Annals of Fuzzy Mathematics and Informatics Volume 7, No. 5, (May 2014), pp. 791-805 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© Kyung Moon Sa Co. http://www.kyungmoon.com

On soft fuzzy* topological groups

D. VIDHYA, E. ROJA, M. K. UMA

Received 16 May 2013; Accepted 16 September 2013

ABSTRACT. In this paper, the concepts of soft fuzzy* topological spaces and soft fuzzy^{*} groups are introduced. In this connection, the concept of soft fuzzy* topological group is introduced. The concepts of Homomorphic images and inverse images of soft fuzzy* topological groups are studied.

2010 AMS Classification: 54A40,03E72

Keywords: Soft fuzzy* groups, Soft fuzzy* topological groups.

Corresponding Author: D. Vidhya (vidhya.d850gmail.com)

1. INTRODUCTION

The concept of fuzzy set was introduced by Zadeh [7]. Fuzzy sets have applications in many fields such as information [4] and control [5]. The theory of fuzzy topological spaces was introduced and developed by Chang [1] and since then various notions in classical topology has been extended to fuzzy topological spaces. A. Rosenfeld [3] formulated the elements of a theory of fuzzy groups. David Foster [2] introduced the concept of fuzzy topological groups. The concept of soft fuzzy topological space was introduced by Ismail U. Triyaki [6]. In this paper, the concepts of soft fuzzy* topological groups are introduced and some basic properties are studied.

2. Preliminaries

Definition 2.1 ([2]). Let X be a group and G be a fuzzy set in X with membership function μ_G . Then G is a **fuzzy group** in X iff the following conditions are satisfied:

(i) $\mu_G(xy) \ge \min\{\mu_G(x), \mu_G(y)\}$, for all $x, y \in X$; (ii) $\mu_G(x^{-1}) \ge \mu_G(x)$, for all $x \in X$.

Definition 2.2 ([6]). Let X be a non-empty set. A soft fuzzy set (in short, SFS) A have the form $A = (\lambda, M)$ where the function $\lambda : X \to I$ denotes the degree of membership and M is the subset of X. The set of all soft fuzzy set will be denoted by **SF(X)**.

Definition 2.3 ([6]). The relation \sqsubseteq on SF(X) is given by $(\mu, N) \sqsubseteq (\lambda, M) \Leftrightarrow \mu(x) \leq \lambda(x), \forall x \in X \text{ and } M \subseteq N.$

Proposition 2.4 ([6]). If $(\mu_j, N_j) \in SF(X), j \in J$, then the family $\{(\mu_j, N_j) | j \in J\}$ has a meet, i.e., g.l.b., in $(SF(X), \sqsubseteq)$ denoted by $\sqcap_{j \in J}(\mu_j, N_j)$ and given by $\sqcap_{j \in J}(\mu_j, N_j) = (\mu, N)$ where

$$\mu(x) = \wedge_{j \in J} \mu_j(x) \forall x \in X$$

and

$$M = \cap M_j$$
 for $j \in J$.

Proposition 2.5 ([6]). If $(\mu_j, N_j) \in SF(X)$, $j \in J$, then the family $\{(\mu_j, N_j) | j \in J\}$ has a join, i.e., l.u.b., in $(SF(X), \sqsubseteq)$ denoted by $\sqcup_{j \in J}(\mu_j, N_j)$ and given by $\sqcup_{j \in J}(\mu_j, N_j) = (\mu, N)$ where

$$\mu(x) = \bigvee_{i \in J} \mu_i(x) \forall x \in X$$

and

$$M = \bigcup M_j \text{ for } j \in J.$$

Definition 2.6 ([6]). Let X be a set. Let T be family of soft fuzzy subsets of X. Then T is called a soft fuzzy topology on X if T satisfies the following conditions:

- (i) $(0, \emptyset)$ and $(1, X) \in T$.
- (ii) If $(\mu_j, N_j) \in T, j = 1, 2, \dots, n$ then $\sqcap_{j=1}^n (\mu_j, N_j) \in T$.
- (iii) If $(\mu_j, N_j) \in T, j \in J$ then $\sqcup_{j \in J}(\mu_j, N_j) \in T$.

The pair (X, T) is called a *soft fuzzy topological space* (in short, *SFTS*). The members of T are *soft fuzzy open sets* and its complement are *soft fuzzy closed sets*.

Proposition 2.7 ([4]). Let $\varphi : X \to Y$ be a point function.

(i) The mapping φ^{-} from SF(X) to SF(Y) corresponding to the image operator of the diffunction (f, F) is given by

$$\varphi^{\rightarrow}(\mu, N) = (\nu, L)$$
 where $\nu(y) = \sup\{\mu(x)|y = \varphi(x)\},$ and

$$L = \{\varphi(x) | x \in N \text{ and } \nu(\varphi(x)) = \mu(x)\}.$$

(ii) The mapping φ^{-} from SF(X) to SF(Y) corresponding to the **inverse image** of the difunction (f, F) is given by

$$\varphi^{-}(\nu, L) = (\nu \circ \varphi, \varphi^{-1}[L]).$$

3. Soft fuzzy* set

Definition 3.1. Let X be a non empty set and $M \subseteq X$. Then the pair (λ, M) is said to be **soft fuzzy* set** if $\lambda : M \to I = [0, 1]$. The collection of all soft fuzzy* sets is denoted by $SF^*(X)$.

Definition 3.2. Let $(\lambda, M), (\mu, N) \in SF^*(X)$. Then (λ, M) is called a *soft fuzzy*^{*} *subset* of (μ, N) if $M \subseteq N$ and $\lambda(e) \leq \mu(e)$ for each $e \in M$.

Definition 3.3. The *union* of two soft fuzzy* sets (λ, M) and (μ, N) over X is the soft fuzzy* set $(\gamma, L) = (\lambda, M) \sqcup (\mu, N)$ where $L = M \cup N$ and $\gamma(e) = (\lambda, e)$ if $e \in M \setminus N$

 $\left\{\begin{array}{ccc}\lambda(e) & \text{if} & e \in M \backslash N\\ \mu(e) & \text{if} & e \in N \backslash M\\ \lambda(e) \lor \mu(e) & \text{if} & e \in M \cap N\end{array}\right.$

Definition 3.4. If (λ, M) and (μ, N) be two soft fuzzy^{*} sets then the *intersection* of (λ, N) and (μ, N) is a soft fuzzy^{*} set $(\gamma, L) = (\lambda, M) \sqcap (\mu, N)$ where $L = M \cap N$ and $\gamma(e) = \lambda(e) \land \mu(e)$ for all $e \in L$.

Definition 3.5. Let $(\lambda, M) \in SF^*(X)$. Then the *complement* of (λ, M) is denoted by $(\lambda, M)'$ is the soft fuzzy^{*} set defined by $(\lambda, M)' = (1, X) - (\lambda, M)$ where $\lambda'(e) = 1 - \lambda(e)$ for all $e \in M$ and $M' = X \setminus M$.

Definition 3.6. Let $(\lambda, M) \in SF^*(X)$. Then the soft fuzzy* set (λ, M) is the **soft** fuzzy* null set denoted by $(0, \emptyset)$ if $\lambda(e) = 0$ for every $e \in M$.

