On soft fuzzy* topological groups

D. Vidhya, E. Roja, M. K. Uma

Received 16 May 2013; Accepted 16 September 2013

Abstract. In this paper, the concepts of soft fuzzy* topological spaces and soft fuzzy* groups are introduced. In this connection, the concept of soft fuzzy* topological group is introduced. The concepts of Homomorphic images and inverse images of soft fuzzy* topological groups are studied.

2010 AMS Classification: 54A40,03E72
Keywords: Soft fuzzy* groups, Soft fuzzy* topological groups.
Corresponding Author: D. Vidhya (vidhya.d85@gmail.com)

1. Introduction

The concept of fuzzy set was introduced by Zadeh [7]. Fuzzy sets have applications in many fields such as information [4] and control [5]. The theory of fuzzy topological spaces was introduced and developed by Chang [1] and since then various notions in classical topology have been extended to fuzzy topological spaces. A. Rosenfeld [3] formulated the elements of a theory of fuzzy groups. David Foster [2] introduced the concept of fuzzy topological groups. The concept of soft fuzzy topological space was introduced by Ismail U. Triyaki [6]. In this paper, the concepts of soft fuzzy* topological groups are introduced and some basic properties are studied.

2. Preliminaries

Definition 2.1 ([2]). Let X be a group and G be a fuzzy set in X with membership function μ_G. Then G is a fuzzy group in X iff the following conditions are satisfied:
(i) $\mu_G(xy) \geq \min\{\mu_G(x), \mu_G(y)\}$, for all $x, y \in X$;
(ii) $\mu_G(x^{-1}) \geq \mu_G(x)$, for all $x \in X$.

Definition 2.2 ([6]). Let X be a non-empty set. A soft fuzzy set (in short, SFS) A have the form $A = (\lambda, M)$ where the function $\lambda : X \to I$ denotes the degree of membership and M is the subset of X. The set of all soft fuzzy set will be denoted by $SF(X)$.
Definition 2.3 ([5]). The relation \(\sqsubseteq \) on \(SF(X) \) is given by \((\mu, N) \sqsubseteq (\lambda, M) \) if \(\mu(x) \leq \lambda(x), \forall x \in X \) and \(M \subseteq N \).

Proposition 2.4 ([5]). If \((\mu_j, N_j) \in SF(X), j \in J \), then the family \(\{(\mu_j, N_j)\mid j \in J\} \) has a meet, ie., g.l.b., in \(SF(X) \) denoted by \(\bigcap_{j \in J}(\mu_j, N_j) \) and given by
\[
\mu(x) = \bigwedge_{j \in J} \mu_j(x) \quad \forall x \in X
\]
and
\[
M = \bigcap M_j \text{ for } j \in J.
\]

Proposition 2.5 ([5]). If \((\mu_j, N_j) \in SF(X), j \in J \), then the family \(\{(\mu_j, N_j)\mid j \in J\} \) has a join, ie., l.u.b., in \(SF(X) \) denoted by \(\bigvee_{j \in J}(\mu_j, N_j) \) and given by
\[
\mu(x) = \bigvee_{j \in J} \mu_j(x) \quad \forall x \in X
\]
and
\[
M = \bigvee M_j \text{ for } j \in J.
\]

Definition 2.6 ([5]). Let \(X \) be a set. Let \(T \) be family of soft fuzzy subsets of \(X \). Then \(T \) is called a soft fuzzy topology on \(X \) if \(T \) satisfies the following conditions:
(i) \((0, \emptyset) \) and \((1, X) \in T \).
(ii) If \((\mu_j, N_j) \in T, j = 1, 2, ..., n \) then \(\bigcap_{j=1}^n(\mu_j, N_j) \in T \).
(iii) If \((\mu_j, N_j) \in T, j \in J \) then \(\sqcup_{j \in J}(\mu_j, N_j) \in T \).

The pair \((X, T)\) is called a soft fuzzy topological space (in short, SFTS). The members of \(T \) are soft fuzzy open sets and its complement are soft fuzzy closed sets.

Proposition 2.7 ([5]). Let \(\varphi : X \to Y \) be a point function.
(i) The mapping \(\varphi^{-} \) from \(SF(X) \) to \(SF(Y) \) corresponding to the image operator of the difunction \((f, F)\) is given by
\[
\varphi^{-}(\mu, N) = (\nu, L) \text{ where } \nu(y) = \sup\{\mu(x)\mid y = \varphi(x)\}, \text{ and } \]
\[
L = \{\varphi(x)\mid x \in N \text{ and } \nu(\varphi(x)) = \mu(x)\}.
\]
(ii) The mapping \(\varphi^{\ast} \) from \(SF(X) \) to \(SF(Y) \) corresponding to the inverse image of the difunction \((f, F)\) is given by
\[
\varphi^{\ast}(\nu, L) = (\nu \circ \varphi, \varphi^{-1}[L]).
\]

3. Soft fuzzy* set

Definition 3.1. Let \(X \) be a non empty set and \(M \subseteq X \). Then the pair \((\lambda, M)\) is said to be soft fuzzy* set if \(\lambda : M \to I = [0, 1] \). The collection of all soft fuzzy* sets is denoted by \(SF^{\ast}(X) \).

Definition 3.2. Let \((\lambda, M), (\mu, N) \in SF^{\ast}(X) \). Then \((\lambda, M)\) is called a soft fuzzy* subset of \((\mu, N)\) if \(M \subseteq N \) and \(\lambda(e) \leq \mu(e) \) for each \(e \in M \).
Definition 3.3. The union of two soft fuzzy* sets \((\lambda, M)\) and \((\mu, N)\) over \(X\) is the soft fuzzy* set \((\gamma, L) = (\lambda, M) \cup (\mu, N)\) where \(L = M \cup N\) and \(\gamma(e) = \begin{cases} \lambda(e) & \text{if } e \in M \setminus N \\ \mu(e) & \text{if } e \in N \setminus M \\ \lambda(e) \vee \mu(e) & \text{if } e \in M \cap N \end{cases}\)

Definition 3.4. If \((\lambda, M)\) and \((\mu, N)\) be two soft fuzzy* sets then the intersection of \((\lambda, N)\) and \((\mu, N)\) is a soft fuzzy* set \((\gamma, L) = (\lambda, M) \cap (\mu, N)\) where \(L = M \cap N\) and \(\gamma(e) = \lambda(e) \wedge \mu(e)\) for all \(e \in L\).

Definition 3.5. Let \((\lambda, M) \in SF^*(X).\) Then the complement of \((\lambda, M)\) is denoted by \((\lambda, M)'\) is the soft fuzzy* set defined by \((\lambda, M)' = (1, X) - (\lambda, M)\) where \(\lambda'(e) = 1 - \lambda(e)\) for all \(e \in M\) and \(M' = X \setminus M\).

Definition 3.6. Let \((\lambda, M) \in SF^*(X).\) Then the soft fuzzy* set \((\lambda, M)\) is the soft fuzzy* null set denoted by \((0, \emptyset)\) if \(\lambda(e) = 0\) for every \(e \in M\).

Definition 3.7. Let \((\lambda, M) \in SF^*(X).\) Then the soft fuzzy* set \((\lambda, M)\) is the soft fuzzy* universal set denoted by \((1, X)\) if \(\lambda(e) = 1\) for every \(e \in M\).

Definition 3.8. Let \(f : X \to Y\) be a function.

