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1. Introduction

It is well known that metric and norm structures play a pivotal role in func-
tional analysis. So in order to develop this one has to take care of the suitable
generalization of these structures. Historically, the problem of fuzzyfication of
the metric structure came first. Different authors introduced ideas of fuzzy-metric
space([10], [14], [13], [8]), probabilistic metric spaces [22], quasi metric space, Dislo-
cated fuzzy quasi metric space [7], statistical metric space[22], fuzzy normed linear
space([1], [3], [6], [17]), fuzzy soft topological spaces[20], generalized open fuzzy
set[21], 2-fuzzy inner product space[4] etc. Chang et.al. ([5], [9], [12]) first intro-
duced a definition of generating spaces of quasi-metric family, which generalizes
those of fuzzy metric spaces in the sense of Kaleva & Seikkala [10] and Menger
probabilistic metric spaces [22]. They also proved several fixed point theorems in
quasi-metric family. J. S. Jung, B. S. Lee and Y. J. Cho, [9] established some fixed
point theorems in generating spaces of quasi-metric family. In 2006, Xiao & Zhu
[23] introduced a concept of generating spaces of quasi-norm family (G.S.Q-N.F)
and studied linear topological structures. They introduced the concept of conver-
gent sequence, Cauchyness, completeness, compactness etc. and established some
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fixed point theorems specially Schauder-type fixed point theorem in such spaces. In
[15], we have established some results in finite dimensional G.S.Q-N.F and derived
a G.S.Q-N.F from a generalized B-S fuzzy normed ([1], [2]) linear space. Ideas of
bounded linear operators, bounded linear functionals, generating spaces of operators
quasi-norm family, dual space etc. are developed in[16]. In [18], we give a construc-
tive proof of Hahn-Banach extension theorem in finite dimensional generating spaces
of quasi-norm family. Finally we able to establish Kirk’s fixed point theorem[19] for
non-expansive mapping on a nonempty, weakly compact, closed and convex subsets
in G.S.S-N.F.

The organization of the paper is as follows:
Section 1, comprises some preliminary results.
In section 2, we give the definition of uniformly convex generating space of semi-

norm family, normal structure, uniform normal structure and establish Browder’s
fixed point theorem.

In section 3, the definition of strictly convex generating space of semi-norm family
is given and some of its properties are studied. Finally Taylor Foguel’s theorem is
established in strictly convex generating space of semi-norm family.

Throughout this paper straightforward proofs are omitted.

2. Preliminaries

In this section some preliminary results are given which are related to this paper
and used in different portion of this manuscript.

Definition 2.1 ([16]). Let X be a linear space over E(Real or Complex) and θ be
the origin of X. Let

Q = {|.|α : α ∈ (0, 1)}
be a family of mappings from X into [0, ∞). (X, Q) is called a generating space
of quasi-norm family and Q, a quasi-norm family, if the following conditions are
satisfied:

(QN1) |x|α = 0 ∀α ∈ (0, 1) iff x = θ;
(QN2) |ex|α = |e||x|α ∀ x ∈ X, ∀α ∈ (0, 1) and ∀ e ∈ E;
(QN3) for any α ∈ (0, 1) there exists a β ∈ (0, α] such that
|x + y|α ≤ |x|β + |y|β for all x, y ∈ X;
(QN4) for any x ∈ X, |x|α is non-increasing for α ∈ (0, 1).
(X,Q) is called a generating space of sub-strong quasi-norm family, strong quasi-

norm family, and semi-norm family respectively, if (QN-3) is strengthened to (QN-
3u), (QN-3t) and (QN-3e), where

(QN-3u) for any α ∈ (0, 1] there exists β ∈ (0, α] such that

|
n∑

i=1

xi|α ≤
n∑

i=1

|xi|β for any n ∈ Z+, xi ∈ X(i = 1, 2, ...., n);

(QN-3t) for any α ∈ (0, 1] there exists a β ∈ (0, α] such that
|x + y|α ≤ |x|α + |y|β for x, y ∈ X;
(QN-3e) for any α ∈ (0, 1], it holds that |x + y|α ≤ |x|α + |y|α for x, y ∈ X.

