xm}is a sequence in
A, so there exists a convergent subsequence {xml

} of {xm} converging to a point,
“say” x inA. So for each y1, y2, . . . ., yn−1 ∈ U

lim
l→∞

N (y1, y2, . . ., yn−1, xml
− x, t) = 1, ∀t > 0 . . . .(2)

From (1),

N (y1, y2, . . ., yn−1, xml
, ml) ≤ 1− r.

So,

1− r ≥ N (y1, y2, . . ., yn−1, xml
− x + x, ml − t + t)

≥ N (y1, y2, . . ., yn−1, xml
− x, t) ∗N (y1, y2, . . ., yn−1, x, ml − t)

⇒ 1− r ≥ 1 ∗ 1 = 1 as l →∞, using continuity of t−norm at (1, 1),
⇒ r ≤ 0, a contradiction.
So A is bounded.
Next, consider a sequence {xn} in A converging to a point x in U. As A is compact

the sequence {xn} has a convergent subsequence{xnl
} , “say”, converging to a point
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x in A. As every subsequence of a convergent sequence converge to the same limit of
the convergent sequence and the limit of a convergent sequence in (U,N) is unique,
the subsequence {xnl

}converge to x. Hence x ∈ A. Thus A is closed. ¤
Remark 3.11. If, however, X is finite-dimensional then the converse also holds,
which is shown in the following theorem.

Theorem 3.12. Let (U,N)be a finite-dimensional fuzzy n−normed linear space with
underlying t−norm be continuous at (1, 1) then if A ⊆ U be closed and bounded then
A is compact.

Proof. Let A be closed and bounded and let dimU = k. Let B = {e1, e2, . . , ek}be
a basis for U and let {xm} be a sequence in A. As B is a basis for U, ∃ scalars
β

(m)
i , i = 1, 2, . . ., k such that

xm =
k∑

i=1

β
(m)
i ei, m = 1, 2, . . .

By Lemma 3.7, ∃c > 0 and δ ∈ (0, 1) such that for scalars β
(m)
i , i = 1, 2, . . ., k, ∃

y1, y2, . . , yn−1 ∈ U, such that

N

(
y1, y2, . . ., yn−1,

k∑

i=1

β
(m)
i ei, c

k∑

i=1

| β(m)
i |

)
< 1− δ.

Since {xm} is bounded, δ ∈ (0, 1) and y1, y2, . . , yn−1 ∈ U, ∃t > 0 such that

N

(
y1, y2, . . ., yn−1,

k∑

i=1

β
(m)
i ei, t

)
> 1− δ;m = 1, 2, . . .

Hence,

N

(
y1, y2, . . ., yn−1,

k∑

i=1

β
(m)
i ei, c

k∑

i=1

| β(m)
i |

)

< 1− δ < N

(
y1, y2, . . .yn−1,

k∑

i=1

β
(m)
i ei, t

)
, m = 1, 2, . . .

∴ c

k∑

i=1

| β(m)
i | ≤ t, m = 1, 2, . .

⇒
k∑

i=1

| β(m)
i |≤ t

c
, m = 1 , 2, . . .

So

| β(m)
i |≤ t

c
, ∀1 ≤ i ≤ k, ∀m = 1, 2, . . . .

Thus for each i = 1, 2, . . . ., k,
{

β
(m)
i

}∞
m=1

is bounded in R orC and hence, in partic-

ular,
{

β
(m)
i

}∞
m=1

is bounded and so it has a convergent subsequence
{

β
(m,1)
1

}
m

(say)
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converging to a point β1 (say) in Ror C. Let {xm,1}be the corresponding sub-

sequence of {xm}.Again considering the bounded sequence
{

β
(m,2)
2

}
(say) , and let

{xm,2} be the corresponding subsequence of {xm,1}. Let after k−steps {xm,k} be

the corresponding subsequence of {xm}, where xm,k =
k∑

i=1

β
(m,k)
1 ei, i = 1, 2, . . . .

and
{

β
(m,k)
i

}
m

are convergent, ∀1 ≤ i ≤ k. Let lim
m→∞

β
(m,k)
i = βi, 1 ≤ i ≤ k. and

y =
k∑

βiei
i=1

Now for y1, y2 . . ., yn−1 ∈ U,

N (y1, y2, . . ., yn−1, xk,m − y, t)

= N

(
y1, y2, ., . . ., yn−1,

k∑
i=1

(
β

(m,k)
i − βi

)
ei,

kt
k

)

≥ N
(
y1, y2, . . ., yn−1,

(
β

(m,k)
1 − β1

)
e1,

t
k

)
.

∗N
(
y1, y2, . . ., yn−1,

(
β

(m,k)
2 − β2

)
e2,

t
k

)

.

.

.

∗N
(
y1, y2, . . ., yn−1,

(
β

(m,k)
k − βk

)
ek, t

k

)

= N

(
y1, y2, . . ., yn−1, e1,

t

k|β(m,k)
1 −β1|

)

∗N
(

y1, y2, . . ., yn−1, e2,
t

k|β(m,k)
2 −β2|

)

.

.

.

∗N
(

y1, y2, . . ., yn−1, ek, t

k|β(m,k)
k −βk|

)

As m →∞, β
(m,k)
i → βi and hence t

k|β(m,k)
i −βi|

→∞, ∀ 1 ≤ i ≤ k.

Hence

N (y1, y2, . . ., yn−1, xk,m − y, t) ≥ 1 ∗ 1 ∗ . . . ∗ 1 (k times)
= 1,

( using continuity of t−norm at(1, 1)).

⇒ xk,m → y as m →∞.

So, the sequence {xm} has a convergent subsequence converging to a point in X. The
set A is closed and {xm} is a sequence in A. Also {xk,m} is a convergent subsequence
of {xm} converging to y, and hence y ∈ A. As {xm} is an arbitrary sequence in A,
it follows that A is compact. ¤
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4. Conclusions

Extending a recent approach of Bag & Samanta [1] towards the study of fuzzy
normed linear spaces with general t−norm, we have been able to develop finite
dimensional fuzzy n−normed linear spaces and have studied compactness and com-
pleteness in such spaces. As for fuzzy normed linear spaces with general t-norm, the
Bag-Samanta decomposition theorem is not applicable, so that a different technique
is required to handle such situations. There is a wide scope of research in studying
fuzzy normed linear spaces as well as fuzzy n−normed linear space with underlying
general t−norm setting in the triangle inequality of the fuzzy norm ( fuzzy n−norm),
because it is just a begining.
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[10] S. Gähler, Untersuchungen über verallgemeinerte m−metrische räume I, II, and III, Math.
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