Definition 3.7. Let $(\lambda, M) \in SF^*(X)$. Then the soft fuzzy^{*} set (λ, M) is the **soft** fuzzy^{*} universal set denoted by (1, X) if $\lambda(e) = 1$ for every $e \in M$.

Definition 3.8. Let $f: X \to Y$ be a function.

(i) the mapping f from $SF^*(X) \to SF^*(Y)$ corresponding to the *image* operator of the diffunction (ϕ, ψ) is given by $f(\mu, N) = (\gamma, L)$ where $\gamma(y) = sup\{\mu(x)|y = f(x), x \in N\}, y \in L$.

(ii) the mapping f^{-1} from $SF^*(Y) \to SF^*(X)$ corresponding to the *inverse image* of the diffunction (ϕ, ψ) is given by $f^{-1}(\mu, N) = \mu \circ f$.

Property 3.9. Let f be a mapping from a set X to a set Y. Let $\{(\lambda_j, M_j)\}_{j \in J}$ be a family of soft fuzzy* sets in X and $\{(\mu_j, N_j)\}_{j \in J}$ a family of soft fuzzy* sets in Y. Then

 $\begin{array}{ll} (i) & f^{-1}(\sqcup_{j \in J}(\mu_j, N_j)) = \sqcup_{j \in J} f^{-1}(\mu_j, N_j) \\ (ii) & f^{-1}(\sqcap_{j \in J}(\mu_j, N_j)) = \sqcap_{j \in J} f^{-1}(\mu_j, N_j) \\ (iii) & f(\sqcup_{j \in J}(\lambda_j, M_j)) = \sqcup_{j \in J} f(\lambda_j, M_j) \end{array}$

(iv) $f(\sqcap_{j\in J}(\lambda_j, M_j)) \sqsubseteq \sqcap_{j\in J} f(\lambda_j, M_j)$

Proof. (i) For all $e \in \bigcup_{j \in J} N_j$ then

$$f^{-1}(\sqcup_{j\in J}(\mu_j, N_j)) = \bigvee_{j\in J}\mu_j \circ f(e)$$

= $\bigvee_{j\in J}(\mu_j \circ f)(e)$
= $\bigvee_{j\in J}\nu_j \circ f$
= $\sqcup_{j\in J}f^{-1}(\mu_j, N_j)$

(ii) The Proof is similar for (i).

(iii) The proof is immediately from the Definition 3.8.

(iv) Let $f(\sqcap_{j \in J}(\lambda_j, M_j)) = (\gamma, L)$. The membership function of (γ, L) is given by

$$\gamma(y) = \sup\{ \wedge_{j \in J} \lambda_j(x) | y = f(x), x \in \wedge_{j \in J} f(M_j) \}$$
$$\subseteq \wedge_{j \in J} \sup\{ \lambda_j(x) | y = f(x), x \in \wedge_{j \in J} f(M_j) \}$$
$$= \sqcap_{j \in J} f(\lambda_j, M_j)$$

for all $y \in L$.

4. Soft fuzzy* topological spaces and subspaces

Definition 4.1. A subset $T \subseteq SF^*(X)$ is called soft fuzzy^{*} topology on X if

(i) For all $c \in I$ and $H \subseteq X$, $(k_c, H) \in T$,

(ii) $(\mu_j, N_j) \in T, j = 1, ..., n \Rightarrow \sqcap_{j=1}^n (\mu_j, N_j) \in T,$

(iii) $(\mu_j, N_j) \in T, j \in J \Rightarrow \sqcup_{j \in J} (\mu_j, N_j) \in T$

As usual the elements of T are soft fuzzy^{*} open and the complement T' of T is called soft fuzzy^{*} closed.

If T is a soft fuzzy* topology on X we call the pair (X,T) an **soft fuzzy*** **topological space**.

Note 4.2. We denote by (k_c, H) the soft fuzzy* set in X with membership function $k_c(x) = c$ for all $x \in H$. The soft fuzzy* set (k_1, X) corresponds to the set (1, X) and the soft fuzzy* set (k_0, \emptyset) to the empty set $(0, \emptyset)$.

Definition 4.3. Let (X,T) be a soft fuzzy^{*} topological space. Let (λ, M) be a soft fuzzy^{*} set. Then

$$T_{(\lambda,M)} = \{(\lambda,M) \sqcap (\delta,P); (\delta,P) \in T\}$$

is called an *induced soft fuzzy*^{*} topology on (λ, M) and $((\lambda, M), T_{(\lambda,M)})$ is called a *soft fuzzy*^{*} subspace topology on (X, T).

Definition 4.4. Let (λ, M) and (μ, N) be any soft fuzzy^{*} set in X. Then the **product** of (λ, M) and (μ, N) is defined by

$$(\lambda \times \mu)_{M \times N}(x) = \sup_{x = (x_1, x_2)} \min\{\lambda(x_1), \mu(x_2)\}$$

for all $x_1 \in M, x_2 \in N, x \in M \times N$.

Note 4.5. The induced soft fuzzy* topology does not in general satisfy condition (i) of Definition 4.3. Condition (ii), however is satisfied and so is condition (iii). Thus if $(\delta'_j, P'_j) \in T_{(\lambda,M)}$ for all $j \in J$ then there exists $(\delta_j, P_j) \in T, j \in J$ such that $(\delta'_j, P'_j) = (\delta_j, P_j) \sqcap (\lambda, M)$ for each $j \in J$. The union $(\delta', P') = \bigsqcup_{j \in J} (\delta'_j, P'_j) = \bigsqcup_{j \in J} (\delta'_j, P_j) \sqcap (\lambda, M)$ has the soft fuzzy* membership function is given by

$$\delta'(x) = \sup_{j \in J} \delta'_j(x)$$

= $\sup_{j \in J} \min\{\delta_j(x), \lambda(x)\}$
= $\min\{\sup_{j \in J} \delta_j(x), \lambda(x)\}$
= $(\sqcup_{j \in J} \delta_j \sqcap \lambda)(x)$

for all $x \in P'$. Hence $(\delta', P') = (\sqcup_{j \in J}(\delta_j, P_j)) \sqcap (\lambda, M))$.

Definition 4.6. If $((\lambda, M), T_{(\lambda,M)})$ and $((\mu, N), S_{(\mu,N)})$ are soft fuzzy* subspaces of soft fuzzy topological spaces (X, T) and (Y, S) respectively. If f is a mapping of (X, T) into (Y, S) then f is a mapping of $((\lambda, M), T_{(\lambda,M)})$ into $((\mu, N), S_{(\mu,N)})$ if $f(\lambda, M) \subseteq (\mu, N)$.

Definition 4.7. Let $((\lambda, M), T_{(\lambda,M)})$ and $((\mu, N), S_{(\mu,N)})$ be any two soft fuzzy* subspaces of soft fuzzy* topological spaces (X, T) and (Y, S) respectively. Then a mapping f of $((\lambda, M), T_{(\lambda,M)})$ into $((\mu, N), S_{(\mu,N)})$ is said to be **soft fuzzy* relatively continuous** iff for each soft fuzzy* open set (γ', L') in $S_{(\mu,N)}, f^{-1}(\gamma', L') \sqcap (\lambda, M)$ is soft fuzzy* open in $T_{(\lambda,M)}$.

