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ABSTRACT. In this paper, we present a new approach to double (intu-
itionistic) proximity (D-Proximity, for short) structures based on the recog-
nition that many of the entities important in the theory of double (intu-
itionistic) ideals(D-ideal, for short). So we given a characterization of the
basic double proximity using double ideals. Also, we introduce the con-
cept of f- double proximities and we show that for different choice of ” f”
one can obtain many of the the known types of double proximities. Also,
characterizations of some types of these double proximities-(fo,lo)- have
obtained.
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1. INTRODUCTION

Ideals in topological spaces were introduced by Kuratowski [16], Vaidyanathaswa-
my [20] and Jankovic and Hamlett[I0]. In the crisp, various classes of generalized
proximities have been extensively studied by many authors including Lodato[17],
[18]. In[9], the authors were introduced a new approach to construct generalized
proximity structures based on the concept of ideal and an EF-Proximity structure.
Kandil et. al [11] presented a new approach to proximity structures using the theory
of ideals. After Atanassov [11 2 [3] introduced the concept of intuitionistic fuzzy sets
as a generalization of fuzzy sets. Coker [5] introduced the notion of intuitionistic
fuzzy topological spaces using the notion of intuitionistic fuzzy sets. The notion of
intuitionistic sets which is a classical version of an intuitionistic fuzzy sets was first
given by Coker in [4]. He studied topology on intuitionistic sets in [6]. The authors
in [15] introduced the concept of flou set and studied the basic properties of flou
topological spaces. In this paper, we follow the suggestion of Rodabaugh [8] that
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double set is more appropriate name than intuitionistic (Flou) set, and therefore,
adopted the term double set for the intuitionistic(Flou) set and double topology for
the intuitionistic (Flou) topology. Also, The authors in [12] obtained a new double
topology form the old by using a double ideal. In this paper, we present a new
approach to double proximity structures based on the recognition that many of the
entities important in the theory of double ideals, and study some of its properties.
The concepts of a basic double proximity on a double set and a basic proximal
neighborhood of a double set with respect to a basic double proximity are obtained.
Also, we introduce the concept of f- double proximities and we show that for different
choice of ” f” one can obtain many types of double proximities.

2. PRELIMINARIES

Definition 2.1 ([15]). Let X be a nonempty set:

(1) A double set A is an ordered pair A = (41, As) € P(X) x P(X) such that
Ay C A,

(2) D(X) = {(A1,A2) : (A1, 42) € P(X) x P(X), A; C Ay} is the family of all
double sets on X.

(3) Let € X . Then the double sets xo5 = (¢, {z}) and z; = ({z}, {z}) are
said to be double points in X.
Xp={z::2 € X, t €{0.5,1}} is the set of all double points of X.

(4)z1 e Aiff x € Ay, and o5 € A iff © € A,.

(5) Let 01,72 € P(X). Then the double product of n; and 75 is denoted by 7y X2
and is defined by m >A<T]2 = {(Al,AQ) : (Al,AQ) € m X ne, A C AQ}

(6) The double set X = (X, X) is called the universal double set.

(7) The double set ¢ = (¢, ¢) is called the empty double set.

(8) The double set A = (Ay, As) is said to be finite double set if A, is finite set.

(9) The double set A = (A;, A3) is said to be countable double set if Ay is
countable set.

Note that a double set in the sense of Coker [4] is of the form A = (A, Ay) €
P(X) x P(X), where Ay N Az = ¢. But A = (A3, A2) € P(X) x P(X) is a double
set in the sense of Kandil et. al [15], where A; C As. Then A = (44, A3) is a double
set in the sense of Coker if and only if A = (A;, AS) is a double set in the sense of
Kandil. And one can see that a one to one correspondence mapping between the
two types. On the other hand, Kandil’s notion simplify the concepts, specially in
the case of intuitionistic fuzzy points or double fuzzy point see [19].

Definition 2.2 ([15]). Let A = (A1, A2), B = (B, Bs) € D(X). Then

(1) A=B& A; =By, i=1,2.

(3) ANB= (A1 ﬁBl,AgmBQ) and AUB = (A1 UBl,AQUBg).

(4) If {A, : « € A} C D(X) such that A, = (A4;,,42,), then U,cp A, =
(UaEA Aln’UaEA As,) and naEA Ay = (maeA Ala’maEA AQa)'

(5) A° = (AS, AS), where A is the complement of A.

(6) A\B = An B°".

Remark 2.3 ([13]). We have here three major deviations from the ordinary case:
774
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(1) AU A° need not to be the universal double set.
(2) AN A° need not to be the empty double set.
(3) z; € A does not implies z; € A°, in general.

Definition 2.4 ([13]). Two double sets A and B are said to be quasi-coincident,
denoted by AgB , if and only if A1NBy # ¢ or AoN By # ¢. A is not quasi-coincident
with B, denoted by AgB , if and only if A; N By = ¢ and As N By = ¢.

Theorem 2.5 ([13]). Let A,B,C € D(X) and x4,y, € X,. Then:
(1) AgB=ANB# ¢,
(2) AgB < Jx: € A such that x:qB,
(3) AgB < AC B°,
(4) x.gA &z € A°,
(5) AC B & x4 € A implies x4y € B < x4qA implies x1qB,
(6) AgA°.
(1) A=U{zt: 2 € A} = U{zs : 24GA°}.
Definition 2.6 ([15]). Let X be a nonempty set. Then, n C D(X) is called a double
topology on X if the following axioms are satisfied:
(i) ¢ Xen,
(ii)) If A, B €n, then AN B €1, and
(i) If {A, : « € A} Cn, then Ugen 4, € .

Definition 2.7 ([13]). Let X be a nonempty set. A nonempty collection Z C D(X)
is said to be a double ideal(D-ideal, for short) on X, if it satisfies the following two
conditions:

(i) AeZ and B C A = B €T (hereditary),

(i) AeZ and B€Z = AU B € Z (finite additivity).
The set of all D-ideals on X is denoted by DI(X).