Definition 2.2 ([16]). Let (X, Q) be a generating space of quasi-norm family(G.S.Q-
N.F).
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(i) A sequence {xn}∞n=1 ⊂ X is said
(a) to converge to x ∈ X denoted by lim

n→∞
xn = x if lim

n→∞
|xn − x|α = 0 for each

α ∈ (0, 1);
(b) to be a Cauchy sequence if lim

m, n→∞
|xn − xm|α = 0 for each α ∈ (0, 1).

(ii) A subset B ⊂ X is said to be complete if every Cauchy sequence in B converges
in B.

Definition 2.3 ([16]). Let (X, Q) be a generating space of quasi-norm family:
(a) A subset A of X is said to be bounded if for each α ∈ (0, 1) there exists a

real number M(α) such that |x|α ≤ M(α) ∀ x ∈ A;
(b) A subset A of X is said to be α-level bounded for some α ∈ (0, 1) if there

exists a real number M(α) such that |x|α ≤ M(α) ∀ x ∈ A;
(c) A subset A of X is said to be closed if for any sequence {xn} of points of A

with lim
n→∞

xn = x implies x ∈ A;

(d) A subset A of X is said to be compact if for any sequence {xn} of points of
A has a convergent subsequence which converges to a point in A;

(e) A subset A of X is said to be strongly bounded if there exists a real number
M > 0 such that |x|α ≤ M ∀ x ∈ A ∀α ∈ (0, 1).

Definition 2.4 ([11]). Let (X, Q) be a generating space of quasi-norm family:
(a) The closure of a subset A of X is denoted by A and is defined by
A = {x : if ∃ a sequence {xn} in A such that lim

n→∞
xn = x};

(b) The set of all convex combinations of points of a subset A of X is denoted by
convA and is defined by

convA = {λ x + (1− λ) y ∀ x, y ∈ A, ∀λ ∈ [0, 1]}.
Definition 2.5 ([16]). Let Q1 = {|.|1α : α ∈ (0, 1)} and Q2 = {|.|2α : α ∈ (0, 1)} be
two quasi-norm families on X1 and X2 respectively and T : (X1, Q1) → (X2, Q2)
be an operator. Then T is said to be continuous at x ∈ X1 if for any sequence {xn}
of X1 with xn → x i.e. with lim

n→∞
|xn−x|1α = 0 ∀α ∈ (0, 1) implies T (xn) → T (x).

i.e. lim
n→∞

|T (xn)−T (x)|2α = 0 ∀α ∈ (0, 1). If T is continuous at each point of X1, then
T is said to be continuous on X1.

Definition 2.6 ([16]). Let T : (X1, Q1) → (X2, Q2) be an operator. Then T is
said to be

(i) bounded if corresponding to each α ∈ (0, 1), ∃ Mα > 0 such that

|T (x)|2α ≤ Mα|x|11−α ∀x ∈ X1;

(ii) α− level bounded for some α ∈ (0, 1) if ∃Mα > 0 such that |T (x)|2α ≤ Mα|x|11−α

∀x ∈ X1.

Definition 2.7 ([19]). Let (X, Q) be a G.S.Q-N.F and D , H are two strongly
bounded subset of X. Set:

(i) δ(D) =
∨

α∈(0, 1)

[
∨
{|x− y|α, ∀x, y ∈ D}];

(ii) ru(D) =
∨

α∈(0, 1)

[
∨
{|u− x|α, ∀x ∈ D}], (u ∈ H);
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(iii) rH(D) =
∧

u∈H

{ru(D)};

(iv) CH(D) = {u ∈ H : ru(D) = rH(D)}.
The number δ(D) is called the diameter of D, ru(D) is called the radius of D

relative to u, rH(D) and CH(D) are called respectively the Chebyshev radius and
the Chebyshev center of D relative to H. When H = D the notations r(D) and C(D)
are used for rH(D) and CH(D) respectively.