(i) the mapping \(f\) from \(SF^*(X) \to SF^*(Y)\) corresponding to the image operator of the difunction \((\phi, \psi)\) is given by \(f(\mu, N) = (\gamma, L)\) where \(\gamma(y) = \sup\{\mu(x)|y = f(x), x \in N\}, y \in L\).

(ii) the mapping \(f^{-1}\) from \(SF^*(Y) \to SF^*(X)\) corresponding to the inverse image of the difunction \((\phi, \psi)\) is given by \(f^{-1}(\mu, N) = \mu \circ f\).

Property 3.9. Let \(f\) be a mapping from a set \(X\) to a set \(Y.\) Let \(\{(\lambda_j, M_j)\}_{j \in J}\) be a family of soft fuzzy* sets in \(X\) and \(\{\mu_j, N_j\}\) \(j \in J\) a family of soft fuzzy* sets in \(Y.\) Then

\begin{align*}
\text{(i)} & \quad f^{-1}(\bigcup_{j \in J}(\mu_j, N_j)) = \bigcup_{j \in J}f^{-1}(\mu_j, N_j) \\
\text{(ii)} & \quad f^{-1}(\bigcap_{j \in J}(\mu_j, N_j)) = \bigcap_{j \in J}f^{-1}(\mu_j, N_j) \\
\text{(iii)} & \quad f(\bigcup_{j \in J}(\lambda_j, M_j)) = \bigcup_{j \in J}f(\lambda_j, M_j) \\
\text{(iv)} & \quad f(\bigcap_{j \in J}(\lambda_j, M_j)) \subseteq \bigcap_{j \in J}f(\lambda_j, M_j)
\end{align*}

Proof. (i) For all \(e \in \bigcup_{j \in J}N_j\) then

\[
f^{-1}(\bigcup_{j \in J}(\mu_j, N_j)) = \bigcup_{j \in J}\mu_j \circ f(e)
\]

\[
= \bigvee_{j \in J}(\mu_j \circ f)(e)
\]

\[
= \bigvee_{j \in J}\mu_j \circ f
\]

\[
= \bigcup_{j \in J}f^{-1}(\mu_j, N_j)
\]

(ii) The proof is similar for (i).

(iii) The proof is immediately from the Definition 3.8.

(iv) Let \(f(\bigcap_{j \in J}(\lambda_j, M_j)) = (\gamma, L).\) The membership function of \((\gamma, L)\) is given by

\[
\gamma(y) = \sup\{\Lambda_{j \in J}\lambda_j(x)|y = f(x), x \in \Lambda_{j \in J}f(M_j)\}
\]

\[
\subseteq \Lambda_{j \in J}\sup\{\lambda_j(x)|y = f(x), x \in \Lambda_{j \in J}f(M_j)\}
\]

\[
= \Lambda_{j \in J}f(\lambda_j, M_j)
\]

for all \(y \in L.\)
4. Soft fuzzy* topological spaces and subspaces

Definition 4.1. A subset $T \subseteq SF^*(X)$ is called soft fuzzy* topology on X if

(i) For all $c \in I$ and $H \subseteq X$, $(k_c,H) \in T$,
(ii) $(\mu_j, N_j) \in T, j = 1, \ldots, n \Rightarrow \cap_{j=1}^n (\mu_j, N_j) \in T$,
(iii) $(\mu_j, N_j) \in T, j \in J \Rightarrow \cup_{j \in J} (\mu_j, N_j) \in T$

As usual the elements of T are soft fuzzy* open and the complement T' of T is called soft fuzzy* closed.

If T is a soft fuzzy* topology on X we call the pair (X,T) an **soft fuzzy* topological space**.

Note 4.2. We denote by (k_c, H) the soft fuzzy* set in X with membership function $k_c(x) = c$ for all $x \in H$. The soft fuzzy* set (k_1, X) corresponds to the set $(1, X)$ and the soft fuzzy* set (k_0, \emptyset) to the empty set $(0, \emptyset)$.

Definition 4.3. Let (X, T) be a soft fuzzy* topological space. Let (λ, M) be a soft fuzzy* set. Then

$$T_{(\lambda, M)} = \{ (\lambda, M) \cap (\delta, P); (\delta, P) \in T \}$$

is called an **induced soft fuzzy* topology** on (λ, M) and $((\lambda, M), T_{(\lambda, M)})$ is called a soft fuzzy* subspace topology on (X, T).

Definition 4.4. Let (λ, M) and (μ, N) be any soft fuzzy* set in X. Then the **product** of (λ, M) and (μ, N) is defined by

$$((\lambda \times \mu)_{M \times N}(x) = \sup_{x=(x_1, x_2)} \min\{\lambda(x_1), \mu(x_2)\}$$

for all $x_1 \in M, x_2 \in N$.

Note 4.5. The induced soft fuzzy* topology does not in general satisfy condition (i) of Definition 4.3. Condition (ii), however is satisfied and so is condition (iii).

Thus if $(\delta_j', P_j') \in T_{(\lambda, M)}$ for all $j \in J$ then there exists $(\delta_j, P_j) \in T, j \in J$ such that $(\delta_j', P_j') = (\delta_j, P_j) \cap (\lambda, M)$ for each $j \in J$. The union $(\delta', P') = \cup_{j \in J} (\delta_j', P_j') = \cup_{j \in J} ((\delta_j, P_j) \cap (\lambda, M))$ has the soft fuzzy* membership function is given by

$$\delta'(x) = \sup_{j \in J} \delta_j'(x) = \sup_{j \in J} \min\{\delta_j(x), \lambda(x)\} = \min\{\sup_{j \in J} \delta_j(x), \lambda(x)\} = \min\{\cup_{j \in J} \delta_j \cap \lambda\}(x)$$

for all $x \in P'$. Hence $(\delta', P') = (\cup_{j \in J} (\delta_j, P_j)) \cap (\lambda, M))$.

Definition 4.6. If $((\lambda, M), T_{(\lambda, M)})$ and $((\mu, N), S_{(\mu, N)})$ are soft fuzzy* subspaces of soft fuzzy topological spaces (X, T) and (Y, S) respectively. If f is a mapping of (X, T) into (Y, S) then f is a mapping of $((\lambda, M), T_{(\lambda, M)})$ into $((\mu, N), S_{(\mu, N)})$ if $f(\lambda, M) \subseteq (\mu, N)$.

Definition 4.7. Let $((\lambda, M), T_{(\lambda, M)})$ and $((\mu, N), S_{(\mu, N)})$ be any two soft fuzzy* subspaces of soft fuzzy* topological spaces (X, T) and (Y, S) respectively. Then a mapping f of $((\lambda, M), T_{(\lambda, M)})$ into $((\mu, N), S_{(\mu, N)})$ is said to be soft fuzzy* relatively continuous iff for each soft fuzzy* open set (γ', L') in $S_{(\mu, N)}$, $f^{-1}(\gamma', L') \cap (\lambda, M)$ is soft fuzzy* open in $T_{(\lambda, M)}$. 794
Definition 4.8. Let \((\lambda, M), T_{(\lambda,M)}\) and \(((\mu, N), S_{(\mu,N)})\) be any two soft fuzzy* subspaces of soft fuzzy* topological spaces \((X, T)\) and \((Y, S)\) respectively. Then a mapping \(f\) of \(((\lambda, M), T_{(\lambda,M)})\) into \(((\mu, N), S_{(\mu,N)})\) is said to be soft fuzzy* relatively open iff for each soft fuzzy* open set \((\gamma', L')\) in \(T_{(\lambda,M)}\), \(f(\gamma', L')'\) is soft fuzzy* open in \(S_{(\mu,N)}\).