One of the important D-ideals is Z,(= {B: B € D(X),B C A}).

Definition 2.8 ([14]). A mapping ¢ : D(X) — D(X) is said to be a D-Cech closure
operator if it satisfies the following axioms:

() (o) =&,

(i) ACec(A) VAe D(X),

(iii) (AU B) = c(4) Uc(B) ¥ 4, B € D(X).

If ¢ satisfies the following additional axiom, then c is called a D-closure operator,

and sometimes called a D-Kuratowski’s closure operator.
(iv) c(c(4)) = c(4) V A € D(X).

Definition 2.9 ([11]). Let 0 be a binary relation on the power set P(X) of a
nonempty set X. For all A € P(X), we define

S[A] = {B: B € P(X), B3A}.

Definition 2.10 ([I1]). A binary relation § on the power set P(X) of a nonempty
set X is said to be a basic proximity on X if it satisfies the following conditions:
For any A, B,C € P(X)
PI, : A€ d[B]= Bej[4],
PI;: A€ d[C]and B € 4[C] & AU B € 4[C],
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PI5: ¢ € §[A], for all A € P(X), and

Pl,: A€dB]=ANB=¢.
0 is said to be an EF - proximity on X if it is a basic proximity on X and it satisfies
the following condition:

PI; : A€ é[B] = 3H € P(X) such that A € 6[H] and H® € §[B].
0 is said to be separated proximity on X if it is an EF - proximity on X and it
satisfies the following condition:

Plg: o #y = {z} € o[{y})-

For all z € X, x € §[A] stands for {z} € §[A4] and §[x] stands for o[{z}].

Lemma 2.11 ([11]). For every subsets A and B of a basic prozimity space (X,0).
If A € §|B] and E C B, then A € 0[E].

Proposition 2.12 ([11]). Let (X,d) be a basic proximity space. Then
0[A] is an ideal on X,V A € P(X).

Lemma 2.13 ([11]). Let (X,0) be a basic prozimity space. Then the two simplest
ideals on X which generated by 6 are §[¢] = P(X) and §[X] = {¢}.

Theorem 2.14 ([11]). A binary relation 6 on the power set P(X) of a nonempty
set X is a basic proximity on X if and only if it satisfies the following conditions:
I, : A€ d[B] = B € d[4],
I : 6[A] is an ideal on X ¥V A € P(X), and
I3 : 6[A] C Tgc, where Tac = {B: B € P(X),B C A°}.

Corollary 2.15 ([11]). Let § € m(X). Then ¢ is an EF - Prozimity iff it is a go -
Prozimity.

Corollary 2.16 ([11]). Let § € m(X). Then § is an RH - Proximity iff it is an ho
- Proximaity.

3. SOME PROPERTIES OF A BASIC D-PROXIMITIES AND D-IDEALS

Definition 3.1. Let X be a nonempty set and let 6 be a binary relation on D(X).
For any A € D(X) we define

§[A] = {B: B € D(X),AéB} (here and henceforth also, § means non- 6).

Definition 3.2. Let X be a nonempty set and let § be a binary relation on D(X).
For any A, B,C € D(X), counsider the following axioms:

DPy: A€ d[B] = Be 4],

DPy: A€ d|C] and B € 6[C] < AU B € 4§[C],

DPy: A € [C], B €d[C] e AUB € 6[C], and C € §[A], C € §[B] & C €
J[AU BJ,

DPy: 6 € 0A]¥ A € D(X),

DP,: A€ 6[B] = AgB, and

DPs: A € §[B] = 3H € D(X) such that A € §[H| and H € §[B] (here and
henceforth also, B¢ = X\E),

DPs: xqyr = ¢ € S[yr),

DP;: A¢6[B] and by ¢ §[C] V bigB = A ¢ 6[C],
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DPr: 2, € 8B and b, & 6[C] V brqB = x; € 6[C].
Then 4 is said to be :

(a) A basic D-proximity on X, if it satisfies DPy, DP,, DP3 and DP;.

(b) An EF - D-proximity on X, if it is a basic D-proximity on X and satisfies
DPs.

(c) A separated D-proximity on X if it is an EF - D-proximity on X and it satisfies
DP;.

(d) An LE - D-proximity on X, if it satisfies DP,, DPs, DP; and DP;.

(e) An LO - D-proximity on X, if it is an LE - D-proximity on X and satisfies
DP;.

(f) An S - D-proximity on X, if it is a basic D-proximity on X and satisfies D P,
DP;.
If 0 is a basic D-proximity (resp. EF - D-proximity, separated D-proximity, LE -
D-proximity, LO - D-proximity, S - double proximity ) on X, then the pair (X, J)
is called a basic D-proximity (resp. EF - D-proximity, separated D-proximity, LE -
D-proximity, LO - D-proximity, S - D-proximity) space.
We denote m(X) for the set of all basic D-proximities on X and z; € §[A] for
z, € 0[A].

Definition 3.3. A binary relation ¢ on the set D(X) is said to be RH-D-proximity
on X if it satisfies the following conditions:

DRy: A€ é[B] = B € [4],

DRy: A€ d[C] and B € §[C] < AU B € §[C],

DR3: ¢ € 0[X],

DRy: A€ Al = A= ¢, and

DRs: x; € 0[B] = 3H € D(X) such that z; € 6[H] and H® € §[B].

Lemma 3.4. Let 6 € m(X) and let A, B € D(X). Then
If AéB, ACC and B C D, then C6D.

Lemma 3.5. Let (X,0) be a basic D-prozimity space. For every A,B € D(X).
Then,
(i) IfAéB, A C C, implies B6C.

Theorem 3.6. Let § € m(X) and let A,B € D(X). Then
(i) IfAe€d[B] and H C B, then A € §[H].
(i) ACB=olB| CslAl
(iii) If A € 6[B], then a; € §[B] V a; € A.