Definition 4.8. Let $((\lambda, M), T_{(\lambda,M)})$ and $((\mu, N), S_{(\mu,N)})$ be any two soft fuzzy* subspaces of soft fuzzy* topological spaces (X, T) and (Y, S) respectively. Then a mapping f of $((\lambda, M), T_{(\lambda,M)})$ into $((\mu, N), S_{(\mu,N)})$ is said to be **soft fuzzy* relatively open** iff for each soft fuzzy* open set (γ', L') in $T_{(\lambda,M)}, f(\gamma', L')'$ is soft fuzzy* open in $S_{(\mu,N)}$.

Property 4.9. Let $((\lambda, M), T_{(\lambda,M)})$ and $((\mu, N), S_{(\mu,N)})$ be any two soft fuzzy* subspaces of soft fuzzy* topological spaces (X,T) and (Y,S) respectively. Let f be soft fuzzy* continuous mapping of (X,T) into (Y,S) such that $f(\lambda, M) \sqsubseteq (\mu, N)$. Then f is soft fuzzy* relatively continuous mapping of $((\lambda, M), T_{(\lambda,M)})$ into $((\mu, N), S_{(\mu,N)})$.

Proof. Let (γ', L') be soft fuzzy^{*} open in $S_{(\mu,N)}$. Then there exists soft fuzzy^{*} open (γ, L) in S such that $(\gamma', L') = (\gamma, L) \sqcap (\mu, N)$. The inverse image $f^{-1}(\gamma, L)$ is soft fuzzy^{*} open in T. Hence

$$\begin{split} f^{-1}(\gamma',L') \sqcap (\lambda,M) &= f^{-1}(\gamma,L) \sqcap f^{-1}(\mu,N) \sqcap (\lambda,M) \\ &= f^{-1}(\gamma,L) \sqcap (\lambda,M) \end{split}$$

is soft fuzzy* open in $T_{(\lambda,M)}$. Therefore f is soft fuzzy* relatively continuous.

Definition 4.10. A bijective mapping f of a soft fuzzy* topological space (X, T) into (Y, S) is said to be **soft fuzzy* homeomorphism** iff it is soft fuzzy* continuous and soft fuzzy* open.

Definition 4.11. A bijective mapping f of a soft fuzzy* subspaces of $((\lambda, M), T_{(\lambda,M)})$ of (X, T) into $((\mu, N), S_{(\mu,N)})$ of (Y, S) is said to be **soft fuzzy* relatively homeomorphism** iff $f(\lambda, M) = (\mu, N)$ and f is soft fuzzy* relatively continuous and soft fuzzy* relatively open.

Property 4.12. Let f be a soft fuzzy* continuous(resp. soft fuzzy* open) mapping of a soft fuzzy* topological space (X, T) into a soft fuzzy* topological space (Y, S) and g a soft fuzzy* continuous(resp. soft fuzzy* open) mapping of (Y, S) into a soft fuzzy* topological space (Z, R). Then the composition $g \circ f$ is a soft fuzzy* continuous(resp. soft fuzzy* open) mapping of (X, T) into (Z, R).

Proof. It is obvious.

Property 4.13. Let $((\lambda, M), T_{(\lambda,M)})$, $((\mu, N), S_{(\mu,N)})$, $((\gamma, L), S_{(\gamma,L)})$ be any three soft fuzzy^{*} subspaces of soft fuzzy^{*} topological spaces (X, T), (Y, S), (Z, R) respectively. Let f be a soft fuzzy^{*} relatively continuous(resp. soft fuzzy^{*} open) mapping of $((\lambda, M), T_{(\lambda,M)})$ into $((\mu, N), S_{(\mu,N)})$ and g be a soft fuzzy^{*} relatively continuous(resp. soft fuzzy^{*} open) mapping of $((\mu, N), S_{(\mu,N)})$ into $((\gamma, L), S_{(\gamma,L)})$. Then the composition $g \circ f$ is soft fuzzy^{*} relatively continuous(resp. soft fuzzy^{*} relatively open) mapping of $((\lambda, M), T_{(\lambda,M)})$ into $((\gamma, L), S_{(\gamma,L)})$.

Proof. Let (γ', L') be soft fuzzy* open in $Z_{(\gamma,L)}$. Then $g^{-1}((\gamma', L') \sqcap (\mu, N))$ is soft fuzzy* open in $S_{(\mu,N)}$ and $(f^{-1}(g^{-1}(\gamma',L')) \sqcap (\mu,N)) \sqcap (\lambda,M)$. But $(g \circ f)^{-1}(\gamma',L') \sqcap (\lambda,M) = f^{-1}(g^{-1}(\gamma',L') \sqcap (\mu,N)) \sqcap (\lambda,M)$. Since $f(\lambda,M) \sqsubseteq (\mu,N)$ and so $g \circ f$ is soft fuzzy* relatively continuous. The proof is trivial for soft fuzzy* relatively open mappings.

Definition 4.14. Let (X, T) be a soft fuzzy^{*} topological space. A subfamily \mathfrak{B} of T is a soft fuzzy^{*} base for T iff each member of T can be expressed as the union of members of \mathfrak{B} .

Definition 4.15. Let (X, T) be a soft fuzzy^{*} topological space. Let $T_{(\lambda,M)}$ the induced soft fuzzy^{*} topology on a soft fuzzy^{*} open set (λ, M) of (X, T). A subfamily \mathfrak{B}' of $T_{(\lambda,M)}$ is soft fuzzy^{*} base for $T_{(\lambda,M)}$ iff each member of $T_{(\lambda,M)}$ can be expressed as the union of members of \mathfrak{B}' .

Note 4.16. If \mathfrak{B} is a soft fuzzy base for a soft fuzzy* topology T on a set X, then

$$\mathfrak{B}_{(\lambda,M)} = \{ (\delta, P) \sqcap (\lambda, M) : (\delta, P) \in \mathfrak{B} \}$$

is a soft fuzzy* base for the induced soft fuzzy* topology $T_{(\lambda,M)}$ on the soft fuzzy* open set (λ, M) .

Property 4.17. Let f be a mapping from soft fuzzy* topological space (X,T) to a soft fuzzy* topological space (Y,S). Let \mathfrak{B} be a soft fuzzy* base for S. Then f is soft fuzzy* continuous iff for each soft fuzzy* open (λ, M) in \mathfrak{B} the inverse image $f^{-1}(\lambda, M)$ is soft fuzzy* open is in T.

Proof. Proof is obvious.

Property 4.18. Let $((\lambda, M), T_{(\lambda,M)})$, $((\mu, N), S_{(\mu,N)})$ be soft fuzzy* subspaces of soft fuzzy* topological spaces (X, T), (Y, S) respectively. Let \mathfrak{B}' be a soft fuzzy* base for $S_{(\mu,N)}$. Then a mapping f of $((\lambda, M), T_{(\lambda,M)})$ into $((\mu, N), S_{(\mu,N)})$ is soft fuzzy* relatively continuous iff for each (μ', N') in \mathfrak{B}' the intersection $f^{-1}((\mu', N') \sqcap (\lambda, M))$ is in $T_{(\lambda,M)}$.

Proof. Proof is obvious.

Definition 4.19. Let T_1 and T_2 be two soft fuzzy^{*} topologies on the same set X. Then we say that T_1 is *finer* that T_2 (and that T_2 is *coarser* that T_1) if the identity mapping of (X, T_1) into (X, T_2) is soft fuzzy^{*} continuous.