Property 4.9. Let \(((\lambda, M), T_{(\lambda,M)})\) and \(((\mu, N), S_{(\mu,N)})\) be any two soft fuzzy* subspaces of soft fuzzy* topological spaces \((X, T)\) and \((Y, S)\) respectively. Let \(f\) be soft fuzzy* continuous mapping of \((X, T)\) into \((Y, S)\) such that \(f(\lambda, M) \subseteq (\mu, N)\). Then \(f\) is soft fuzzy* relatively continuous mapping of \(((\lambda, M), T_{(\lambda,M)})\) into \(((\mu, N), S_{(\mu,N)})\).

Proof. Let \((\gamma', L')\) be soft fuzzy* open in \(S_{(\mu,N)}\). Then there exists soft fuzzy* open \((\gamma, L)\) in \(S\) such that \((\gamma', L') = (\gamma, L) \cap (\mu, N)\). The inverse image \(f^{-1}(\gamma, L)\) is soft fuzzy* open in \(T_{(\lambda,M)}\). Hence \(f^{-1}(\gamma', L') \cap (\lambda, M) = f^{-1}(\gamma, L) \cap f^{-1}(\mu, N) \cap (\lambda, M) = f^{-1}(\gamma, L) \cap (\lambda, M)\) is soft fuzzy* open in \(T_{(\lambda,M)}\). Therefore \(f\) is soft fuzzy* relatively continuous.

Definition 4.10. A bijective mapping \(f\) of a soft fuzzy* topological space \((X, T)\) into \((Y, S)\) is said to be soft fuzzy* homeomorphism iff it is soft fuzzy* continuous and soft fuzzy* open.

Definition 4.11. A bijective mapping \(f\) of a soft fuzzy* subspace \(((\lambda, M), T_{(\lambda,M)})\) of \((X, T)\) into \(((\mu, N), S_{(\mu,N)})\) of \((Y, S)\) is said to be soft fuzzy* relatively homeomorphism iff \(f(\lambda, M) = (\mu, N)\) and \(f\) is soft fuzzy* relatively continuous and soft fuzzy* relatively open.

Property 4.12. Let \(f\) be soft fuzzy* continuous (resp. soft fuzzy* open) mapping of a soft fuzzy* topological space \((X, T)\) into a soft fuzzy* topological space \((Y, S)\) and \(g\) a soft fuzzy* continuous (resp. soft fuzzy* open) mapping of \((Y, S)\) into a soft fuzzy* topological space \((Z, R)\). Then the composition \(g \circ f\) is soft fuzzy* continuous (resp. soft fuzzy* open) mapping of \((X, T)\) into \((Z, R)\).

Proof. It is obvious.

Property 4.13. Let \(((\lambda, M), T_{(\lambda,M)}), ((\mu, N), S_{(\mu,N)}), ((\gamma, L), S_{(\gamma,L)}))\) be any three soft fuzzy* subspaces of soft fuzzy* topological spaces \((X, T), (Y, S), (Z, R)\) respectively. Let \(f\) be soft fuzzy* relatively continuous (resp. soft fuzzy* open) mapping of \(((\lambda, M), T_{(\lambda,M)})\) into \(((\mu, N), S_{(\mu,N)})\) and \(g\) be soft fuzzy* relatively continuous (resp. soft fuzzy* open) mapping of \(((\mu, N), S_{(\mu,N)})\) into \(((\gamma, L), S_{(\gamma,L)})\). Then the composition \(g \circ f\) is soft fuzzy* relatively continuous (resp. soft fuzzy* relatively open) mapping of \(((\lambda, M), T_{(\lambda,M)})\) into \(((\gamma, L), S_{(\gamma,L)})\).

Proof. Let \((\gamma', L')\) be soft fuzzy* open in \(Z_{(\gamma,L)}\). Then \(g^{-1}(\gamma', L') \cap (\mu, N)\) is soft fuzzy* open in \(S_{(\mu,N)}\) and \((f^{-1}(g^{-1}(\gamma', L'))) \cap (\mu, N)\) \(\cap (\lambda, M)\). But \(g \circ f\)^{-1}(\gamma', L') \(\cap (\lambda, M) = f^{-1}(g^{-1}(\gamma', L') \cap (\mu, N)) \cap (\lambda, M)\). Since \(f(\lambda, M) \subseteq (\mu, N)\) and so \(g \circ f\) is soft fuzzy* relatively continuous. The proof is trivial for soft fuzzy* relatively open mappings.
Definition 4.14. Let \((X, T)\) be a soft fuzzy* topological space. A subfamily \(\mathfrak{B}\) of \(T\) is a soft fuzzy* base for \(T\) iff each member of \(T\) can be expressed as the union of members of \(\mathfrak{B}\).

Definition 4.15. Let \((X, T)\) be a soft fuzzy* topological space. Let \(T_{(\lambda, M)}\) be the induced soft fuzzy* topology on \((\lambda, M)\) of \((X, T)\). A subfamily \(\mathfrak{B}'\) of \(T_{(\lambda, M)}\) is soft fuzzy* base for \(T_{(\lambda, M)}\) iff each member of \(T_{(\lambda, M)}\) can be expressed as the union of members of \(\mathfrak{B}'\).

Note 4.16. If \(\mathfrak{B}\) is a soft fuzzy base for a soft fuzzy* topology \(T\) on a set \(X\), then
\[\mathfrak{B}_{(\lambda, M)} = \{(\delta, P) \cap (\lambda, M) : (\delta, P) \in \mathfrak{B}\}\]
is a soft fuzzy* base for the induced soft fuzzy* topology \(T_{(\lambda, M)}\) on the soft fuzzy* open set \((\lambda, M)\).

Property 4.17. Let \(f\) be a mapping from soft fuzzy* topological space \((X, T)\) to a soft fuzzy* topological space \((Y, S)\). Let \(\mathfrak{B}\) be a soft fuzzy* base for \(S\). Then \(f\) is soft fuzzy* continuous iff for each soft fuzzy* open set \((\lambda, M)\) in \(\mathfrak{B}\) the inverse image \(f^{-1}(\lambda, M)\) is soft fuzzy* open is in \(T\).

Proof. Proof is obvious.

Property 4.18. Let \(((\lambda, M), T_{(\lambda, M)}), ((\mu, N), S_{(\mu, N)})\) be soft fuzzy* subspaces of soft fuzzy* topological spaces \((X, T), (Y, S)\) respectively. Let \(\mathfrak{B}'\) be a soft fuzzy* base for \(S_{(\mu, N)}\). Then a mapping \(f\) of \(((\lambda, M), T_{(\lambda, M)})\) into \(((\mu, N), S_{(\mu, N)})\) is soft fuzzy* relatively continuous iff for each \((\mu', N')\) in \(\mathfrak{B}'\) the intersection \(f^{-1}((\mu', N') \cap (\lambda, M))\) is in \(T_{(\lambda, M)}\).

Proof. Proof is obvious.

Definition 4.19. Let \(T_1\) and \(T_2\) be two soft fuzzy* topologies on the same set \(X\). Then we say that \(T_1\) is finer that \(T_2\) (and that \(T_2\) is coarser than \(T_1\)) if the identity mapping of \((X, T_1)\) into \((X, T_2)\) is soft fuzzy* continuous.