Proof. (i) Let A € §[B] and H C B. Assume that A ¢ 6[H]. Then HéA, but AC A
and H C B then(by Lemma [3.4) AdB i.e. A ¢ §[B] a contradiction.

(ii) it obvious from (i).

(iii) Let A € §[B] and assume that 3 a; € A such that a; € 6[B]. Then a;6B, but
a, € A and B C B = A0B(by Lemma [3.4 ), which contradicts with A € §[B]. O

Theorem 3.7. Let 6 € m(X). Then, §[A] is a D-ideal on X,V A € D(X).

Proof. Since ¢ € §[A](by PI3), then 0[A] is a nonempty collection. Let H € §[A]
and M C H. Then A € §[H] and M C H = M € §[A](by Theorem 3.6/ (i), DPy).
T
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Now, let H € §[A] and M € 6[A] then H U M € 6[A](by DP,). Hence §[B] is a
D-ideal on X. 0

Remark 3.8. Note that if § € m(X), then the two simplest D-ideals on X which
generated by § are §[¢] = D(X) and 6[X] = {¢}.

Theorem 3.9. A binary relation § on D(X) is said to be a basic D-proximity on
X if and only if it satisfies the following conditions:

DI, : A€ d[B] = B € §l4],

DI, : §[A] is a D-ideal on X Y A € D(X), and

DIs : §[A] CZ e, where Zye ={B:B € D(X),BC A°}.

Proof. Suppose that § is a basic D-proximity on X. Then DP; equivalent to DIy,
and DIy holds (by Theorem [3.7). For DI3, let B € §[A] = AgB(by DP,) which
implies B C A° (by Theorem [2.5)), so B € Z 4.. Hence 0[A] C Z 4.

Conversely, suppose that DI, DI and DI are hold. Then DI; equivalent to DP;.
Since §[4] is a D-ideal for all A € D(X) then DP, and DPs are hold. Now, let
B € 0[A] = B C A° (byDI3 )and so AgB. Hence DP, holds. Consequently, § is a
basic D-proximity on X. O

Example 3.10. Let X be a nonempty set. If we define a binary relation § on D(X)
such that AdB < AgB, then § € m(X).

Example 3.11. Let X be a nonempty set. If we define a binary relation ¢ on D(X)
such that A6B < A # ¢ and B # ¢, then § € m(X).

Theorem 3.12. Let 6 € m(X). For any A, B € D(X), then
() o[AUB] (4] N6[B] C o[AN B], and
(i) If H € 6[A] and M € 6[B] = H 1 M € 5[AU B,

Proof. (i) Since A, B C AU B,then §JAU B] C §[A], §[B] (by Theorem 3.6 (ii)), and
so 8[A U B] C §[A] N 4[B]. Next, let H ¢ §[AU B] = AU B ¢ §[H] which implies
that A & 6[H] or B & 0[H] (byDP,). So H & 6[A] or H ¢ §[B] which implies that
H ¢ §[A] N d[B]. Therefore, 6[AU B] = §[A] Nd0[B]. Now, let H € 6[4] N §[B].
Then A, B € §[H]. Since ANB C A,B, hence AN B € §[H] (by DI») and so
H € §[AN B, therefore, 6[A] N §[B] C §[AN BJ.

(ii) Let M € §[A] and H € §[B]. Since M N H C M, H then M N H € §[4] and
MNHedB]=MnNH € §[A]Né[B] =5[AU B]. O

Definition 3.13. A double set B of a basic D-proximity space (X, ¢) is said to be
a 6- neighborhood(8-nbd, in short) of a double set A iff B°6A. The set of all §- nbd
of a double set A is denoted by N (4, A), i.e. N(§,A) ={B: B € D(X),B° € §[A]}.
When there is no ambiguity we will write N5(A4) for N(§, A).

Definition 3.14. Let 01, d2 be two basic D-proximities on a nonempty set X, we
define
01 < 09 iff A6y B = A6 B.
The above expression refers to that d; is a finer than d;, or é; is a coarser than Js.
Proposition 3.15. Let §;, 62 € m(X). then §; < § & 61[A] C 62[A] VA € D(X).
778
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Proof. Straightforward. O

Definition 3.16. Let 01,2 € m(X) and A, B € D(X), we define
A(61Ud2)B < A61B or AdxB.

Theorem 3.17. Let 6,01,02 € m(X) and let A,B € D(X). Then
1. Ns(¢) = D(X),

A C B = N;(B) C Ns(A),

Xe Né(é) VAe D(X)7

B e Ns(A) = ACB,

A€ Ns(B) & B° € Ns(A°),

Ns(AU B) = Ns(A) N N5(B),

A€ Ns(H) and B € Ns(M)= AUB € Ns(HUM),

N51U62(A) = N51 (A) N Néz(é)f

If61 < 03, then N51 (A) - N(;Z(A) VAEe D(X)

© XSO

Proof. Straightforward. O

Theorem 3.18. Let (X,0) be a basic D-proximity space. If A6B, then AN H #
¢ V H € Ns(B).

Proof. Let A0B and assume that there exists H € Ns(A) such that BN H = ¢.

Then BGH = B C H° = A € §[B](by DP;, Theorem 3.6l (i)) a contradiction. [

Theorem 3.19. Let (X,d) be a basic D-proximity space then the operator cs :
D(X) — D(X) given by
cs(A) =n{B: B € Ns(A)}, forall A € D(X)

is a D-C'ech closure operator.