Definition 4.20. Let $f: X \to Y$. Let T be a soft fuzzy* topology on X. The finest soft fuzzy* topology S on Y for which f is soft fuzzy* continuous is called the image under f of T. A soft fuzzy* set (μ, N) in Y is soft fuzzy* open in S iff $f^{-1}(\mu, N)$ is a soft fuzzy* open set in X.

Definition 4.21. Let $f: X \to Y$ be a mapping. Let S be a soft fuzzy* topology on Y. The coarsest soft fuzzy* topology T on X for which f is soft fuzzy* continuous is called the inverse image under f of S. The soft fuzzy* open sets in X are the inverse images of soft fuzzy* open sets in Y.

Definition 4.22. Given a family $\{(X_j, T_j)\}_{j \in J}$ of a soft fuzzy* topological spaces. Define their product $\prod_{j \in J} (X_j, T_j)$ to be the soft fuzzy* topological space (X, T)where $X = \prod_{j \in J} X_j$ is the usual set product and T is the coarsest soft fuzzy* topology on X for which the projection p_j of X onto X_j are soft fuzzy* continuous for each $j \in J$. The soft fuzzy* topology T is called **product soft fuzzy* topology** on X and (X, T) a **product soft fuzzy* topological space**. **Property 4.23.** Let $\{(X_j, T_j)\}_{j \in J}$ be a family of soft fuzzy* topological spaces and (X, T) the product soft fuzzy* topological space. The product soft fuzzy* topology T on X has a soft fuzzy* base the set of finite intersections of soft fuzzy* sets of the form $p_j^{-1}(\lambda_j, M_j)$ where $(\lambda_j, M_j) \in T_j$, $j \in J$.

Proof. Let $\{X_j\}$, j = 1, 2, ..., n be a finite family of soft fuzzy* sets and for each j = 1, 2, ..., n, let (λ_j, M_j) be a soft fuzzy* sets in X_j . Define the product $(\lambda, M) = \prod_{j=1}^n (\lambda_j, M_j)$ of the family $\{(\lambda_j, M_j)\}_{j=1,2,...,n}$ as the soft fuzzy* set in $X = \prod_{j=1}^n X_j$ that has the membership function given by

$$\lambda(x_1, x_2, \dots, x_n) = \min\{\lambda_1(x_1), \dots, \lambda_n(x_n)\}$$

for all $(x_1, ..., x_n) \in M$.

For each $j = 1, 2, ..., n, p_j(\lambda, M) \sqsubseteq (\lambda_j, M_j)$, since the membership function of $p_j(\lambda, M) = (\gamma, L)$ is given by

$$\begin{split} \gamma(x_j) &= \sup_{(x_1,\dots,x_n) \in p_j^{-1}(x_j)} \lambda(x_1,\dots,x_n) \\ &= \sup_{(x_1,\dots,x_n) \in p_j^{-1}(x_j)} \min\{\lambda_1(x_1),\dots,\lambda_n(x_n)\} \\ &= \min\{\sup_{x_1 \in M_1} \lambda_1(x_1),\dots\lambda_j(x_j),\dots,\sup_{x_n \in M_n} \lambda_n(x_n)\} \\ &\leq \lambda_j(x_j) \text{ for all } x_j \in L \end{split}$$

Remark 4.24. By Property 4.23, if X_j has soft fuzzy* topology T_j , j = 1, 2, ..., n the product soft fuzzy* topology on X has a soft fuzzy* base the set of product soft fuzzy* sets of the form $\prod_{j=1}^{n} (\lambda_j, M_j)$ where $(\lambda_j, M_j) \in T_j$, j = 1, 2, ..., n.

Property 4.25. Let $\{(X_j, T_j)\}$, j = 1, 2, ..., n be a finite family of soft fuzzy* topological spaces and (X, T) the product soft fuzzy* topological space. For each j = 1, 2, ..., nlet (λ_j, M_j) be a soft fuzzy* set in X_j and (λ, M) be the product soft fuzzy* set in X. Then the induced soft fuzzy* topology $T_{(\lambda,M)}$ has a soft fuzzy* base the set of product soft fuzzy* sets of the form $\prod_{j=1}^{n} (\alpha'_j, A'_j)$ where $(\alpha'_j, A'_j) \in (T_j)_{(\lambda_j, M_j)}$, j = 1, 2, ..., n.

Proof. By Remark 4. 24, T has a soft fuzzy^{*} base

$$\mathfrak{B} = \{\Pi_{j=1}^{n}(\alpha_{j}, A_{j}) : (\alpha_{j}, A_{j}) \in T_{j}, j = 1, 2, .., n\}$$

A soft fuzzy* base for $T_{(\lambda,M)}$ is therefore given by

$$\mathfrak{B}_{(\lambda,M)} = \{ (\Pi_{j=1}^{n}(\alpha_{j}, A_{j})) \sqcap (\lambda, M) : (\lambda_{j}, M_{j}) \in T_{j}, j = 1, 2, .., n \}.$$

But $(\prod_{j=1}^{n}(\alpha_{j}, A_{j})) \sqcap (\lambda, M) = \prod_{j=1}^{n}((\alpha_{j}, A_{j}) \sqcap (\lambda, M))$. Hence the property follows with $(\alpha'_{j}, A'_{j}) = (\alpha_{j}, A_{j}) \sqcap (\lambda, M)$.

Property 4.26. Let $\{(X_j, T_j)\}_{j \in J}$ be a family of soft fuzzy* topological spaces (X, T) the product soft fuzzy* topological space. Let f be a mapping of a soft fuzzy* topological space (Y, S) into (X, T). Then f is soft fuzzy* continuous iff $p_j \circ f$ is soft fuzzy* continuous for each $j \in J$.

Proof. Proof is obvious.

Corollary 4.27. Let $\{(X_j, T_j)\}$, $\{(Y_j, S_j)\}$, $j \in J$ be two families of soft fuzzy* topological spaces and (X,T) (Y,S) the respective product soft fuzzy* topological spaces. For each $j \in J$, let f_j be a mapping of (X_j, T_j) into (Y_j, S_j) . Then the product mapping $f : \prod_{j \in J} f_j : (x_j) \to (f_j(x_j))$ of (X,T) into (Y,S) is soft fuzzy* continuous if f_j is soft fuzzy* continuous for each $j \in J$.

Proof. The mapping f can be written as $x \to (f_j(P_j(x)))$ where $x = (x_j)$ and is therefore soft fuzzy* continuous by Property 4.26.

Property 4.28. Let $\{(X_j, T_j)\}, j = 1, 2, ..., n$ be a finite family of soft fuzzy* topological spaces and (X, T) the product soft fuzzy* topological spaces. For each j = 1, 2, ..., n, let (λ_j, M_j) be a soft fuzzy* set in X_j and (λ, M) the product soft fuzzy* set in X. Let (Y, S) be a soft fuzzy* topological space, (μ, N) be a soft fuzzy* set in (Y, S) and f a mapping of the soft fuzzy* subspace $((\mu, N), S_{(\mu,N)})$ into the soft fuzzy* subspace $((\lambda, M), T_{(\lambda,M)})$. Then f is soft fuzzy* relatively continuous iff $p_i \circ f$ is soft fuzzy* relatively continuous for each j = 1, 2, ..., n.