Definition 4.20. Let \(f : X \to Y\). Let \(T\) be a soft fuzzy* topology on \(X\). The finest soft fuzzy* topology \(S\) on \(Y\) for which \(f\) is soft fuzzy* continuous is called the image under \(f\) of \(T\). A soft fuzzy* set \((\mu, N)\) in \(Y\) is soft fuzzy* open in \(S\) iff \(f^{-1}(\mu, N)\) is a soft fuzzy* open set in \(X\).

Definition 4.21. Let \(f : X \to Y\) be a mapping. Let \(S\) be a soft fuzzy* topology on \(Y\). The coarsest soft fuzzy* topology \(T\) on \(X\) for which \(f\) is soft fuzzy* continuous is called the inverse image under \(f\) of \(S\). The soft fuzzy* open sets in \(X\) are the inverse images of soft fuzzy* open sets in \(Y\).

Definition 4.22. Given a family \(\{(X_j, T_j)\}_{j \in J}\) of a soft fuzzy* topological spaces. Define their product \(\Pi_{j \in J}(X_j, T_j)\) to be the soft fuzzy* topological space \((X, T)\) where \(X = \Pi_{j \in J}X_j\) is the usual set product and \(T\) is the coarsest soft fuzzy* topology on \(X\) for which the projection \(p_j\) of \(X\) onto \(X_j\) are soft fuzzy* continuous for each \(j \in J\). The soft fuzzy* topology \(T\) is called product soft fuzzy* topology on \(X\) and \((X, T)\) a product soft fuzzy* topological space.
Property 4.23. Let \(\{ (X_j, T_j) \} \in J \) be a family of soft fuzzy* topological spaces and \((X, T)\) the product soft fuzzy* topological space. The product soft fuzzy* topology \(T \) on \(X \) has a soft fuzzy* base the set of finite intersections of soft fuzzy* sets of the form \(p_j^{-1}(\lambda_j, M_j) \) where \((\lambda_j, M_j) \in T_j, j \in J \).

Proof. Let \(\{ X_j \}, j = 1, 2, ..., n \) be a finite family of soft fuzzy* sets and for each \(j = 1, 2, ..., n \), let \((\lambda_j, M_j) \) be a soft fuzzy* set in \(X_j \). Define the product \((\lambda, M) = \prod_{j=1}^{n}(\lambda_j, M_j) \) of the family \(\{ (\lambda_j, M_j) \}_j=1,2,...,n \) as the soft fuzzy* set in \(X = \prod_{j=1}^{n}X_j \) that has the membership function given by

\[
\lambda(x_1, x_2, ..., x_n) = \min\{\lambda_1(x_1), ..., \lambda_n(x_n)\}
\]

for all \((x_1, ..., x_n) \in M \).

For each \(j = 1, 2, ..., n \), \(p_j(\lambda, M) \subseteq (\lambda_j, M_j) \), since the membership function of \(p_j(\lambda, M) = (\gamma, L) \) is given by

\[
\gamma(x_j) = \sup\{x_1, ..., x_n)\in p_j^{-1}(x_j)\lambda(x_1, ..., x_n)
\]

\[
= \sup\{x_1, ..., x_n)\in p_j^{-1}(x_j)\min\{\lambda_1(x_1), ..., \lambda_n(x_n)\}
\]

\[
= \min\{\sup x_1, ..., \lambda_j(x_j), ..., \sup x_n)\in M_n\}
\]

\[
\leq \lambda_j(x_j) \text{ for all } x_j \in L
\]

□

Remark 4.24. By Property 4.23, if \(X_j \) has soft fuzzy* topology \(T_j, j = 1, 2, ..., n \) the product soft fuzzy* topology on \(X \) has a soft fuzzy* base the set of product soft fuzzy* sets of the form \(\Pi_{j=1}^{n}(\lambda_j, M_j) \) where \((\lambda_j, M_j) \in T_j, j = 1, 2, ..., n \).

Property 4.25. Let \(\{ (X_j, T_j) \}, j = 1, 2, ..., n \) be a finite family of soft fuzzy* topological spaces and \((X, T)\) the product soft fuzzy* topological space. For each \(j = 1, 2, ..., n \) let \((\lambda_j, M_j) \) be a soft fuzzy* set in \(X_j \) and \((\lambda, M) \) be the product soft fuzzy* set in \(X \). Then the induced soft fuzzy* topology \(T_{(\lambda, M)}(\lambda, M) \) has a soft fuzzy* base the set of product soft fuzzy* sets of the form \(\Pi_{j=1}^{n}(\alpha_j', A_j') \) where \((\alpha_j', A_j') \in (T_j)_{(\lambda_j, M_j)}, j = 1, 2, ..., n \).

Proof. By Remark 4.24, \(T \) has a soft fuzzy* base

\[
\mathcal{B} = \{ \Pi_{j=1}^{n}(\alpha_j, A_j) : (\alpha_j, A_j) \in T_j, j = 1, 2, ..., n \}
\]

A soft fuzzy* base for \(T_{(\lambda, M)}(\lambda, M) \) is therefore given by

\[
\mathcal{B}(\lambda, M) = \{ (\Pi_{j=1}^{n}(\alpha_j, A_j)) \cap (\lambda, M) : (\lambda_j, M_j) \in T_j, j = 1, 2, ..., n \}.
\]

But \((\Pi_{j=1}^{n}(\alpha_j, A_j)) \cap (\lambda, M) = \Pi_{j=1}^{n}(\alpha_j, A_j) \cap (\lambda, M) \). Hence the property follows with \((\alpha_j', A_j') = (\alpha_j, A_j) \cap (\lambda, M) \). □

Property 4.26. Let \(\{ (X_j, T_j) \} \in J \) be a family of soft fuzzy* topological spaces \((X, T)\) the product soft fuzzy* topological space. Let \(f \) be a mapping of a soft fuzzy* topological space \((Y, S)\) into \((X, T)\). Then \(f \) is soft fuzzy* continuous iff \(p_j \circ f \) is soft fuzzy* continuous for each \(j \in J \).

Proof. Proof is obvious. □
Corollary 4.27. Let \(\{(X_j, T_j)\}, \{(Y_j, S_j)\}, j \in J \) be two families of soft fuzzy* topological spaces and \((X, T) \) \((Y, S)\) the respective product soft fuzzy* topological spaces. For each \(j \in J \), let \(f_j \) be a mapping of \((X_j, T_j)\) into \((Y_j, S_j)\). Then the product mapping \(f : \Pi_j \in J f_j : (x_j) \mapsto (f_j(x_j)) \) of \((X, T)\) into \((Y, S)\) is soft fuzzy* continuous if \(f_j \) is soft fuzzy* continuous for each \(j \in J \).

Proof. The mapping \(f \) can be written as \(x \mapsto (f_j(P_j(x))) \) where \(x = (x_j) \) and is therefore soft fuzzy* continuous by Property 4.26. \(\square \)

Property 4.28. Let \(\{(X_j, T_j)\}, j = 1, 2, \ldots, n \) be a finite family of soft fuzzy* topological spaces and \((X, T)\) the product soft fuzzy* topological spaces. For each \(j = 1, 2, \ldots, n \), let \((\lambda_j, M_j)\) be a soft fuzzy* set in \(X_j \) and \((\lambda, M)\) the product soft fuzzy* set in \(X \). Let \((Y, S)\) be a soft fuzzy* topological space, \((\mu, N)\) be a soft fuzzy* set in \((Y, S)\) and \(f \) a mapping of the soft fuzzy* subspace \((\mu, N), S_{(\mu,N)}\) into the soft fuzzy* subspace \((\lambda, M), T_{(\lambda,M)}\). Then \(f \) is soft fuzzy* relatively continuous iff \(p_j \circ f \) is soft fuzzy* relatively continuous for each \(j = 1, 2, \ldots, n \).