Definition 2.8 ([19]). Let (X,Q) be a G.S.Q-N.F and D is a strongly bounded
subset of X. A point u ∈ D is said to be a diametral point if ru(D) = δ(D). If u is
not a diametral point of D, then it is called a non-diametral point of D.

Definition 2.9 ([19]). Let (X, Q) be a G.S.Q-N.F. A nonempty strongly bounded,
convex subset K of X is said to have normal structure if each convex subset S of
K with δ(S) > 0 contains a non-diametral point. The space (X, Q) is said to have
normal structure if each of its nonempty, strongly bounded, convex subsets has this
property.

Definition 2.10 ([19]). Let (X, Q) be a G.S.Q-N.F and T : X → X. The operator
T is said to be non-expansive if |Tx− Ty|α ≤ |x− y|α∀α ∈ (0, 1),∀x, y ∈ X.

Definition 2.11 ([19]). Let (X,Q) be a generating space of semi-norm family(G.S.S-
N.F):

(a) A sequence {xn}∞n=1 ⊂ X is said
(i) to be weakly convergent to x ∈ X denoted by xn →w x if lim

n→∞
|f(xn) −

f(x)| = 0 for each f ∈ X∗. In this case x is called the weak limit of the sequence
{xn};

(ii) to be a weakly Cauchy sequence if lim
m, n→∞

|f(xn) − f(xm)| = 0 for each

f ∈ X∗;
(b) A subset B ⊂ X is said to be weakly complete if every weakly Cauchy sequence

in B weakly converges in B;
(c) A subset A of X is said to be weakly closed if for any sequence {xn} of points

of A with xn →w x implies x ∈ A;
(d) A ⊂ X is said to be weakly compact if for any sequence {xn} of points of A

has a weakly convergent subsequence which is weakly convergent to a point in A.

Theorem 2.12 ([18]). Let (X1, Q1) be a G.S.Q-N.F and (X2, Q2) be a generating
space of semi-norm family (G.S.S-N.F) satisfying

(QN6): if x( 6= θ) ∈ X2 then |x|2α > 0 ∀α ∈ (0, 1).
For T ∈ B(X1, X2) and α ∈ (0, 1) we define
|T |sα =

∨

x∈ X1, |x|11−α≤ 1

{|T (x)|2α}

Then (B(X1, X2), Qs) is a G.S.S-N.F satisfying (QN6) i.e. a generating space of
norm family (G.S.N.F), where Qs = {|.|sα : α ∈ (0, 1)}.
Theorem 2.13 ([18]). (Hahn-Banach) Let (X, Q) be a generating space of semi-
norm family and α ∈ (0, 1). If f is an α-level bounded linear operator which is
defined on a subspace Z of X, then f has a linear extension f̂ from Z to X which
is α-level bounded on X and |f |sα = |f̂ |sα ∀α ∈ (0, 1).
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Note 2.14 ([18]). Let (X, Q) be a generating space of semi-norm family and α ∈
(0, 1). Then the space of all α-level bounded linear functional defined on X is called
the α-dual space of X and is denoted by X∗

α, which is a normed linear space.

Theorem 2.15 ([19]). (Kirk’s) Let (X, Q) be a generating space of semi-norm
family and K be a nonempty, weakly compact, convex subset of X. If K has a
normal structure then for any non-expansive mapping T : K → K has a fixed point.

3. Uniformly convex G.S.S-N.F

In this section we give the definition of uniformly convex generating space of semi-
norm family, normal structure, uniform normal structure and establish Browder’s
fixed point theorem.

Definition 3.1. Let (X, Q) be a generating space of semi-norm family. For 0 < ε ≤
2, α ∈ (0, 1), α-modulus of convexity of X is a real number

γα, ε =
∧

x, y∈ X

{1− |x + y

2
|α : |x|α ≤ 1, |y|α ≤ 1, |x− y|α ≥ ε}.

Note 3.2. γα, ε is an increasing function with respect to ε ∈ (0, 2].