Proof. Clearly cs(¢) = ¢ . Let x; € A and assume that x; & c5(A), then there exists
M € D(X) such that z; & M € Ns(A), since M € Ns(A), then A C M (by Theorem
3.17) a contradicts with z; € A. Hence, A C ¢5(A) for any A € D(X). Now, let
AC Band let 2y € ¢5(A), then 2, € HY H € Ns(A) = 2 € HV H € Ns(B) (as
Ns(B) C Ns(A)) = x¢ € ¢5(B). Hence ¢s(A) C ¢5(B). Since A,B C AU B, then
cs(A),cs(B) C es(AUB) = ¢5(A)Ucs(A) C es(AUB). Next, let z; & cs(A)Ucs(B),
then there exists H, M € D(X) such that z; ¢ H € N5(A) and z; ¢ M € Ns(B) =
2y & (HUM) € Ns(AU B) (by Theorem 3.17) and so z; ¢ ¢s(A U B). Hence,
cs(AUB) Cc5(A) Ucs(B). Consequently, ¢s is a D-Cech closure operator. O

Theorem 3.20. Let (X,§) be an EF - D-prozimity space then the operator cs is a
D-closure operator and the collection ns = {A € D(X) : cs(A°) = A°} is a double
topology on X.

Proof. Straightforward. g
Lemma 3.21. Let 61,02 € m(X). If 61 < 82, then cs,(A) C s, (A) VA€ D(X).

Proof. Let z; € ¢5,(A), then a2y € BY B € N;s,(A) = ¢ € BY B € N, (A)

(by Theorem 3.17) and so z; € N{B : B € N;,(4)} = ¢5,(4). Hence, ¢5,(A) C

c5,(A)V Ae D(X). O
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Definition 3.22. Let 6 € m(X) and A € D(X) we define
CNs(4) ={B:B € D(X),B ¢ Ns(A)}.

Lemma 3.23. Let 6 € m(X), A€ D(X) and let T € DI(X). Then Ns(A)NZ =
¢ = I C CNs(A).

Theorem 3.24. Let§ € m(X), A€ D(X) andletZ,, Z, € DI(X). ThenZ,NZ, C
CNs(A) = Z, CCN;s(A) orZ, CCNs(A).

Proof. Assume that Z; ¢ CNs(A) and Z, ¢ CNs(A). Then there exists H; €
Z,\CNs(A) and H, € Z, \ CN;s(A). Since H, N H, C H,,H, and Z,,Z, are a
D-ideals on X, then H, N H, € Z, NZ, C CNs(A) = H, N H, € CNs(A) which
implies that H, (1 H, & Ny(4) = (H; UHS) ¢ 0[A] = HS ¢ 0[A] or HY ¢ ol4]
(byDP,), thus Hf & Ns(A) or H5 & Ns(A). Hence H; € CNs(A) or H, € CNs(A),
a contradiction. O

Theorem 3.25. Let Z,, Z, and J are D-ideals on a nonempty set X. Then if
lgl1 UZQ7 th@nlgl1 OTJQZQ-

Proof. Assume that J ¢ Z, and J ¢ Z,. Then there exists A € J \ Z; and
BeJ\Zy,,s0 AUB e J CZ,UZ,. Therefore AUB € Z, or AUB € Z, which
implies A € Z, or B € I,, a contradiction. O

4. f - D-PROXIMITIES

In this section we introduce the concept of g- double proximities(f - D-proximities,
for short) and we show that for different choice of ” f” one can obtain many of the
the known types of D-proximities. Also, characterizations of some types of these
D-proximities-( fo, lp)- have obtained.

Definition 4.1. A mapping f : m(X) x DI(X) — DI(X) is said to be a D-ideal
operator on X if Vé € m(X) and VI, Z, € DI(X), we have
f(0,Zy) C f(0,Z,) whenever Z; C Z,.

Definition 4.2. Let f be a D-ideal operator on X. Then a basic D-proximity § on
X is said to be a f— D-proximity iff §[A] C f(4,d[A4]), V A € D(X). The family of
all f - D-proximities will denoted by Dy.

Definition 4.3. A D-ideal operator f is said to be:

in class My if f(6,Z,NZy) = f(0,Z,) N f(6,Z,) VI € m(X) and VZ,, Z, € DI(X).
in class My if f(4, maEA—OC) =Naea f(0,Z,) V6 €em(X) and VI, € DI(X).

in class C'if f(61,Z) = f(d2,Z) with ¢5, = ¢5, V 61,92 € m(X) and VZ € DI(X).
in class I if f(§1,Z) C f(d2,Z) whenever 61 < d VZ € DI(X).

in class N if f(6,Z) C f(6, f(6,Z)),V 0 € Dy, VI € DI(X).

Deﬁnition 4.4. For a set X, for all 6 € m(X) and for all Z € DI(X) we define
id(6,Z) =
fo(&f)f{A A€ D(X),Ns(A)NL # ¢},
f1(6,2) ={A: Ae D(X),c5(A) € 1},
f2(07)={A: Ae D(X),z, € 6[A]UZ, VYV, € Xp},
10(6,2) ={A: Ac D(X),Ns(a;) NZ# ¢V a; € A},
780
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L(6,Z) = {A: A € D(X),c5(A) € d[z¢] with T C §[x]}. When there is no
ambiguity we will write f; for f;(6,Z) and I; for 1;(4,Z).

Theorem 4.5. Let § € m(X) and Z be an arbitrary element in DI(X). Then f is
a D-ideal operator on X for all f € {id, fo, f1, f2,10,11}-

Proof. We prove the cases fp and f5, the other cases are similar. Suppose that
d € m(X) and Z € DI(X). Now, since N5s(¢) NZ =Z # ¢, then ¢ € fo. If A € fo,
B C Athen Ns(A)NZ # ¢ = N5( )NZ # ¢ (by Theorem [3.17), hence B € fo.
If A, B € fo, then Ns(A)NZ # ¢ and Ns(B)NZ # ¢. So IH, M € I such that
H € Ns(A) and M € Ns(B) which implies that H UM € Ns(AU B) (by Theorem
3.17) and so HU M € Ns(AU B) NZ, consequently, Ns(AU B) NZ # ¢. Hence
AUB € fy. Therefore, fo € DI(X). Now, let Z; C Z, and let H € fo(6,Z,).
Then Ns(H)NZ, # ¢ = Ns(H)NZ, # ¢. So H € fo(§,Z,). Hence fy is a D-ideal
operator on X. B B