Proof. By Property 4.13, the soft fuzzy^{*} continuity of p_j implies the soft fuzzy^{*} relatively continuity of p_j for each j = 1, 2, ..., n. The composition $p_j \circ f$ is therefore soft fuzzy^{*} relatively continuous for each j = 1, 2, ..., n.

Conversely, let $(\lambda', M') = (\lambda'_1, M'_1) \times ... \times (\lambda'_n, M'_n)$ where $(\lambda'_j, M'_j) \in (T_j)_{(\lambda_j, M_j)}$, j = 1, 2, ..., n. By Property 4. 25, the set of such (λ', M') form a soft fuzzy base of $T_{(\lambda,M)}$. Since

$$\begin{split} f^{-1}(\lambda',M') &\sqcap (\mu,N) = f^{-1}(p_1^{-1}(\lambda'_1,M'_1) \sqcap \ldots \sqcap p_n^{-1}(\lambda'_1,M'_1) \sqcap (\mu,N) \\ &= \sqcap_{j=1}^n ((p_j \circ f)^{-1}(\lambda'_j,M'_j) \sqcap (\mu,N)) \end{split}$$

is soft fuzzy^{*} open in $S_{(\mu,N)}$, as $p_j \circ f$ is soft fuzzy^{*} relatively continuous for each j = 1, 2, ..., n it follows that from Property 4.17, that f is soft fuzzy^{*} relatively continuous.

Corollary 4.29. Let $\{(X_j, T_j)\}$, $\{(Y_j, S_j)\}$ j = 1, 2, ..., n be two finite families of soft fuzzy* topological spaces and (X, T), (Y, S) the respective product soft fuzzy* topological spaces. For each j = 1, 2, ..., n, let (λ_j, M_j) be a soft fuzzy* set in X_j , (μ_j, N_j) be a soft fuzzy* set in Y_j and f_j a mapping of the soft fuzzy* subspaces $((\lambda_j, M_j), T_{(\lambda_j, M_j)})$ into the soft fuzzy* subspace $((\mu_j, N_j), S_{(\mu_j, N_j)})$. Let $(\lambda, M) = \prod_{j=1}^n (\lambda_j, M_j)$ and $(\mu, N) = \prod_{j=1}^n (\mu_j, N_j)$ be the product mapping $f = \prod_{j=1}^n f_j$: $(x_1, ..., x_n) \to (f_1(x_1), ..., f_n(x_n))$ of the soft fuzzy* relatively continuous if f_j is soft fuzzy* relatively continuous for each j = 1, 2, ..., n.

Proof. By Corollary 4.27, the proof is obvious.

Property 4.30. Let $\{(X_j, T_j)\}$, $\{(Y_j, S_j)\}$ j = 1, 2, ..., n be two finite families of soft fuzzy* topological spaces and (X, T), (Y, S) the respective product soft fuzzy* topological spaces. For each j = 1, 2, ..., n, let f_j be a mapping of (X_j, T_j) into (Y_j, S_j) . Then the product mapping $f : \prod_{j=1}^n f_j : (x_1, ..., x_n) \to (f_1(x_1), ..., f_n(x_n))$ of (X, T) into (Y, S) is soft fuzzy* open if f_j is soft fuzzy* open for each j = 1, ..., n.

Proof. Let (λ, M) be soft fuzzy^{*} open in (X, T). Then there exists soft fuzzy^{*} open set $(\lambda_{ja}, M_{ja}) a \in A, j = 1, ..., n$ such that $(\lambda, M) = \bigsqcup_{a \in A} \prod_{j=1}^{n} (\lambda_{ja}, M_{ja})$.

The image $f(\lambda, M)$ of (λ, M) has the membership function $f(\lambda, M) = (\gamma, L)$ where for all $y \in L \subseteq S$.

$$\begin{aligned} \gamma(y) &= \bigsqcup_{a \in A} sup_{z \in f^{-1}(y)} \prod_{j=1}^{n} \lambda_{ja}(z) \\ &= sup_{a \in A} sup_{z_1 \in f_1^{-1}(y_1)} ... sup_{z_n \in f_n^{-1}(y_n)} min\{\lambda_{1a}(z_1) ... \lambda_{na}(z_n)\} \\ &= sup_{a \in A} (min\{sup_{z_1 \in f_1^{-1}(y_1)} \lambda_{1a}(z_1) ... sup_{z_n \in f_n^{-1}(y_n)} \lambda_{na}(z_n) ... \} \\ &= \bigsqcup_{a \in A} \prod_{j=1}^{n} (f_j(\lambda_{ja}, M_{ja})) \end{aligned}$$

Thus $f(\lambda, M) = \bigsqcup_{a \in A} \prod_{j=1}^{n} (f_j(\lambda_{ja}, M_{ja}))$. Since f_j is soft fuzzy* open for each $j = 1, ..., n, f(\lambda, M)$ is soft fuzzy* open in (Y, S).

Property 4.31. Let $\{(X_j, T_j)\}$, $\{(Y_j, S_j)\}$ j = 1, 2, .., n be two finite families of soft fuzzy* topological spaces and (X, T), (Y, S) the respective product soft fuzzy* topological spaces. For each j = 1, 2, .., n, let (λ_j, M_j) be a soft fuzzy* set in X_j , (μ_j, N_j) be a soft fuzzy* set in Y_j and f_j a mapping of the soft fuzzy* subspace $((\lambda_j, M_j), (T_j)_{(\lambda_j, M_j)})$ into the soft fuzzy* subspace $((\mu_j, N_j), (S_j)_{(\mu_j, N_j)})$. Let $(\lambda, M) = \prod_{j=1}^n (\lambda_j, M_j), (\mu, N) = \prod_{j=1}^n (\mu_j, N_j)$ be the product soft fuzzy* sets in X, Y respectively. Then the product soft fuzzy* mapping $f = \prod_{j=1}^n f_j : (x_1, .., x_n) \rightarrow (f_1(x_1), .., f_n(x_n))$ of the soft fuzzy* relatively open if f_j is soft fuzzy* relatively open for each j = 1, 2, .., n.

Proof. Let (λ', M') be soft fuzzy* open in $T_{(\lambda,M)}$. By Property 4.25, there exists soft fuzzy* open sets $(\lambda'_{ja}, M'_{ja}) \in (T_j)_{(\lambda_j, M_j)}, a \in A, j = 1, ..., n$ such that $(\lambda', M') = \bigcup_{a \in A} \prod_{j=1}^n (\lambda'_{ja}, M'_{ja})$. By Property 4.30, $f(\lambda', M') = \bigcup_{a \in A} \prod_{j=1}^n (f_j(\lambda'_{ja}, M'_{ja}))$. Since f_j is soft fuzzy* relatively open for each $j = 1, ..., n, f(\lambda', M')$ is soft fuzzy* open in $S_{(\mu,N)}$.

Property 4.32. Let (X_1, T_1) and (X_2, T_2) be soft fuzzy* topological spaces and (X, T) the product soft fuzzy* topological space. Then for each $a_1 \in X_1$, the mapping $i : x_2 \to (a_1, x_2)$ of (X_2, T_2) into (X, T) is soft fuzzy* continuous.