Proof. By Property 4.13, the soft fuzzy* continuity of \(p_j \) implies the soft fuzzy* relatively continuity of \(p_j \) for each \(j = 1, 2, \ldots, n \). The composition \(p_j \circ f \) is therefore soft fuzzy* relatively continuous for each \(j = 1, 2, \ldots, n \).

Conversely, let \((\lambda', M') = (\lambda'_1, M'_1) \times \ldots \times (\lambda'_n, M'_n)\) where \((\lambda'_j, M'_j)\in(T_j)_{(\lambda_j,M_j)}, j = 1, 2, \ldots, n\). By Property 4.25, the set of such \((\lambda', M')\) form a soft fuzzy base of \(T_{(\lambda,M)} \). Since

\[
f^{-1}(\lambda', M') \cap (\mu, N) = f^{-1}(p_1^{-1}(\lambda'_1, M'_1) \cap \ldots \cap p_n^{-1}(\lambda'_n, M'_n) \cap (\mu, N)) = \cap_{j=1}^n ((p_j \circ f)^{-1}(\lambda'_j, M'_j) \cap (\mu, N)) \]

is soft fuzzy* open in \(S_{(\mu,N)} \), as \(p_j \circ f \) is soft fuzzy* relatively continuous for each \(j = 1, 2, \ldots, n \) it follows that from Property 4.17, that \(f \) is soft fuzzy* relatively continuous. \(\square \)

Corollary 4.29. Let \(\{(X_j, T_j)\}, \{(Y_j, S_j)\}, j = 1, 2, \ldots, n \) be two finite families of soft fuzzy* topological spaces and \((X, T), (Y, S)\) the respective product soft fuzzy* topological spaces. For each \(j = 1, 2, \ldots, n \), let \((\lambda_j, M_j)\) be a soft fuzzy* set in \(X_j \), \((\mu_j, N_j)\) be a soft fuzzy* set in \(Y_j \) and \(f_j \) a mapping of the soft fuzzy* subspaces \(((\lambda_j, M_j), T_{(\lambda_,M_j)})\) into the soft fuzzy* subspace \(((\mu_j, N_j), S_{(\mu_,N_j)})\). Let \((\lambda, M) = \Pi_{j=1}^n(\lambda_j, M_j)\) and \((\mu, N) = \Pi_{j=1}^n(\mu_j, N_j)\) be the product mapping \(f = \Pi_{j=1}^n f_j : (x_1, \ldots, x_n) \mapsto (f_1(x_1), \ldots, f_n(x_n)) \) of the soft fuzzy* subspace \(((\lambda,M), T_{(\lambda_,M)})\) into the soft fuzzy* subspace \(((\mu,N), S_{(\mu,N)})\) is soft fuzzy* relatively continuous if \(f_j \) is soft fuzzy* relatively continuous for each \(j = 1, 2, \ldots, n \).

Proof. By Corollary 4.27, the proof is obvious. \(\square \)

Property 4.30. Let \(\{(X_j, T_j)\}, \{(Y_j, S_j)\}, j = 1, 2, \ldots, n \) be two finite families of soft fuzzy* topological spaces and \((X, T), (Y, S)\) the respective product soft fuzzy* topological spaces. For each \(j = 1, 2, \ldots, n \), let \(f_j \) be a mapping of \((X_j, T_j)\) into \((Y_j, S_j)\). Then the product mapping \(f : \Pi_{j=1}^n f_j : (x_1, \ldots, x_n) \mapsto (f_1(x_1), \ldots, f_n(x_n)) \) of \((X, T)\) into \((Y, S)\) is soft fuzzy* open if \(f_j \) is soft fuzzy* open for each \(j = 1, \ldots, n \).
Proof. Let \((\lambda, M)\) be soft fuzzy* open in \((X, T)\). Then there exists soft fuzzy* open set \((\lambda_{ja}, M_{ja})\) \(a \in A, j = 1, \ldots, n\) such that \((\lambda, M) = \sqcup_{a \in A} \prod_{j=1}^{n} (\lambda_{ja}, M_{ja})\).

The image \(f(\lambda, M)\) of \((\lambda, M)\) has the membership function \(f(\lambda, M) = (\gamma, L)\) for all \(y \in L \subseteq S\).

\[
\gamma(y) = \sqcup_{a \in A} \sup_{z \in f^{-1}(y)} \prod_{j=1}^{n} \lambda_{ja}(z)
\]

Thus \(f(\lambda, M) = \sqcup_{a \in A} \prod_{j=1}^{n} (f_{j}(\lambda_{ja}, M_{ja}))\). Since \(f_{j}\) is soft fuzzy* open for each \(j = 1, \ldots, n\), \(f(\lambda, M)\) is soft fuzzy* open in \((Y, S)\).

Property 4.31. Let \(\{(X_j, T_j)\}, \{(Y_j, S_j)\}\) \(j = 1, 2, \ldots, n\) be two finite families of soft fuzzy* topological spaces and \((X, T), (Y, S)\) the respective product soft fuzzy* topological spaces. For each \(j = 1, 2, \ldots, n\), let \((\lambda_j, M_j)\) be a soft fuzzy* set in \(X_j\), \((\mu_j, N_j)\) be a soft fuzzy* set in \(Y_j\) and \(f_j\) a mapping of the soft fuzzy* subspace \((\lambda_j, M_j) \times (\mu_j, N_j)\) into the soft fuzzy* subspace \((\lambda, M) \times (\mu, N)\) of \(X\) \times \(Y\) respectively. Then the product soft fuzzy* mapping \(f = \prod_{j=1}^{n} f_j : (x_1, \ldots, x_n) \to (f_1(x_1), \ldots, f_n(x_n))\) of the soft fuzzy* subspace \((\lambda, M), T_{(\lambda, M)}\) into the soft fuzzy* subspace \((\mu, N), S_{(\mu, N)}\) is soft fuzzy* relatively open if \(f_j\) is soft fuzzy* relatively open for each \(j = 1, 2, \ldots, n\).

Proof. Let \((X', M')\) be soft fuzzy* open in \(T_{(\lambda, M)}\). By Property 4.25, there exists soft fuzzy* open sets \((\lambda_{ja}, M_{ja}) \in (T_j)_{(\lambda_j, M_j)}, a \in A, j = 1, \ldots, n\) such that \((X', M') = \sqcup_{a \in A} \prod_{j=1}^{n} (\lambda_{ja}, M_{ja})\). By Property 4.30, \(f(X', M') = \sqcup_{a \in A} \prod_{j=1}^{n} (f_j(\lambda_{ja}, M_{ja}))\). Since \(f_j\) is soft fuzzy* relatively open for each \(j = 1, \ldots, n\), \(f(X', M')\) is soft fuzzy* open in \(S_{(\mu, N)}\).

Property 4.32. Let \((X_1, T_1)\) and \((X_2, T_2)\) be soft fuzzy* topological spaces and \((X, T)\) the product soft fuzzy* topological space. Then for each \(a_1 \in X_1\), the mapping \(i : x_2 \to (a_1, x_2)\) of \((X_2, T_2)\) into \((X, T)\) is soft fuzzy* continuous.