Definition 3.3. Let (X, Q) be a generating space of semi-norm family. For 0 < ε ≤
2, α ∈ (0, 1), we define

Sα, ε = {(x, y) : x, y ∈ X, |x|α ≤ 1, |y|α ≤ 1, |x− y|α ≥ ε}.
Definition 3.4. Let (X, Q) be a generating space of semi-norm family. Then
(X, Q) is said to be a uniformly convex G.S.S-N.F if its α-modulus of convexity
γα, ε satisfies

∧

α∈(0, 1)

γα, ε > 0 ∀ε ∈ (0, 2].

Lemma 3.5. Let (X, Q) be a generating space of semi-norm family and γα,ε be the
α-modulus of convexity of X for each α ∈ (0, 1) and ε ∈ (0, 2]. Then
|x+y

2 |α ≤ 1− γα, ε ∀(x, y) ∈ Sα, ε

Proof. From definition

γα, ε =
∧

x, y∈ X

{1− |x + y

2
|α : |x|α ≤ 1, |y|α ≤ 1, |x− y|α ≥ ε}

and
Sα, ε = {(x, y) : x, y ∈ X, |x|α ≤ 1, |y|α ≤ 1, |x− y|α ≥ ε}.
Hence
γα, ε =

∧

(x, y)∈ Sα, ε

{1− |x + y

2
|α}

⇒ 1− |x+y
2 |α ≥ γα, ε ∀(x, y) ∈ Sα, ε

⇒ |x+y
2 |α ≤ 1− γα, ε ∀(x, y) ∈ Sα, ε. ¤

Theorem 3.6. Let (X, Q) be a generating space of semi-norm family and K be
a nonempty strongly bounded convex subset of X. If X is uniformly convex then K
has normal structure.
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Proof. Let K be a convex subset of X and S be a convex subset of K with δ (S) =∨

α∈(0, 1)

[
∨
{|x − y|α, ∀x, y ∈ S}] = d(> 0) (say) denotes the diameter of S. Then

clearly S is nonempty and contains more than one elements. Let ε ∈ (0, d], then
there exists α0 ∈ (0, 1), u, v( 6= u) ∈ S such that
|u − v|α ≥ ε ∀α ∈ (0, α0]) [Since for any x ∈ X, |x|α is non-increasing for
α ∈ (0, 1)]
Take any point x ∈ S.
Then
|x− u|α ≤ d ∀α ∈ (0, 1)

and
|x− v|α ≤ d ∀α ∈ (0, 1);
⇒ |x−u

d |α ≤ 1 ∀α ∈ (0, 1)
and
|x−v

d |α ≤ 1 ∀α ∈ (0, 1).
Again |x−u

d − x−v
d |α = |u−v

d |α ≥ ε
d > ε

2d > 0 ∀α ∈ (0, α0].
By the uniform convexity of X and Lemma 2.1, we have
|

x−u
d + x−v

d

2 |α ≤ (1− γα, ε
2d

) ∀α ∈ (0, α0];

⇒ |x−
u+v

2
d |α ≤ (1− γα, ε

2d
) ∀α ∈ (0, α0];

⇒
∨

α∈(0, 1)

|x− u + v

2
|α ≤ d (1−

∧

α∈(0, 1)

γα, ε
2d

);

⇒
∨

α∈(0, 1)

|x− u + v

2
| < d;

⇒ u+v
2 is a non-diametral point of S

⇒ X has normal structure. ¤

Theorem 3.7. Let (X, Q) be a generating space of semi-norm family and K be a
nonempty strongly bounded convex subset of X such that

∧

α∈(0, 1)

[
∨

S∈K

{

∧

u∈S

{
∨

γ∈(0, 1)

{
∨
{|u− v|γ , ∀v ∈ S}}}

∨
{|u− v|α, ∀u, v ∈ S}

}] < 1

where K denotes the collection of all strongly bounded convex subsets of K with
δ(S) > 0. If X is uniformly convex then K has normal structure.