Next, since §[¢p] = D(X), then 2; € §[p]UZVz, € X, = p € fo. f A€ fo, BC A
then x, € J[AJUZV 2, € X, = x; € §[B]UZ ¥V 2, € X,(by Theorem [3.0 (ii)),
and so B € fo. If A, B € fo, then x4y € (J[A]UL)NO[BJUL) Vs € X, = 2 €
(B[ANSB))UZV s € Xp = € [AUB]UIV 2, € X, (by Theorem 3.12 (7)),
and so, AU B € f,. Hence fo € DI(X). Also, it is clear that if, Z; C Z,, then
f2(8,Z,) C f2(8,Z,). Consequently, fo is a D-ideal operator on X. O

Theorem 4.6. For all § € m(X) and for allZ € DI(X), we have id, f1, fo € Ms C
M and fo,lo € M.

Proof. Clearly My C M. Also, trivially, id, f1, fo € Ms. Now, let A € fo(6,Z,NZ,).
Then, N5(A) N (Z, NZ,) # ¢ = Ns(A) NI, # ¢ and Ns(A) NI, # ¢ = A €
fo(6,Z,) 0 fo(6,Z,). Hence fo(6,Z, NZy) € fo(6,Z,) N fo(6,Z,). Now, let A €
Jo(0,Z,) N fo(6,Z,). Then Ns(A)NZ; # ¢ and Ns(A) NZ, # ¢ which implies
Ns(A)N(Z;NZ,) # ¢(by Lemmal3.23, Theorem [3.24). So A € fo(6,Z,NZ,). Hence
fo(0,Z1) N fo(6,Z5) - fo(0,Z, NZ,). Therefore, fo € M;. Similarly Iy € M. O

Theorem 4.7. For all § € m(X) and for all Z € DI(X) we have f € C V [ €
{id, f1,,11}.

Proof. Tt follows from Definition 4.4. O

Theorem 4.8. For all 6 € m(X) and for all Z € DI(X), we have f € I V f €
{idafO;fhnylO,ll}-

Proof. Tt follows from Theorem [3.17 and Lemma 3.21. O

Theorem 4.9. Let 6 € m(X). Then the following statements are equivalent:
(1) 6 is an EF - D-Prozimity on X,
(2) A € 9[B] = Ns(A)Nd[B] # ¢,
(3) Ns(A4) N 6[B] = ¢ = A ¢ d[B]
(4) 0 is a go - D-Proximity,
(5) A € Ns(B) = 3H € Ns(B) such that A € Ns(H).
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Proof. (1) = (2): let A € §[B]. Then 3H € D(X) such that A € 0[H] and
H¢ € §[B]. It follows that H € 0[A4] and H® € §[B]. Hence H® € Ns(A) N J[B], and
so Ns(A) N é[B] # ¢

(2) & (3): it is obvious.

(2) = (4): let H € §[A]. Then, Ns(H)N[A] # ¢ = H € fo(0,[A]). Hence ¢ is
an fo -D-Proximity. B

(4)= (2): let A € §[B]. Then, A € fo(6,6[B]) = Ns(A) N[B] # ¢.

(2) = (5): let A € Ns(B). Then A° € 0[B] = Ns(A°)No[B] # ¢ = 3IM € D(X)
such that M € §[B] and M € Ns(A°). Hence M° € Ns(B) and A € Ns(M°),
putting H = M°. So (5) holds.

(5) = (1): let A € §[B]. Then A° € Ns(B) = FH € D(X) such that H € Ns(B)
and A° € Ns(H) = H° € §[B] and A € §[H]|. Hence § is an EF -D-Proximity. O

Corollary 4.10. Let § € m(X). Then, 0 is an EF - D-Proximity < it is fo -
D-Proximity.

Theorem 4.11. Let 6 € m(X). Then, § € Dy, = c5 is a D-closure operator.
Proof. Straightforward. g

Theorem 4.12. Let 6 € m(X). Then ¢ is a f1 - D-Prozimity if and only if V B €
d[4] = ¢5(B) € §[A4].

Proof. Suppose that § is a f; - D-Proximity and let B € 6[A]. Then, B € f1(9,§[A])

= 05( ) S 5[A]
Conversely, let B € §[A]. Then, ¢5(B) € 6[A] = B € fi(6,0[4]). So, §[4] C
f1(0,0[4]), VA€ D( ). Hence ¢ is a f; - D-Proximity. O

Theorem 4.13. Let 6 € m(X). Then ¢ is an LO - D-Prozimity < it is f1 -
D-Proximity.

Proof. Straightforward. O
Theorem 4.14. Let 6 € m(X), Z € DI(X). Then, f(6,Z) CZV f € {id, fo, fr}-
Proof. Straightforward. O

Theorem 4.15. Let 6 € m(X). Then
€Dy, & Acd[B] = (A€ dxy] or Bedxy]) Vay € Xp.

Proof. Suppose that § is a f - D-Proximity and let A € §[B]. Then, A € f»(4,6[B])
=z, € )[A]UJ[B] ¥V z; € X, and so, A € §[x;] or B € §[zy] ¥V x; € X).

Conversely, let H € J[A]. Then H e dx)or Aedmy] Ve X, = a4 €
S[HJUO[A] V z; € X,. Hence H € f5(6,0[4]) VA € D(X)), and consequently, ¢ is a
f2 - D-Proximity. U

Theorem 4.16. Let 6 € m(X). Then the following statements are equivalent:
(1) z; € 0[A] = 3H € D(X) such that xy € §[H] and H® € 0[4],
(2) @1 € 6[A] = Ns(zy) NO[A] # 0,
(3) Ns(ze) NO[A] = ¢ =z, & 0[A],
(4) 0 is an ly - D-Prozimity,
(5) A € Ns(z) = 3B € Ns(z1) such that A € Ns(B).