Proof. The constant mapping \(i_1 : x_2 \to a_1\) from \((X_2, T_2)\) into \((X_1, T_1)\) is soft fuzzy* continuous. For if \((\lambda_1, M_1)\) is soft fuzzy* open in \(T_1\), the inverse image \(f^{-1}(\lambda_1, M_1)\) has the membership function is given by

\[
i_1^{-1}(\lambda_1)(x_2) = \lambda_1 \circ i(x_2)
\]

where \((k_c, H)\) is the soft fuzzy* open set in \(X_2\) which has the constant membership function with value \(c = \lambda_1(a_1)\), since the identity mapping \(i_2 : x_2 \to x_2\) of \((X_2, T_2)\) into itself is soft fuzzy continuous, the mapping \(i\) is soft fuzzy continuous by Property 4.26.

Property 4.33. Let \((X_1, T_1)\) and \((X_2, T_2)\) be soft fuzzy* topological spaces and \((X, T)\) the product soft fuzzy* topological space. Let \((\lambda_1, M_1)\), \((\lambda_2, M_2)\) be a soft
fuzzy* open set in X_1, X_2 respectively. Let (λ, M) be the product soft fuzzy* set in X. Then for each $a_1 \in M_1$ such that $\lambda_1(a_1) \geq \lambda_2(x_2)$ for all $x_2 \in M_2$, the mapping $i : x_2 \rightarrow (a_1, x_2)$ of the soft fuzzy* subspace $((\lambda_2, M_2), (T_2)(\lambda_2, M_2))$ into the soft fuzzy* subspace $((\lambda, M), T(\lambda, M))$ is soft fuzzy* relatively continuous.

Proof. Since $i(\lambda_2, M_2) \subseteq (\lambda, M)$, since the membership function of $i(\lambda_2, M_2) = (\gamma, L)$ is given by

$$\gamma(x_1, x_2) = \sup_{x_2 \in f^{-1}(x_1, x_2)} \lambda_2(x_2)$$

and that of (λ, M) by

$$\lambda(x_1, x_2) = (\min\{\lambda_1(x_1), \lambda_2(x_2)\})$$

$$\geq \lambda(x_2)$$

for all $(x_1, x_2) \in M, x_1 \in M_1$.

The proof of the soft fuzzy* relative continuity of i is analogous to the proof of the soft fuzzy* continuity of i in Property 4.32. □

5. Soft fuzzy* group

Definition 5.1. Let X be a group and M be a subgroup of X. Let (λ, M) be any soft fuzzy* set in X. Then (λ, M) is said to be soft fuzzy* group in X satisfies the following conditions

(i) $\lambda(xy) \geq \min\{\lambda(x), \lambda(y)\}$ for every $x, y \in M$;
(ii) $\lambda(x^{-1}) = \lambda(x)$ for every $x \in M$.

Property 5.2. If (λ, M) is a soft fuzzy* group then

(i) $\lambda(x) \leq \lambda(e)$ for $x, e \in M$.
(ii) $\lambda(xy^{-1}) \geq \min\{\lambda(x), \lambda(y)\}$ for every $x, y \in M$.

Proof. (i) Let $x, e \in M$. Now

$$\lambda(e) = \lambda(xx^{-1})$$

$$\geq \min\{\lambda(x), \lambda(x^{-1})\}$$

$$= \lambda(x)$$

By Definition 5.1(ii) [

Therefore, $\lambda(x) \leq \lambda(e)$ for $x, e \in M$.

(ii) Let $x, y \in M$. Now

$$\lambda(xy^{-1}) \geq \min\{\lambda(x), \lambda(y^{-1})\}$$

$$= \min\{\lambda(x), \lambda(y)\}$$

Therefore, $\lambda(xy^{-1}) \geq \min\{\lambda(x), \lambda(y)\}$ for every $x, y \in M$. □

Property 5.3. Let X, Y be groups and f a homomorphism of X into Y. Let (λ, M) be a soft fuzzy* group in X. Then the inverse image $f^{-1}(\lambda, M)$ of (λ, M) is a soft fuzzy* group in X. 800
Proof. For all \(x, y \in f^{-1}(M)\),
\[
f^{-1}(\lambda)(xy^{-1}) = \lambda(f(xy^{-1}))
\]
\[
= \lambda(f(x)f(y^{-1}))
\]
\[
= \lambda(f(x)(f(y))^{-1})
\]
\[
\geq \min\{\lambda(f(x)), \lambda(f(y))\}
\]
\[
= \{\min\{f^{-1}(\lambda(x)), f^{-1}(\lambda(y))\}\}.
\]
Therefore, \(f^{-1}(\lambda, M)\) of \((\lambda, M)\) is a soft fuzzy* group in \(X\). \(\square\)

Definition 5.4. A soft fuzzy* set \((\lambda, M)\) of \(X\) is said to have **soft fuzzy* sup property** if for any subset \(S \subseteq X\) there exists \(t_0 \in S\) such that \(\lambda(t_0) = \sup_{t \in S} \lambda(t)\).

Property 5.5. Let \(X, Y\) be groups and \(f\) a homomorphism of \(X\) into \(Y\). Let \((\lambda, M)\) be a soft fuzzy* group in \(X\) that has soft fuzzy* sup property. Then the image \(f(\lambda, M)\) of \((\lambda, M)\) is a soft fuzzy* group in \(Y\).

Proof. Let \(f(\lambda, M) = (\gamma, L)\). Let \(u, v \in L\). If either \(f^{-1}(u), f^{-1}(v)\) is empty then the inequality in Property 4.1(ii) is trivially satisfied. Suppose neither \(f^{-1}(u)\) nor \(f^{-1}(v)\) is empty.

Let \(r_0 \in f^{-1}(u)\), \(s_0 \in f^{-1}(v)\) such that
\[
\lambda(r_0) = \sup_{t \in f^{-1}(u)} \lambda(t)\) and \(\lambda(s_0) = \sup_{t \in f^{-1}(u)} \lambda(t)\).
Then
\[
\gamma(uv^{-1}) = \sup_{w \in f^{-1}(uv^{-1})} \lambda(w)
\]
\[
\geq \min\{\lambda(r_0), \lambda(s_0)\}
\]
\[
= \min\{\sup_{t \in f^{-1}(u)} \lambda(t), \sup_{t \in f^{-1}(v)} \lambda(t)\}
\]
\[
= \min\{\gamma(u), \gamma(v)\}.
\]
Therefore, the image \(f(\lambda, M)\) of \((\lambda, M)\) is a soft fuzzy* group in \(Y\). \(\square\)

Note 5.6. The membership function \(\lambda\) of a soft fuzzy* group \((\lambda, M)\) in a group \(X\) is **soft fuzzy* invariant** if for all \(x_1, x_2 \in M\), \(f(x_1) = f(x_2)\) implies \(\lambda(x_1) = \lambda(x_2)\).

Clearly a homomorphic image \(f(\lambda, M)\) of \((\lambda, M)\) is then a soft fuzzy* group.

Remark 5.7. Given a soft fuzzy* group \((\lambda, M)\) in a group \(X\) where \(M\) denote the set \(\{x | \lambda(x) = \lambda(e)\}\) is a subgroup of \(X\). For \(a \in X\), let \(\rho_a : x \rightarrow ax\) and \(\sigma_a : x \rightarrow ax\) denote respectively, the right and left translation of \(X\) into itself.