Proof. Let

∧

α∈(0, 1)

[
∨

S∈K

{

∧

u∈S

{
∨

γ∈(0, 1)

{
∨
{|u− v|γ , ∀v ∈ S}}}

∨
{|u− v|α, ∀u, v ∈ S}

}] < 1

⇒ ∃α0 ∈ (0 , 1) such that
822
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∧

α∈(0, 1)

[
∨

S∈K

{

∧

u∈S

{
∨

γ∈(0, 1)

{
∨
{|u− v|γ , ∀v ∈ S}}}

∨
{|u− v|α0 , ∀u, v ∈ S}

}] < 1

⇒
∨

{|u − v|α0 , ∀u, v ∈ S} >
∧

u∈S

{
∨

γ∈(0, 1)

{
∨
{|u − v|γ , ∀v ∈ S}}} for all S

with δ(S) > 0.
⇒

∨
{|u−v|α0 , ∀u, v ∈ S} >

∨

γ∈(0, 1)

{
∨
{|uS−v|γ , ∀v ∈ S}} for some uS ∈ S

with δ(S) > 0
Choose k1, k2 such that,∨
{|u− v|α0 , ∀u, v ∈ S} > k1 > k2 >

∨

γ∈(0, 1)

{
∨
{|uS − v|γ , ∀v ∈ S}} for some

uS ∈ S with δ(S) > 0.
Now

∨
{|u− v|α0 , ∀u, v ∈ S} > k1

⇒ δ(S) > k1 > k2 >
∨

γ∈(0, 1)

{
∨
{|uS − v|γ ∀v ∈ S}}.

Hence uS is a non-diametral point of S and K has normal structure. ¤

Definition 3.8. Let (X,Q) be a generating space of semi-norm family. A nonempty,
closed, convex, set K of X is said to have uniform normal structure if there exists a
k ∈ (0, 1) such that

r(D) ≤ kδ(D)

for any closed, convex subset D of K. The space (X, Q) is said to have uniform
normal structure if each of its nonempty, closed, convex subsets has this property.

Theorem 3.9. Let (X, Q) be a uniformly convex generating space of semi-norm
family. Then X has uniform normal structure.

Proof. Let K be a nonempty, strongly bounded, closed and convex subset of X
with δ (K) = d(> 0).
Let ε ∈ (0, d) ∩ (0, 1), then there exists α0 ∈ (0, 1), u, v( 6= u) ∈ K such that
|u− v|α > ε ∀α ∈ (0, α0].
Take any point x ∈ K.
Then
|x− u|α ≤ d ∀α ∈ (0, 1)

and
|x− v|α ≤ d ∀α ∈ (0, 1).

Hence |x−u
d |α ≤ 1, |x−v

d |α ≤ 1 and |x−u
d − x−v

d |α > ε
d ∀α ∈ (0, α0].

By Lemma 2.1, we have
|x−

u+v
2

d |α ≤ (1− γα, ε
d
) ∀α ∈ (0, α0];

⇒
∨

α∈(0, 1)

|x− u + v

2
|α ≤ d (1−

∧

α∈(0, α0)

γα, ε
d
).

Since (X, Q) is uniformly convex,
823
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∧

α∈(0, 1)

γα, ε > 0 ∀ε ∈ (0, 2]

⇒
∨

α∈(0, 1)

|x− u + v

2
|α < kδ(K), where k ∈ (0, 1);

⇒
∨

y∈ K

[
∨

α∈(0, 1)

|x− k|α] < kδ(K).

Now rx(K) =
∨

α∈(0, 1)

[
∨
{|x− y|α, ∀ y ∈ K}] ≤

∨

y∈ K

[
∨

α∈(0, 1)

|x− k|α] < kδ(K).

⇒ r(K) < kδ(K).
Hence X has uniform normal structure. ¤

Theorem 3.10. Let (X, Q) be a generating space of semi-norm family and K ⊂ X.
If K has uniform normal structure then it has normal structure.

Proof. Let D ⊂ K be any nonempty, strongly bounded, closed and convex subset
of K with δ (D) = d(> 0). We have to prove D has non-diametral point. If possible
let D has non-diametral point. Since K has uniform normal structure, there exists
a k ∈ (0, 1) such that

r(D) ≤ kδ(D)................................(1)
Since D contains only diametral points

rx(D) = δ(D) ∀ x ∈ D;
⇒ r(D) = δ(D) which contradicts with (1).