Proof. The constant mapping $i_1 : x_2 \to a_1$ from (X_2, T_2) into (X_1, T_1) is soft fuzzy^{*} continuous. For if (λ_1, M_1) is soft fuzzy^{*} open in T_1 , the inverse image $f^{-1}(\lambda_1, M_1)$ has the membership function is given by

$$i_1^{-1}(\lambda_1)(x_2) = \lambda_1 \circ i(x_2)$$
$$= \lambda_1(a_1)$$
$$= k_c(x_2) \text{ for all } x_2 \in M_2$$

where (k_c, H) is the soft fuzzy^{*} open set in X_2 which has the constant membership function with value $c = \lambda_1(a_1)$. since the identity mapping $i_2 : x_2 \to x_2$ of (X_2, T_2) into itself is soft fuzzy continuous, the mapping *i* is soft fuzzy continuous by Property 4.26.

Property 4.33. Let (X_1, T_1) and (X_2, T_2) be soft fuzzy* topological spaces and (X, T) the product soft fuzzy* topological space. Let (λ_1, M_1) , (λ_2, M_2) be a soft 799

fuzzy* open set in X_1, X_2 respectively. Let (λ, M) be the product soft fuzzy* set in X. Then for each $a_1 \in M_1$ such that $\lambda_1(a_1) \geq \lambda_2(x_2)$ for all $x_2 \in M_2$, the mapping $i : x_2 \rightarrow (a_1, x_2)$ of the soft fuzzy* subspace $((\lambda_2, M_2), (T_2)_{(\lambda_2, M_2)})$ into the soft fuzzy* subspace $((\lambda, M), T_{(\lambda, M)})$ is soft fuzzy* relatively continuous.

Proof. Since $i(\lambda_2, M_2) \sqsubseteq (\lambda, M)$, since the membership function of $i(\lambda_2, M_2) = (\gamma, L)$ is given by

$$\gamma(x_1, x_2) = \sup_{x_2 \in f^{-1}(x_1, x_2)} \lambda_2(x_2)$$

$$= \begin{cases} \lambda_2(x_2) & \text{if } x_1 = a_1 \\ 0 & otherwise \end{cases}$$

and that of (λ, M) by

$$\lambda(x_1, x_2) = (\min\{\lambda_1(x_1), \lambda_2(x_2)\}$$

$$\geq \lambda(x_2) \text{ for all } (x_1, x_2) \in M, x_1 \in M_1.$$

The proof of the soft fuzzy* relative continuity of i is analogous to the proof of the soft fuzzy* continuity of i in Property 4.32.

5. Soft fuzzy* group

Definition 5.1. Let X be a group and M be a subgroup of X. Let (λ, M) be any soft fuzzy^{*} set in X. Then (λ, M) is said to be soft fuzzy^{*} group in X satisfies the following conditions

(i) $\lambda(xy) \ge \min\{\lambda(x), \lambda(y)\}$ for every $x, y \in M$; (ii) $\lambda(x^{-1}) = \lambda(x)$ for every $x \in M$.

Property 5.2. If (λ, M) is a soft fuzzy* group then (i) $\lambda(x) \leq \lambda(e)$ for $x, e \in M$. (ii) $\lambda(xy^{-1}) \geq \min\{\lambda(x), \lambda(y)\}$ for every $x, y \in M$.

Proof. (i) Let $x, e \in M$. Now

$$\begin{split} \lambda(e) &= \lambda(xx^{-1}) \\ &\geq \min\{\lambda(x), \lambda(x^{-1})\} \\ &= \lambda(x) \text{[By Definition 5.1(ii)]} \end{split}$$

Therefore, $\lambda(x) \leq \lambda(e)$ for $x, e \in M$.

(ii) Let $x, y \in M$. Now

$$\lambda(xy^{-1}) \ge \min\{\lambda(x), \lambda(y^{-1})\}\$$
$$= \min\{\lambda(x), \lambda(y)\}\$$

Therefore, $\lambda(xy^{-1}) \ge \min\{\lambda(x), \lambda(y)\}$ for every $x, y \in M$.

Property 5.3. Let X, Y be groups and f a homomorphism of X into Y. Let (λ, M) be a soft fuzzy* group in Y. Then the inverse image $f^{-1}(\lambda, M)$ of (λ, M) is a soft fuzzy* group in X.

Proof. For all $x, y \in f^{-1}(M)$,

$$f^{-1}(\lambda)(xy^{-1}) = \lambda(f(xy^{-1}))$$

= $\lambda(f(x)f(y^{-1}))$
= $\lambda(f(x)(f(y))^{-1})$
 $\geq min\{\lambda(f(x)), \lambda(f(y))\}$
= $(min\{f^{-1}(\lambda(x)), f^{-1}(\lambda(y))\}.$

Therefore, $f^{-1}(\lambda, M)$ of (λ, M) is a soft fuzzy* group in X.

Definition 5.4. A soft fuzzy^{*} set (λ, M) of X is said to have **soft fuzzy**^{*} sup **property** if for any subset $S \subseteq X$ there exists $t_0 \in S$ such that $\lambda(t_0) = \sup_{t \in S} \lambda(t)$.

Property 5.5. Let X, Y be groups and f a homomorphism of X into Y. Let (λ, M) be a soft fuzzy* group in X that has soft fuzzy* sup property. Then the image $f(\lambda, M)$ of (λ, M) is a soft fuzzy* group in Y.

Proof. Let $f(\lambda, M) = (\gamma, L)$. Let $u, v \in L$. If either $f^{-1}(u), f^{-1}(v)$ is empty then the inequality in Property 4.1(ii) is trivially satisfied. Suppose neither $f^{-1}(u)$ nor $f^{-1}(v)$ is empty.

Let $r_0 \in f^{-1}(u), s_0 \in f^{-1}(v)$ such that

$$\lambda(r_0) = \sup_{t \in f^{-1}(u)} \lambda(t) \text{ and } \lambda(s_0) = \sup_{t \in f^{-1}(v)} \lambda(t)$$

Then

$$\begin{aligned} \gamma(uv^{-1}) &= sup_{w \in f^{-1}(uv^{-1})}\lambda(w) \\ &\geq min\{\lambda(r_0),\lambda(s_0)\} \\ &= min\{sup_{t \in f^{-1}(u)}\lambda(t),sup_{t \in f^{-1}(v)}\lambda(t)\} \\ &= min\{\gamma(u),\gamma(v)\}. \end{aligned}$$

Therefore, the image $f(\lambda, M)$ of (λ, M) is a soft fuzzy^{*} group in Y.

Note 5.6. The membership function λ of a soft fuzzy* group (λ, M) in a group X is **soft fuzzy* invariant** if for all $x_1, x_2 \in M$, $f(x_1) = f(x_2)$ implies $\lambda(x_1) = \lambda(x_2)$. Clearly a homomorphic image $f(\lambda, M)$ of (λ, M) is then a soft fuzzy* group.

Remark 5.7. Given a soft fuzzy^{*} group (λ, M) in a group X where M denote the set $\{x|\lambda(x) = \lambda(e)\}$ is a subgroup of X. For $a \in X$, let $\rho_a : x \to xa$ and $\sigma_a : x \to ax$ denote respectively, the right and left translation of X into itself.

Property 5.8. Let (λ, M) be a soft fuzzy* group in a group X then for all $a \in M$, $\rho_a(\lambda, M) = \sigma_a(\lambda, M) = (\lambda, M)$.