782



A. Kandil et al./Ann. Fuzzy Math. Inform. 7 (2014), No. 5, 773-789

Proof. (1) = (2): let x4 € §[A]. Then, 3H € D(X) such that z; € §[H] and H® €
d[A](by (1)). Tt follows that H® € §[A] and H® € Ns(x¢). Hence Ni(z) N 6[A] # ¢.

(2) & (3) it is obvious. B

(2) = (4): let B € §[A]. Then, b, € 6[4] V b, € B(by Theorem [3.0 (iii)). By (2),
Ns(by) NO[A] # ¢, V b, € B which implies that B € ly(d,5[A]). Hence 6 is an Iy -
D-Proximity.

(4) = (2): it is obvious.

(2) = (5): let A € Ns(zy). Then, x; € 6[A°], (by (2)) Ns(x;) NO[A"] # ¢. It
follows that 3B € Ns(xy), B € §[A°]. So, A° € §[B] and B € Ns(z;), this lead to
A € N5(B).

(5) = (1): let a; € §[A]. Then, A® € Ns(x:). By (5), 3H € Ns(z¢) such that
A° € Ns(H). Tt follows that A € §[H| and H® € §[xy]. So, z; € §[HC], H € 6[4]. O

)
3

Corollary 4.17. Let § € m(X). Then, ¢ is an RH - D-Proximity < it is ly -
D-Prozximity.

Theorem 4.18. Let 6 € m(X). Then
(1) If 6 € Dy, then zy € §[A] = x € d[es(4)].
(2) Y € Dy, ¢cs5 is a D-closure operator.

Proof. (1) Suppose that § is an [ -D-proximity and let 3 € §[A]. Then A € §[x¢] C

11(6,0[x¢]) = A € 11(3,0[xz4]) = ¢s(A) € dly,] with 0[x;] C d[y,]. But d[z:] C [xe],

hence c¢s(A) € d[re] = x1 € d[es(4)].
(2) It’s obvious.

O

Lemma 4.19. Let § be an S -D-Prozimity. If A € &[x], then cs(A) € §lay].

Theorem 4.20. Let 6 € m(X). Then ¢ is an S - D-Prozimity < it is an ly -
D-Prozximity.

Proof. Straightforward. O
Theorem 4.21. For all 6 € m(X) and for all Z € DI(X), we have f € N V f €
{’Ld, f03f2,10}'

Proof. Clearly, id € N. Suppose that 6 € Dy,, A € fo(9,Z). Then, Ns(A) NI # ¢,
so there exists M € Ns(A), M € Z. Since 6 € Dy,, then (by Theorem 4.9)) there
exists H € Ns(A) such that M € Ns(H) = Ns(H) NZ # ¢. So, H € fo(6,Z). But,
H € N;(A), then Ns(A) N fo(6,Z) # ¢. Hence A € fo(6, fo(,Z)). Consequently,
fo(6,Z) € fo(, fo(6,Z)). So, fo € N. Similarly with fa,lo. O

Theorem 4.22. For all§ € m(X) and for allZ € DI(X), then fo(6,Z) = U g7 6[A].

Proof. Straightforward. O

Theorem 4.23. For all § € m(X) and for allZ € DI(X), then
Dy, €Dy, Dy, €Dy, and Dy, C Dy, .

Proof. Straightforward. 0
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5. THE RELATION BETWEEN BASIC PROXIMITY AND BASIC D-PROXIMITY

In this section, we investigate the relationship among basic proximity and basic
double proximity.

Definition 5.1. Let § be any arbitrary relation on the power set of a nonempty set
X. We define

&lAl ={B € D(X): By € 0[A3]}, A € D(X).

Theorem 5.2. Let (X, 0) be a basic prozimity space. Then &5 is a basic D-prozimity
on X which is called the basic D-prozimity induced by the basic prozimity § on X.

Proof. Let A € D(X).

DI : Let B € &]A]. Then By € §[As] = Az € §[Bs] [ by Theorem 2.14 (1))
= A € &[B]. Hence DIy holds.

DI,: We shall show that &5[A] is a D-ideal on X. Since A € D(X). Then
Ay € P(X) = ¢ € [Ap] [by Theorem 2.14 (I2) ], and so ¢ € &5[A4], i.e. &[A] is a
nonempty. Let B € §5[A] and H C B. Then By € §[As] and Hy C By = Hs € §[As]
and so H € &5[A]. Now, let B, H € {s[A]. Then Bg, Hy € §[As] = By U Hy € 6[As]
and so BU A € &[A]. Hence &s5[A] is a D-ideal on X for all A € D(X), i.e. DIy
holds.

For the condition DI3, let B € {5[A]. Then, By € 6[Az] = By € Zag, which implies
that BoN Ay = ¢ = Ay N By = ¢ and A N By :¢:>A§§(:)§§AC and so
B €T, .. Hence [A] CZ 4. i.e. DI3 holds. Consequently, By Theorem [3.9] &5 is a
basic D- proximity on X. O

Example 5.3. Let X be a nonempty set and let A0B < AN B # ¢. Then § is
a basic proximity on X. The basic D-proximity which induced by J is &5 such that
AésB < Ay N By # ¢.

Theorem 5.4. Let (X,9) be a basic proximity space. Then ¢ is an EF -prozimity
iff & is an EF-D-prozimity.

Proof. Let § be an EF-proximity and let A € &[B]. Then A, € §[Bs] = Ns(A42) N
d[B2] # ¢. Then there exists H € P(X) such that H € Ns(Az2) and H € 0[Bs] =
He¢ € §[As],H € §[By] = H® = (H¢, H) € &l4] and H = (H,H) € &[B] =
H € N (A),H € &[B] = N, (A) N&s[B] # ¢. Hence, by Theorem 4.9, & is an
E F-D-proximity. B

Conversely, Let & is an EF-D-proximity and let A € §[B]. Then there exists
Aq,B; € P(X) such that (A1, A) € &[(B1,B)]. So, by hypothesis, 3(Hi, Ha) €
D(X) such that (Hl,Hg) S 65[(141,14)] and (HQC,ch) S 55[(B1,B)] = Hy € 6[14] and
Hf € §[B]. Since 0[B] is an ideal and H§ C H¢, then H§ € §[B]. Hence § is an
E F-proximity. O

Corollary 5.5. Let (X,d) be a basic prozimity space. Then § is an go-proximity iff
&s s an fo-D-proximity.