Hence K has normal structure. ¤

Theorem 3.11. Let K be a nonempty, strongly bounded, weakly compact, convex
subset of a uniformly convex generating space of semi-norm family (X, Q). Then
every non-expansive mapping T : K → K has a fixed point.

Proof. By Theorem 3.5, K has normal structure and by Theorem 2.16, K has a
unique fixed point. ¤

4. Strictly convex G.S.S-N.F

In this section we give the definition of strictly convex generating space of semi-
norm family and study some properties of it.

Definition 4.1. Let (X, Q) be a generating space of semi-norm family. Then (X, Q)
is said to be a strictly convex G.S.S-N.F if for α ∈ (0, 1) and for x, y ∈ X,

|x|α ≤ 1
|y|α ≤ 1
|x− y|α > 0



 ⇒ |x + y

2
|α < 1.

Example 4.2. Let X be an inner product space and define

|x|α =
{

(0.7−α)
α ||x|| =< x, x >

1
2 for α ∈ (0, 0.7)

0 for α ∈ [0.7, 1).
824



G. Rano et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 5, 817–828

Then Q = {|.|α : α ∈ (0, 1)} is is a semi-norm family and (X, Q) is a strictly convex
G.S.S-N.F.

Proof. Since X is an inner product space
||x+y

2 ||2 = 2(||x2 ||2 + ||y2 ||2)− ||x−y
2 ||2;

⇒ |x+y
2 |2α = 2(|x2 |2α + |y2 |2α)− |x−y

2 |2α ∀α ∈ (0, 1).
Hence for α ∈ (0, 1) and for x, y ∈ X,

|x|α ≤ 1
|y|α ≤ 1
|x− y|α > 0



 ⇒ |x + y

2
|α < 1.

So (X, Q) is a strictly convex G.S.S-N.F. ¤
Theorem 4.3. If (X, Q) is an uniformly convex generating space of semi-norm
family, then it is strictly convex.

Proof. Let α ∈ (0, 1) , x, y ∈ X, |x|α ≤ 1, |y|α ≤ 1, and |x− y|α = ε > 0. Then
clearly ε ∈ (0, 2] and (x, y) ∈ Sα, ε. By Lemma 2.1,
|x+y

2 |α ≤ 1− γα, ε.
Since (X, Q) is an uniformly convex generating space of semi-norm family,
γα, ε > 0 ⇒ |x+y

2 |α < 1.
Hence the Theorem. ¤
Theorem 4.4. A generating space of semi-norm family (X, Q) is strictly convex
iff γα, 2 = 1 ∀α ∈ (0, 1).

Proof. Let γα, 2 = 1 ∀α ∈ (0, 1). We have to prove (X, Q) is strictly convex i.e.
for α ∈ (0, 1) and for x, y ∈ X,

|x|α ≤ 1
|y|α ≤ 1
|x− y|α > 0



 ⇒ |x + y

2
|α < 1.

If possible let there exists α0 ∈ (0, 1), x, y ∈ X such that
|x|α0 = 1, |y|α0 = 1, |x− y|α0 > 0 but |x+y

2 |α0 = 1. By Lemma 2.1,
|x−y

2 |α0 = |x+(−y)
2 |α0 ≤ 1− γα0, 2 = 0

⇒ |x− y|α = 0, which contradicts with our assumption.
Conversely let, (X, Q) be strictly convex. Let α ∈ (0, 1), x, y ∈ X such that

|x|α = 1, |y|α = 1 and |x− y|α = 2. From definition

γα, 2 =
∧

x, y∈ X

{1− |x + y

2
|α : |x|α ≤ 1, |y|α ≤ 1, |x− y|α ≥ 2}.