Proof. Let $a \in M$. Then the membership function of $\rho_a(\lambda, M) = (R_a, R)$ is given by

$$\begin{aligned} R_a(x) &= \sup_{t \in f^{-1}(x)} \lambda(t) \text{ for all } t \in M \\ &= \lambda(xa^{-1}) \text{ [by soft fuzzy* sup property, there exists } xa^{-1} \in M] \\ &\geq (\min\{\lambda(x), \lambda(e)\} \text{ [by Propert 5.2(ii)]} \\ &= \lambda(x) \end{aligned}$$

_	_	_		
г			1	
			L	
L			L	
ι.			L	

Conversely,

$$\lambda(x) = \lambda(xa^{-1}a)$$

$$\geq \min\{\lambda(xa^{-1}), \lambda(a)\}$$

$$= \min\{\lambda(xa^{-1}), \lambda(e)\} \text{ [since } a \in M\text{]}$$

$$= \lambda(xa^{-1})$$

$$= \sup_{t \in M} \lambda(t)$$

$$= R_a(x) \text{ for all } x \in L \subseteq M$$

Therefore, $\rho_a(\lambda, M) = (\lambda, M)$. Similarly, $\sigma_a(\lambda, M) = (\lambda, M)$.

6. Soft fuzzy* topological groups

Definition 6.1. Let X be a group and T a soft fuzzy* topology on X. Let (λ, M) be a soft fuzzy* group in X and let (λ, M) be endowed with induced soft fuzzy* topology $T_{(\lambda,M)}$. Then (λ, M) is a soft fuzzy* topological group in X iff it satisfies the following two conditions

(i) the mapping $\alpha : (x, y) \to xy$ of $((\lambda, M), T_{(\lambda,M)}) \times ((\lambda, M), T_{(\lambda,M)})$ into $((\lambda, M), T_{(\lambda,M)})$ defined by $\alpha(x, y) = xy$ is soft fuzzy* relatively continuous.

(ii) the mapping $\beta : x \to x^{-1}$ of $((\lambda, M), T_{(\lambda,M)})$ into $((\lambda, M), T_{(\lambda,M)})$ is defined by $\beta(x) = x^{-1}$ is soft fuzzy* relatively continuous.

Note 6.2. A soft fuzzy^{*} group structure and an induced soft fuzzy^{*} topology are said to be *compatible* if they satisfy (i) and (ii).

Property 6.3. Let X be a group having soft fuzzy* topology T. A soft fuzzy* group (λ, M) in X is a soft fuzzy* topological group iff the mapping $f : (x, y) \to xy^{-1}$ of $((\lambda, M), T_{(\lambda,M)} \times ((\lambda, M), T_{(\lambda,M)}))$ into itself is soft fuzzy* relatively continuous.

Proof. The mapping $(x, y) \to (x, y^{-1})$ of $((\lambda, M), T_{(\lambda,M)} \times ((\lambda, M), T_{(\lambda,M)}))$ into itself is soft fuzzy^{*} continuous. By the Corollary 4.33. Hence the composition $(x, y) \to (x, y^{-1}) \to xy^{-1}$ is soft fuzzy^{*} relatively continuous.

Conversely, by Property 5.2(i), $\lambda(e) \geq \lambda(x)$ for all $x \in M$ and therefore by Property 4.33, the canonical injection $i: y \to (e, y) \to ey^{-1}$ of $((\lambda, M), T_{(\lambda,M)})$ into $((\lambda, M), T_{(\lambda,M)} \times ((\lambda, M), T_{(\lambda,M)}))$ is soft fuzzy* relatively continuous. Hence the composition $\beta: y \to (e, y) \to ey^{-1}$ is soft fuzzy* continuous. The mapping $\alpha: (x, y) \to xy$ of $((\lambda, M), T_{(\lambda,M)}) \times ((\lambda, M), T_{(\lambda,M)})$ into $((\lambda, M), T_{(\lambda,M)})$ is soft fuzzy* relatively continuous since it is the composition $(x, y) \to (x, y^{-1}) \to x(y^{-1})^{-1}$ of soft fuzzy* relatively continuous mappings. \Box

Remark 6.4. If (λ, M) is a soft fuzzy^{*} group in a group X carrying soft fuzzy^{*} topology T. Then in general, the translations $\rho_a, \sigma_a, a \in X$ are not soft fuzzy^{*} relatively continuous mappings of $((\lambda, M), T_{(\lambda,M)})$ into itself. However the following special case $M = \{x | \lambda(e) = \lambda(x)\}$.

Property 6.5. Let X be a group having having soft fuzzy* topology T and let (λ, M) be a soft fuzzy* topological group in X. For each $a \in M$ the translations ρ_a, σ_a are soft fuzzy* relative homeomorphism of $((\lambda, M), T_{(\lambda,M)})$ into itself.

Proof. By Property 5.8, $\rho_a(\lambda, M) = (\lambda, M)$ and $\sigma_a(\lambda, M) = (\lambda, M)$ for all $a \in$ M. The mapping σ_a is the composition of the injection $i: y \to (a, y)$ and the mapping $\alpha : (x, y) \to xy$. Since $\lambda(a) \ge \lambda(y)$ for every $y \in M \subseteq Y$. It follows from Property 4.33, *i* is a soft fuzzy* relative continuous mapping of $((\lambda, M), T_{(\lambda,M)})$ into $((\lambda, M), T_{(\lambda,M)}) \times ((\lambda, M), T_{(\lambda,M)})$. The mapping α is soft fuzzy* relative continuous by hypothesis. Hence σ_a is soft fuzzy^{*} relatively open. Then σ_a is soft fuzzy^{*} relative homeomorphism. Similarly we proved ρ_a and ρ_a^{-1} is soft fuzzy^{*} relative homeomorphism.

Suppose that X and Y are groups and that f is a homoemorphism of X into Y. Let Y have soft fuzzy* topology Y and let (λ, M) be a soft fuzzy* topological group in Y. The mapping f gives rise to a soft fuzzy^{*} topology T on X, the inverse image under f of S, and by Property 5.3, it also gives rise to a soft fuzzy^{*} group in X, the inverse image $f^{-1}(\lambda, M)$ of (λ, M) . The following property shows that the induced soft fuzzy* topology on $f^{-1}(\lambda, M)$ and the soft fuzzy* group structure are compatible.

Property 6.6. Given groups X, Y a homomorphism f of X into Y and a soft fuzzy* topology S on Y, let X have soft fuzzy* topology T, where T is the inverse image under f of S and let (λ, M) be a soft fuzzy* topological in Y. Then the inverse image $f^{-1}(\lambda, M)$ of (λ, M) is a soft fuzzy* topological group in X.