Theorem 5.6. Let § be any relation on the power set of a nonempty set X. Then
0 is an RH- proximity iff &5 is an RH-D-prozimity.
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Proof. Let § be an RH-proximity. Let A € &[B], then Ay € §[Bs] & Bs € §[As] &
B € &[A]. Hence DR; holds. Similarly, DRy, DR3 and DR, are hold. Now, let
xy € &5[A]. Then {x} € 6[As] = FH € P(X) such that H € §[{z}] and H® €
0[Ag] = (H, H) € &5[xy) and (H®, H®) € &5[A],i.e. there exists H = (H,H) € D(X)
such that H € &s[xy] and HS € &5[A]. Hence DRs holds. Consequently, &s is an
RH-D-proximity.

The sufficiency of the Theorem is similar. O

Corollary 5.7. Let (X,0) be a basic proximity space. Then § is an ho-proximity iff
&s is an lg-D-proximity.

Theorem 5.8. Let (X,0) be a basic proximity space. Then &5 is a separated-D-
proximity = 6 is a separated proximity.

Proof. Straightforward. O

Definition 5.9. Let £ be any arbitrary relation on D(X). We define
de[A] ={B € P(X): (B,B) € {[(A, A)]}, A € P(X).

Theorem 5.10. Let (X,§) be a basic D-prozimity space. Then ¢ is a basic proz-
imity on X which is called the basic proximity induced by the basic D-proximity &
on X.

Proof. Let A € P(X).

Ii: Let B € d¢[A]. Then (B,B) € &[(A,A)] = (A, A) € {[(B,B)] and so B €
d¢[B]. Hence I; holds.

I,: We shall show that d¢[A] is an ideal on X. Since ¢ € {[(A, A)] VA € P(X),
then ¢ € 6¢[A] i.e. 6¢[A] is a nonempty. Let B € ¢[A] and C C B. Then (B, B) €
¢[(A,A)] and (C,C) C (B,B) = (C,C) € ¢[(A,A)] = C € 6¢[A]. Now, let B,H €
d¢[A]. Then (B,B),(H,H) € £[(A,A)] = (BUH,BUH) € ¢£[(A,A)) = BUH €
0¢[A]. Hence 0¢[A] is an ideal on X i.e. I5 holds.

I3: Let B € 0¢[A]. Then (B,B) € &[(A,A)] = B C A° = B € Zs-. Hence
d¢[A] C T4 ie. I3 holds. Consequently, d¢ is a basic proximity on X. O

Example 5.11. Let X be a nonempty set and let A(B < AgB. Then the basic
proximity which induced by £ is d¢ such that Ad¢B < AN B # ¢.

Theorem 5.12. Let (X,d) be a basic prozimity space and A = (A1,A2),B =
(B1,B3) € D(X). Then
B, € Ng(AQ) < B e Ngé (A)

Proof. Straightforward. 0

6. CONTINUITY IN BASIC D-PROXIMITY SPACES

In this section, we introduced the concept of continuity in basic double proximity
spaces.

Definition 6.1. Let (X&) and (Y, &) be two basic D-proximity spaces and f :
(X,&) — (Y,&) be a map. Then f is called a basic D- proximally continuous
(BDP-continuous, for short) map if A& B implies f(A)& f(B).
Equivalently, if f(A4) € &[f(B)] implies A € &[B], VA, B € D(X).
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If (X,&1) and (Y, &) be two EF-D-proximity spaces, then f is called double proxi-
mally continuous (DP-continuous, for short).

Theorem 6.2. Let (X,&1) and (Y, &) be two basic D-prozimity spaces and f :
(X,&1) — (Y,&) be a map. Then

[ is a BDP-continuous if and only if C € &[D] = f~1(C) € &[f~Y(D)] VC,D €
D(Y).

Proof. Let C,D € D(Y ) such that C € &[D]. Since ff~1(D) C D, then, by Theo-
rem 3.6l (i), C’Gfg[ff YD )] Since &[ff~H(D)] 1saD1dealonYand ff= (7)@
C, then ff~1(C ) € &LIff 1D )] We claim that f~1(C) € El[f Y(D)]. In fact, i
fHC) ¢ §1[f Y(D)], then f~H(C)&f~H(D) = ff~H(C )£2ff (D) (by Contmmty
of f) = ff1(C) & &[ff1(D)], a contradiction. Hence f~(C) € &[f (D).

Conversely, let A,B € D(X) such that f(A4) € &[f(B)]. Then , by hypothe-

sis, f7H(f(A)) € &[f~1(f(B))]. Since & [f~L(f(B))] is a D-ideal on X and A C

f71(A), then A € &[f~1(f(B)] = f~1(f(B)) € &[A], but B C f~*(f(B)), then
B € & [A4]. Hence f is a BDP-continuous. dJ

Theorem 6.3. Let (X, &) and (Y, &2) and (Z,€3) be a basic D-proximity spaces and
f : (Xa gl) - (Y7 52)7 g: (Y7 62) - (Z’ 63) be two maps. Then
If f and g are BDP-continuous maps, then gof is BDP-continuous map.

Proof. Straightforward. O

Theorem 6.4. Let (X,&1) and (Y, &) be two a basic D-proximity spaces and f :
(X, &) — (Y.&) be a map. Then
If f is BDP-continuous, then f: (X, ¢ ) — (Y,0¢,) is BP-continuous.