Property 5.8. Let \((\lambda, M)\) be a soft fuzzy* group in a group \(X\) then for all \(a \in M\),
\[
\rho_a(\lambda, M) = \sigma_a(\lambda, M) = (\lambda, M).
\]

Proof. Let \(a \in M\). Then the membership function of \(\rho_a(\lambda, M) = (R_a, R)\) is given by
\[
R_a(x) = \sup_{t \in f^{-1}(x)} \lambda(t)\) for all \(t \in M
\]
\[
= \lambda(xa^{-1})\) [by soft fuzzy* sup property, there exists \(xa^{-1} \in M]\)
\[
\geq \{\min\{\lambda(x), \lambda(e)\}\) [by Propert 5.2(ii)]]
\[
= \lambda(x)
\]
Conversely,

\[\lambda(x) = \lambda(xa^{-1}) \]

\[\geq \min\{\lambda(xa^{-1}), \lambda(a)\} \]

\[= \min\{\lambda(xa^{-1}), \lambda(e)\} \] [since \(a \in M \)]

\[= \lambda(xa^{-1}) \]

\[= \sup_{t \in M} \lambda(t) \]

\[= R_a(x) \] for all \(x \in L \subseteq M \)

Therefore, \(\rho_a(\lambda, M) = (\lambda, M) \). Similarly, \(\sigma_a(\lambda, M) = (\lambda, M) \).

\(\square \)

6. Soft fuzzy* topological groups

Definition 6.1. Let \(X \) be a group and \(T \) a soft fuzzy* topology on \(X \). Let \((\lambda, M) \) be a soft fuzzy* group in \(X \) and let \((\lambda, M) \) be endowed with induced soft fuzzy* topology \(T_{(\lambda,M)} \). Then \((\lambda, M) \) is a soft fuzzy* topological group in \(X \) iff it satisfies the following two conditions

1. the mapping \(\alpha : (x, y) \rightarrow xy \) of \((\lambda, M), T_{(\lambda,M)} \times (\lambda, M), T_{(\lambda,M)} \) into \((\lambda, M), T_{(\lambda,M)} \) defined by \(\alpha(x, y) = xy \) is soft fuzzy* relatively continuous.

2. the mapping \(\beta : x \rightarrow x^{-1} \) of \((\lambda, M), T_{(\lambda,M)} \) into \((\lambda, M), T_{(\lambda,M)} \) is defined by \(\beta(x) = x^{-1} \) is soft fuzzy* relatively continuous.

Note 6.2. A soft fuzzy* group structure and an induced soft fuzzy* topology are said to be compatible if they satisfy (i) and (ii).

Property 6.3. Let \(X \) be a group having soft fuzzy* topology \(T \). A soft fuzzy* group \((\lambda, M) \) in \(X \) is a soft fuzzy* topological group iff the mapping \(f : (x, y) \rightarrow xy^{-1} \) of \(((\lambda, M), T_{(\lambda,M)} \times (\lambda, M), T_{(\lambda,M)}) \) into itself is soft fuzzy* relatively continuous.

Proof. The mapping \((x, y) \rightarrow (x, y^{-1}) \) of \(((\lambda, M), T_{(\lambda,M)} \times (\lambda, M), T_{(\lambda,M)}) \) into itself is soft fuzzy* continuous. By the Corollary 4.33. Hence the composition \((x, y) \rightarrow (x, y^{-1}) \rightarrow xy^{-1} \) is soft fuzzy* relatively continuous.

Conversely, by Property 5.2(i), \(\lambda(e) \geq \lambda(x) \) for all \(x \in M \) and therefore by Property 4.33, the canonical injection \(i : y \rightarrow (e, y) \rightarrow ey^{-1} \) of \(((\lambda, M), T_{(\lambda,M)}) \) into \(((\lambda, M), T_{(\lambda,M)} \times (\lambda, M), T_{(\lambda,M)}) \) is soft fuzzy* relatively continuous. Hence the composition \(\beta : y \rightarrow (e, y) \rightarrow ey^{-1} \) is soft fuzzy* continuous. The mapping \(\alpha : (x, y) \rightarrow xy \) of \((\lambda, M), T_{(\lambda,M)} \times (\lambda, M), T_{(\lambda,M)}) \) into \(((\lambda, M), T_{(\lambda,M)}) \) is soft fuzzy* relatively continuous since it is the composition \((x, y) \rightarrow (x, y^{-1}) \rightarrow x(y^{-1})^{-1} \) of soft fuzzy* relatively continuous mappings.

Remark 6.4. If \((\lambda, M) \) is a soft fuzzy* group in a group \(X \) carrying soft fuzzy* topology \(T \). Then in general, the translations \(\rho_a, \sigma = x \in X \) are not soft fuzzy* relatively continuous mappings of \(((\lambda, M), T_{(\lambda,M)}) \) into itself. However the following special case \(M = \{ x | \lambda(e) = \lambda(x) \} \).

Property 6.5. Let \(X \) be a group having soft fuzzy* topology \(T \) and let \((\lambda, M) \) be a soft fuzzy* topological group in \(X \). For each \(a \in M \) the translations \(\rho_a, \sigma_a \) are soft fuzzy* relative homeomorphism of \(((\lambda, M), T_{(\lambda,M)}) \) into itself.
Proof. By Property 5.8, \(\rho_a(\lambda, M) = (\lambda, M) \) and \(\sigma_a(\lambda, M) = (\lambda, M) \) for all \(a \in M \). The mapping \(\sigma_a \) is the composition of the injection \(i : y \rightarrow (a, y) \) and the mapping \(\alpha : (x, y) \rightarrow xy \). Since \(\lambda(a) \geq \lambda(y) \) for every \(y \in M \subseteq Y \). It follows from Property 4.33, \(i \) is a soft fuzzy* relative continuous mapping of \((\lambda, M), T_{(\lambda, M)}(i)\) into \((\lambda, M), T_{(\lambda, M)}(i)\). The mapping \(\alpha \) is soft fuzzy* relative continuous by hypothesis. Hence \(\sigma_a \) is soft fuzzy* relatively open. Then \(\sigma_a \) is soft fuzzy* relative homeomorphism. Similarly we proved \(\rho_a \) and \(\rho_a^{-1} \) is soft fuzzy* relative homeomorphism.

Suppose that \(X \) and \(Y \) are groups and that \(f \) is a homomorphism of \(X \) into \(Y \). Let \(Y \) have soft fuzzy* topology \(Y \) and let \((\lambda, M) \) be a soft fuzzy* topological group in \(Y \). The mapping \(f \) gives rise to a soft fuzzy* topology \(T \) on \(X \), the inverse image under \(f \) of \(S \), and by Property 5.3, it also gives rise to a soft fuzzy* group in \(X \), the inverse image \(f^{-1}(\lambda, M) \) of \((\lambda, M)\). The following property shows that the induced soft fuzzy* topology on \(f^{-1}(\lambda, M) \) and the soft fuzzy* group structure are compatible.

Property 6.6. Let \(X, Y \) be a homomorphism \(f \) of \(X \) into \(Y \) and a soft fuzzy* topology \(S \) on \(Y \), let \(X \) have soft fuzzy* topology \(T \), where \(T \) is the inverse image under \(f \) of \(S \) and \((\lambda, M) \) be a soft fuzzy* topological in \(Y \). Then the inverse image \(f^{-1}(\lambda, M) \) of \((\lambda, M)\) is a soft fuzzy* topological group in \(X \).