Proof. To show that the mapping $\gamma_X : (x_1, x_2) \to (x_1 x_2^{-1})$ of $(f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \times (f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))})$ into $(f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))})$ is soft fuzzy* relatively continuous. Let (α', A') be an soft fuzzy* open in the induced soft fuzzy* topology $T_{f^{-1}(\lambda,M)}$ on $f^{-1}(\lambda,M)$. Since f is a soft fuzzy* continuous mapping of (X,T) into (Y,S) it is, by Property 4.9, a soft fuzzy* relatively continuous mapping of $(f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))})$ into $((\lambda, M), T_{(\lambda, M)})$. Also that there exists an soft fuzzy* open set (δ', P') in $S_{(\lambda, M)}$ such that $f^{-1}(\delta', P') = (\alpha', A')$. The membership function of

$$\begin{aligned} \gamma_X^{-1}(\alpha')(x_1, x_2) &= \alpha' \circ \gamma_X(x_1, x_2) \\ &= \alpha'(x_1 x_2^{-1}) \\ &= f^{-1}(\delta')(x_1 x_2^{-1}) \\ &= \delta'(f(x_1 x_2^{-1})) \\ &= \delta'(f(x_1)(f(x_2))^{-1}) \end{aligned}$$

for all $(x_1, x_2) \in \gamma_X^{-1}(A') \times \gamma_X^{-1}(A')$ where $A' = f^{-1}(P')$. By hypothesis, the mapping $\gamma_Y : (y_1, y_2) \to y_1 y_2^{-1}$ of $((\lambda, M), S_{(\lambda,M)}) \times ((\lambda, M), S_{(\lambda,M)})$ into $((\lambda, M), S_{(\lambda,M)})$ is soft fuzzy* relatively continuous and by Corollary 4.29, so is the product mapping $f \times f$ of $(f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \times (f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))})$ $T_{(f^{-1}(\lambda,M))}$ into $((\lambda,M), S_{(\lambda,M)})$. But

$$\delta'(f(x_1)(f(x_2))^{-1}) = \gamma_Y^{-1}(\delta')(f(x_1), f(x_2)) \text{ where } y_1 = f(x_1) \text{ and } y_2 = (f(x_2))^{-1}$$
$$= (f \times f)^{-1}(\gamma_Y^{-1}(\delta'))(x_1, x_2)$$
$$803$$

for every $(x_1, x_2) \in \gamma_X^{-1}(A') \times \gamma_X^{-1}(A')$. Hence $\gamma_X^{-1}(\alpha', A') \sqcap (f^{-1}(\lambda, M) \times f^{-1}(\lambda, M)) = (f \times f)^{-1}(\gamma_Y^{-1}(\delta', P')) \sqcap (f^{-1}(\lambda, M) \times f^{-1}(\lambda, M))$ is open in the induced soft fuzzy* topology on $(f^{-1}(\lambda, M) \times f^{-1}(\lambda, M)) \times (f^{-1}(\lambda, M) \times f^{-1}(\lambda, M))$.

Property 6.7. Given groups X, Y a homomorphism f of X into Y and a soft fuzzy^{*} topology T on X, let Y have soft fuzzy^{*} topology S, where S is the image under f of T and let (λ, M) be a soft fuzzy^{*} topological group in X. If the membership function λ of (λ, M) is soft fuzzy^{*} f invariant then the image $f(\lambda, M)$ of (λ, M) is a soft fuzzy^{*} topological group in Y.

Proof. To show that the mapping $\gamma_Y : (y_1, y_2) \to (y_1 y_2^{-1})$ of $(f(\lambda, M), S_{f(\lambda, M)}) \times (f(\lambda, M), S_{f(\lambda, M)})$ into $(f(\lambda, M), S_{f(\lambda, M)})$ is soft fuzzy* relatively continuous. Note that f is soft fuzzy* open, for if $(\gamma, L) \in T$, then $(f(\gamma, L)) \in S$. Since the inverse image $f^{-1}(f(\gamma, L))$ is the union of soft fuzzy* open sets and thus soft fuzzy* open in T. It follows that f is soft fuzzy* relatively open. Since if $(\delta', P') \in T_{(\lambda, M)}$ there exists (γ, L) in T such that $(\delta', P') = (\gamma, L) \sqcap (\lambda, M)$ and by the soft fuzzy* f invariance of $\lambda, f(\delta', P') = f(\gamma, L) \sqcap f(\lambda, M) \in S_{(\lambda, M)}$. By Property 4.25, the product mapping $f \times f$ is soft fuzzy* relatively open mapping of $((\lambda, M), T_{(\lambda, M)}) \times ((\lambda, M), T_{(\lambda, M)})$ into $(f(\lambda, M), S_{(f(\lambda, M))}) \times (f(\lambda, M), S_{(f(\lambda, M))})$. Let (α', A') be a soft fuzzy* open set in $S_{f(\lambda, M)}$. The membership function of

Let (α', A') be a soft fuzzy^{*} open set in $S_{f(\lambda,M)}$. The membership function of $(f \times f)^{-1}(\gamma_Y^{-1}(\alpha', A'))$ is given by

$$(f \times f)^{-1}(\gamma_Y^{-1}(\alpha')) = (\gamma_Y^{-1}(\alpha')) \circ (f \times f)(x_1, x_2)$$

= $(\gamma_Y^{-1}(\alpha'))(f(x_1)(f(x_2))^{-1})$
= $(\gamma_X^{-1} \circ f^{-1})(\delta^{-1})(x_1, x_2)$

for all $(x_1, x_2) \in (f \times f)^{-1}(\gamma_Y^{-1}(A'))$ where $\gamma_X : (x_1, x_2) \to x_1 x_2^{-1}$. But, by hypothesis, γ_X is a soft fuzzy* relatively continuous mapping of $((\lambda, M), T_{(\lambda,M)}) \times ((\lambda, M), T_{(\lambda,M)})$ into $((\lambda, M), T_{(\lambda,M)})$ and f is a soft fuzzy* relatively continuous mapping of $((\lambda, M), T_{(\lambda,M)})$ into $(f(\lambda, M), S_{(f(\lambda,M))})$. Hence, by the soft fuzzy* f invariance of λ ,

 $(f \times f)^{-1}(\gamma_Y^{-1}(\alpha', A')) \sqcap (f(\lambda, M) \times f(\lambda, M)) = (f \times f)^{-1}(\gamma_Y^{-1}(\delta', P')) \sqcap (\lambda, M) \times (\lambda, M)$ is open in the induced soft fuzzy* topology on $(\lambda, M) \times (\lambda, M)$. As $f \times f$ is soft fuzzy* relatively open,

 $(f \times f)(f \times f)^{-1}((\gamma_Y^{-1}(\delta', P') \sqcap f(\lambda, M) \times f(\lambda, M)) = \gamma_Y^{-1}(\delta', P') \sqcap (f(\lambda, M) \times (f(\lambda, M)))$ is open in the induced soft fuzzy* topology on $(f(\lambda, M)) \times (f(\lambda, M))$. \Box

Acknowledgements. The first author would like to thank the UGC for financial support. The authors are grateful to the referees for their valuable support to publish this paper.

References

[1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.

^[2] D. Foster, Fuzzy topological groups, J. Math. Anal. Appl. 67 (1979) 549–564.

^[3] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512–517.

^[4] P. Smets, The degree of belief in a fuzzy event, Inform. Sci. 25 (1981) 1–19.

D. VIDHYA(vidhya.d850gmail.com)

Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

E. ROJA (AMV_1982@rediffmail.com)

Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

 $\underline{M. K. UMA}(mkuma70@yahoo.com)$

Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

^[5] M. Sugeno, An introductory survey of fuzzy control, Inform. Sci. 36 (1985) 59–83.

^[6] I. U. Triyaki, Fuzzy sets over the poset $\mathbb{I},$ Hacet. J. Math. Stat. 37(2) (2008) 143–166.

^[7] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.