Proof. Let A, B € P(X) and Ad¢, B. Then, (A, A)¢1(B, B) = f(A, A)é f(B, B)(by
continuity of f) = (f(A), f(A))&(f(B), f(B)) = f(A)de, f(B). Hence f is a BP-

continuous. O

Theorem 6.5. Let (X,01) and (Y,02) be two a basic prozimity spaces and f :
(X,01) — (Y,02) be a map. Then
f:(X,01) — (Y, 82) is BP-continuous < f: (X,&s,) — (Y, &s,) is BDP-continuous.

Proof. Let f : (X,01) — (Y,62) be a BP-continuous, C,D € D(Y) and let C €
552[ ] Then C5 € (52[D2]

= 7 (Ca) € 81N (D2)]

= (f* (C1), f 1(0 ) € &, [(f7H(Dr), f7H(D2))]

= f71(C) € &, [f7H(D)]

Hence f: (X,&5,) — (Y,&5,) is BDP-continuous.

Conversely, Let f: (X, &5,) — (Y,&s,) be a BDP-continuous, A, B € P(Y) and Ae

d2[B]. Then (A1, A) € &,[(By, B)], for some A;, By € P(Y) = ( LAy, f7HA)) €
&, [(f7H(BY), f7H(B))] = fH(A) € 61[f~H(B)]. Hence f: (X,01) — (Y, 02) is BE
continuous.

Lemma 6.6. Let (X, &) and (Y, &) be two EF-D-prozimity spaces and f : (X, &) —
(Y,&2) be a DP-continuous. Then

V€ N, (H) = ce, (f 71 () € f7H(H") VY, H € D(Y).
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Proof. Let V,H € D(Y) such that V. € Ng,(H).
that, by Theorem 6.2, f~ (Vp) € &lf(H )] = |

[fH ) = f7H(V), then - HV) € Ne, (f 1(ﬂ) = [fTHE]° € Ne, ([f 7 (W)]°)
(by Theorem 3.17 (5)) = f~Y(H®) € Ngl( LV®). Since, cg, (f7H(V)) =n{M €
D(X) : M € Ne, (f71(V)}, then cg, (f7H(V)) € f7H(H"). R

Then V¢ € &IH ] It follows
{ (V)] € Ney(F7(H)). But,
):

Theorem 6.7. Let (X,&1) and (Y, &) be two EF-D-prozimity spaces and f : (X, &1)
— (Y, &) be a map. Then f is a DP-continuous = f : (X,ne,) — (X,n¢,) is a
D-continuous with respect to the double topologies n¢, and ne,.

Proof. Let V. € ng,. Then cg, (V) = V¢, we shall show that f~'(V) € ne, &
ce, (f7H (V) = f71(V°). Clear that, f~ ( ) C ce, (f7H(V?)). Now, by Lemma
6.6, we have
ce, (f1(V) SN{f 1 (H?) : V€ Ne, (H)}
= ﬂ{f_l(ﬂc) H° € Ne,(V°)}

THN{H € D(Y) : H € Ne,(V°)}]

= ; E%§ )
Hence c; (f7HV°)) C f~H(V°). Consequently, ce, (fH(V)) = f~1(V°) and f~1(V)
€ 1¢,. Therefore, f is a D-continuous. O

7. CATEGORICAL POINT OF VIEW

In this section, we are going to find a categorical relationship between basic prox-
imity spaces and basic D-proximity spaces.
Let CBP be the category of all basic proximity spaces and BP-continuous maps.
Also, let CBDP be the category of all basic D-proximity spaces and BDP-continuous
maps.

Definition 7.1 ([7]). A category C consists of a collection {C,, : &« € A} of elements
called objects and a collection {f; : i € I'} of elements called mappings.

Definition 7.2 ([7]). Let C and F be a categories and let F' be a function which
maps the objects of C into the objects of F and, in addition, assigns to each map
f €Camap F(f) € F. The map F is called a functor from C to F if it satisfies the
following conditions:
For any C,Cq,Cs, f, f17 f2 eC

(2) Flic) =ir(c)-

(3) If fg.fl is deﬁned, then F(fgfl) = F(fQ)F(fl)
Theorem 7.3. Let F': CBP — CBDP defined by

F(Xvé) - (Xa€5) andF(f) = f7

where, A&sB < A20By VA, B € D(X). Then F is a functor.

Proof. Clearly, by Theorem 5.2, F(X,J) is a basic D-proximity space. Now, we

shall show that if f : (X,01) — (Y,d2) is a BP-continuous, then f : (X,&;,) —

(Y,&s,) is a BDP-continuous. Let A, B € D(Y) such that A € &;,[B]. Then

Ay € 02[Bs] = f71(A2) € 01[f 1 (B2)]. Since f1(A) = (f~1(A1), [1(A2)) and
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f7UB) = (1 (B1), f71(B2)), then f71(A4) € &,[fH(B)]. Hence f: (X,&,) —
(Y, &s,) is a BDP-continuous. Therefore, F is a functor. O

Theorem 7.4. Let G: CBDP — CBP defined by
G(X,8) = (X,d¢) and G(f) = [,
where, Aé¢B < (A, A){(B,B) YA,B € P(X). Then G is a functor.

Proof. Clearly, by Theorem 5.10, G(X,&) is a basic proximity space. Now, we
shall show that if f : (X,&) — (Y, &) is a BDP-continuous, then f : (X,d¢,) —
(Y, d¢,) is a BP-continuous. Let A, B € P(Y') such that A € é¢,[B]. Then (4, A) €
&[(B, B)] = ( by Theorem 6.2) f~Y(A,A) € &[f~1(B,B)]. Since f71(A4,A) =
(F~1(A), f~1(A) and f~1(B, B) = (f~1(B), f~1(B)), then f~}(4) € d¢,[f 1 (B)].
Hence f: (X, ¢, ) — (Y,0¢,) is a BP-continuous. Therefore, G is a functor. O
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