Now we claim that |x|α ≤ 1, |y|α ≤ 1 and |x−y|α = 2 implies |x+y|α = 0, otherwise
by the strictly convex property of (X, Q),
1 = |x−y

2 |α = |x+(−y)
2 |α < 1, which is a contradiction. Hence γα,2 = 1∀α ∈ (0, 1). ¤

Definition 4.5. A normed linear space (X, ||.||) is strictly convex if for x, y ∈ X,

||x|| ≤ 1
||y|| ≤ 1
||x− y|| > 0



 ⇒ ||x + y

2
|| < 1.
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Theorem 4.6. (Taylor Foguel) Let (X, Q) be a generating space of semi-norm
family and α ∈ (0, 1). Then every α-level bounded linear functional defined on a
subspace of X has a unique norm-preserving linear extension to X iff X∗

α is strictly
convex.

Proof. Let X∗
α be strictly convex. Let Y be a subspace of X and g ∈ Y ∗

α . If possible
let f1, f2 ∈ X∗

α be two distinct linear extension of g. Then f1 + f2 ∈ X∗
α and

( f1+f2
2 )(x) = g(x) ∀ x ∈ Y . Hence |g|sα ≤ | f1+f2

2 |sα. On the other hand
| f1+f2

2 |sα ≤ |f1|sα+|f2|sα
2 = |g|sα.

Thus | f1+f2
2 |sα = |g|sα.

Since X∗
α is a strictly convex normed linear space,

|f1|sα = |g|sα
|f2|sα = |g|sα
|f1 − f2|sα > 0



 ⇒ |f1 + f2

2
|sα < |g|sα,

which is a contradiction.

Conversely let, X admits unique norm-preserving linear extension for every α-
level bounded linear functional defined on a subspace of X. If possible let there
exists α ∈ (0, 1) and f1, f2 ∈ X∗

α such that
f1 6= f2 and |f1|sα = |f2|sα = | f1+f2

2 |sα = 1.
Let Y = {x ∈ X : f1(x) = f2(x)}, then Y is a subspace of X. Since f1 6= f2, there
exists a ∈ X such that f1(a) = 1 6= f2(a).
Since | f1+f2

2 |sα = 1, there exists a sequence {xn} in X such that |xn|1−α = 1 and
lim

n→∞
|f1(xn) + f2(xn)| = 2 Since |f1(xn)| ≤ 1, |f2(xn)| ≤ 1 ∀ n ∈ N , we have

lim
n→∞

|f1(xn)| = 1 and lim
n→∞

|f2(xn)| = 1.

Let kn = (f1(xn)−f2(xn))
(1−f2(a)) ∀ n ∈ N.

Then lim
n→∞

kn = 0 and we have

1 = |xn|1−α ≤ |xn − kna|1−α + |akn|1−α

⇒ lim
n→∞

|xn − kna|1−α ≥ 1. So there exists a n0 ∈ N such that

|xn − kna|1−α > 0 ∀ n ≥ n0.
yn = (xn−kna)

(|xn−kna|1−α) ∀ n ≥ n0.

Then f1(yn) = (f1(xn)−kn)
(|xn−kna|1−α)

= (f2(xn)−f2(a)f1(xn))
(1−f2(a))(|xn−kna|1−α)

= (f2(xn)−knf2(a))
(|xn−kna|1−α) = f2(yn).

Thus yn ∈ Y and |yn|1−α = 1 ∀ n ≥ n0. Also, since lim
n→∞

kn = 0, lim
n→∞

|f1(xn)| = 1

and lim
n→∞

|f2(xn)| = 1, we see that lim
n→∞

|f1(yn)| = 1 and lim
n→∞

|f2(yn)| = 1. Let

g ∈ Y ∗
α . Then |g|sα = 1 and g has two distinct norm-preserving linear extension

from Y to X. Which is a contradiction. ¤

5. Conclusion

In this paper, definitions of uniformly convex and strictly convex generating spaces
of semi-norm family (G.S.S-N.F) are given. The concept of uniform normal structure
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is introduced. Using the relation between strictly convex G.S.S-N.F and α dual space
we have established Taylor Foguel’s theorem in this space. Finally, as an application
of Kirk’s theorem, Browder type fixed point theorem is derived in G.S.S-N.F. Since
the work has been done in this field are very few, we think that there is a large scope
of developing more results of functional analysis in this context.
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