Proof. To show that the mapping \(\gamma_X : (x_1, x_2) \rightarrow (x_1x_2^{-1}) \) of \((f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \times (f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \) into \((f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \) is soft fuzzy* relatively continuous. Let \((\alpha', A')\) be an soft fuzzy* open in the induced soft fuzzy* topology \(T_{f^{-1}(\lambda, M)} \) on \(f^{-1}(\lambda, M) \). Since \(f \) is a soft fuzzy* continuous mapping of \((X, T) \) into \((Y, S)\) it is, by Property 4.9, a soft fuzzy* relatively continuous mapping of \((f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \) into \((\lambda, M), T_{(\lambda, M)}\). Also that there exists an soft fuzzy* open set \((\delta', P')\) in \(S_{(\lambda, M)} \) such that \(f^{-1}(\delta', P') = (\alpha', A') \). The membership function of

\[
\gamma_X^{-1}(\alpha')(x_1, x_2) = \alpha' \circ \gamma_X(x_1, x_2) = \alpha'(x_1x_2^{-1}) = f^{-1}(\delta')(x_1x_2^{-1}) = \delta'(f(x_1x_2^{-1})) = \delta'(f(x_1)(f(x_2))^{-1})
\]

for all \((x_1, x_2) \in \gamma_X^{-1}(A') \times \gamma_X^{-1}(A') \) where \(A' = f^{-1}(P') \).

By hypothesis, the mapping \(\gamma_Y : (y_1, y_2) \rightarrow y_1y_2^{-1} \) of \((\lambda, M), S_{(\lambda, M)} \times (\lambda, M), S_{(\lambda, M)} \) into \((\lambda, M), S_{(\lambda, M)} \) is soft fuzzy* relatively continuous and by Corollary 4.29, so is the product mapping \(f \times f \) of \((f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \times (f^{-1}(\lambda, M), T_{(f^{-1}(\lambda, M))}) \) into \((\lambda, M), S_{(\lambda, M)} \). But

\[
\delta'(f(x_1)(f(x_2))^{-1}) = \gamma_Y^{-1}(\delta')(f(x_1), f(x_2)) \text{ where } y_1 = f(x_1) \text{ and } y_2 = (f(x_2))^{-1} = (f \times f)^{-1}(\gamma_Y^{-1}(\delta'))(x_1, x_2)
\]

803
for every \((x_1, x_2) \in \gamma_X^{-1}(A')\times \gamma_X^{-1}(A')\). Hence \(\gamma_X^{-1}(\alpha', A') \cap (f^{-1}(\lambda, M) \times f^{-1}(\lambda, M)) = (f \times f)^{-1}(\gamma_Y^{-1}(\delta', P')) \cap (f^{-1}(\lambda, M) \times f^{-1}(\lambda, M))\) is open in the induced soft fuzzy* topology on \((f^{-1}(\lambda, M) \times f^{-1}(\lambda, M)) \times (f^{-1}(\lambda, M) \times f^{-1}(\lambda, M))\). \(\Box\)

Property 6.7. Given groups \(X, Y\) a homomorphism \(f\) of \(X\) into \(Y\) and a soft fuzzy* topology \(T\) on \(X\), let \(Y\) have soft fuzzy* topology \(S\), where \(S\) is the image under \(f\) of \(T\) and let \((\lambda, M)\) be a soft fuzzy* topological group in \(X\). If the membership function \(\lambda\) of \((\lambda, M)\) is soft fuzzy* \(f\) invariant then the image \(f(\lambda, M)\) of \((\lambda, M)\) is a soft fuzzy* topological group in \(Y\).

Proof. To show that the mapping \(\gamma_Y : (y_1, y_2) \rightarrow (y_1y_2^{-1})\) of \((f(\lambda, M), S_{f(\lambda, M)})\times (f(\lambda, M), S_{f(\lambda, M)})\) into \((f(\lambda, M), S_{f(\lambda, M)})\) is soft fuzzy* relatively continuous. Note that \(f\) is soft fuzzy* open, for if \((\gamma, L) \in T\), then \((f(\gamma, L)) \in S\). Since the inverse image \(f^{-1}(f(\gamma, L))\) is the union of soft fuzzy* open sets and thus soft fuzzy* open in \(T\). It follows that \(f\) is soft fuzzy* relatively open. Since if \((\delta', P') \in T_{f(\lambda, M)}\), there exists \((\gamma, L) \in T\) such that \((\delta', P') = (\gamma, L) \cap (\lambda, M)\) and by the soft fuzzy* \(f\) invariance of \(\lambda, f(\delta', P') = f(\gamma, L) \cap f(\lambda, M) \in S_{f(\lambda, M)}\). By Property 4.25, the product mapping \(f \times f\) is soft fuzzy* relatively open mapping of \(((\lambda, M), T_{f(\lambda, M)})\times ((\lambda, M), T_{f(\lambda, M)})\) into \((f(\lambda, M), S_{f(\lambda, M)})\times (f(\lambda, M), S_{f(\lambda, M)})\).

Let \((\alpha', A')\) be a soft fuzzy* open set in \(S_{f(\lambda, M)}\). The membership function of \((f \times f)^{-1}(\gamma_Y^{-1}(\alpha', A'))\) is given by

\[
(f \times f)^{-1}(\gamma_Y^{-1}(\alpha')) = (\gamma_X^{-1}(\alpha'))(f(x_1)(f(x_2)^{-1})
\]

for all \((x_1, x_2) \in (f \times f)^{-1}(\gamma_Y^{-1}(A'))\) where \(\gamma_X : (x_1, x_2) \rightarrow x_1x_2^{-1}\). But, by hypothesis, \(\gamma_X\) is a soft fuzzy* relatively continuous mapping of \(((\lambda, M), T_{f(\lambda, M)})\times ((\lambda, M), T_{f(\lambda, M)})\) into \(((\lambda, M), T_{f(\lambda, M)})\) and \(f\) is a soft fuzzy* relatively continuous mapping of \(((\lambda, M), T_{f(\lambda, M)})\) into \((f(\lambda, M), S_{f(\lambda, M)})\). Hence, by the soft fuzzy* \(f\) invariance of \(\lambda\),

\[
(f \times f)^{-1}(\gamma_Y^{-1}(\alpha', A')) \cap (f(\lambda, M) \times f(\lambda, M)) = (f \times f)^{-1}(\gamma_Y^{-1}(\delta', P')) \cap (f(\lambda, M) \times f(\lambda, M))
\]

is open in the induced soft fuzzy* topology on \((\lambda, M) \times (\lambda, M)\). As \(f \times f\) is soft fuzzy* relatively open,

\[
(f \times f)(f \times f)^{-1}(\gamma_Y^{-1}(\delta', P')) \cap (f(\lambda, M) \times f(\lambda, M)) = (f \times f)^{-1}(\delta', P') \cap (f(\lambda, M) \times f(\lambda, M))
\]

is open in the induced soft fuzzy* topology on \((f(\lambda, M) \times f(\lambda, M))\). \(\Box\)

Acknowledgements. The first author would like to thank the UGC for financial support. The authors are grateful to the referees for their valuable support to publish this paper.

References

D. Vidhya (vidhya.d85@gmail.com)
Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

E. Roja (AMV_1982@rediffmail.com)
Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

M. K. Uma (mkuma70@yahoo.com)
Department of mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India