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Abstract. In this paper, we present a new approach to double (intu-
itionistic) proximity(D-Proximity, for short) structures based on the recog-
nition that many of the entities important in the theory of double (intu-
itionistic) ideals(D-ideal, for short). So we given a characterization of the
basic double proximity using double ideals. Also, we introduce the con-
cept of f - double proximities and we show that for different choice of ”f”
one can obtain many of the the known types of double proximities. Also,
characterizations of some types of these double proximities-(f0, l0)- have
obtained.

2010 AMS Classification: 06D72, 54A40

Keywords: Ideals, Basic proximity, Proximity space, D-ideals, Basic D-proximity,
D-proximity space, f - D-proximities, D-topological space, Intuitionistic (Flou) topo-
logical spaces.

Corresponding Author: Shawqi Ahmed Hazza (shawqialalimi@yahoo.com)

1. Introduction

Ideals in topological spaces were introduced by Kuratowski [16], Vaidyanathaswa-
my [20] and Jankovic and Hamlett[10]. In the crisp, various classes of generalized
proximities have been extensively studied by many authors including Lodato[17],
[18]. In[9], the authors were introduced a new approach to construct generalized
proximity structures based on the concept of ideal and an EF-Proximity structure.
Kandil et. al [11] presented a new approach to proximity structures using the theory
of ideals. After Atanassov [1, 2, 3] introduced the concept of intuitionistic fuzzy sets
as a generalization of fuzzy sets. Çoker [5] introduced the notion of intuitionistic
fuzzy topological spaces using the notion of intuitionistic fuzzy sets. The notion of
intuitionistic sets which is a classical version of an intuitionistic fuzzy sets was first
given by Çoker in [4]. He studied topology on intuitionistic sets in [6]. The authors
in [15] introduced the concept of flou set and studied the basic properties of flou
topological spaces. In this paper, we follow the suggestion of Rodabaugh [8] that
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double set is more appropriate name than intuitionistic (Flou) set, and therefore,
adopted the term double set for the intuitionistic(Flou) set and double topology for
the intuitionistic (Flou) topology. Also, The authors in [12] obtained a new double
topology form the old by using a double ideal. In this paper, we present a new
approach to double proximity structures based on the recognition that many of the
entities important in the theory of double ideals, and study some of its properties.
The concepts of a basic double proximity on a double set and a basic proximal
neighborhood of a double set with respect to a basic double proximity are obtained.
Also, we introduce the concept of f - double proximities and we show that for different
choice of ”f” one can obtain many types of double proximities.

2. Preliminaries

Definition 2.1 ([15]). Let X be a nonempty set:
(1) A double set A is an ordered pair A = (A1, A2) ∈ P (X) × P (X) such that

A1 ⊆ A2.
(2) D(X) = {(A1, A2) : (A1, A2) ∈ P (X) × P (X), A1 ⊆ A2} is the family of all

double sets on X.
(3) Let x ∈ X . Then the double sets x0.5 = (φ, {x}) and x1 = ({x}, {x}) are

said to be double points in X.
Xp = {xt : x ∈ X, t ∈ {0.5, 1}} is the set of all double points of X.

(4) x1 ∈ A iff x ∈ A1, and x0.5 ∈ A iff x ∈ A2.
(5) Let η1, η2 ⊆ P (X). Then the double product of η1 and η2 is denoted by η1×̂η2

and is defined by η1×̂η2 = {(A1, A2) : (A1, A2) ∈ η1 × η2, A1 ⊆ A2}.
(6) The double set X = (X, X) is called the universal double set.
(7) The double set φ = (φ, φ) is called the empty double set.
(8) The double set A = (A1, A2) is said to be finite double set if A2 is finite set.
(9) The double set A = (A1, A2) is said to be countable double set if A2 is

countable set.

Note that a double set in the sense of Çoker [4] is of the form A = (A1, A2) ∈
P (X) × P (X), where A1 ∩ A2 = φ. But A = (A1, A2) ∈ P (X) × P (X) is a double
set in the sense of Kandil et. al [15], where A1 ⊆ A2. Then A = (A1, A2) is a double
set in the sense of Çoker if and only if A = (A1, A

c
2) is a double set in the sense of

Kandil. And one can see that a one to one correspondence mapping between the
two types. On the other hand, Kandil’s notion simplify the concepts, specially in
the case of intuitionistic fuzzy points or double fuzzy point see [19].

Definition 2.2 ([15]). Let A = (A1, A2), B = (B1, B2) ∈ D(X). Then
(1) A = B ⇔ Ai = Bi, i = 1, 2.
(2) A ⊆ B ⇔ Ai ⊆ Bi, i = 1, 2.
(3) A ∩B = (A1 ∩B1, A2 ∩B2) and A ∪B = (A1 ∪B1, A2 ∪B2).
(4) If {Aα : α ∈ Λ} ⊆ D(X) such that Aα = (A1α , A2α), then

⋃
α∈Λ Aα =

(
⋃

α∈Λ A1α ,
⋃

α∈Λ A2α) and
⋂

α∈Λ Aα = (
⋂

α∈Λ A1α ,
⋂

α∈Λ A2α).
(5) Ac = (Ac

2, A
c
1), where Ac is the complement of A.

(6) A\B = A ∩Bc.

Remark 2.3 ([13]). We have here three major deviations from the ordinary case:
774
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(1) A ∪Ac need not to be the universal double set.
(2) A ∩Ac need not to be the empty double set.
(3) xt ∈ A does not implies xt 6∈ Ac, in general.

Definition 2.4 ([13]). Two double sets A and B are said to be quasi-coincident,
denoted by AqB , if and only if A1∩B2 6= φ or A2∩B1 6= φ. A is not quasi-coincident
with B, denoted by Aq̄B , if and only if A1 ∩B2 = φ and A2 ∩B1 = φ.

Theorem 2.5 ([13]). Let A,B,C ∈ D(X) and xt, yr ∈ Xp. Then:
(1) AqB ⇒ A ∩B 6= φ,
(2) AqB ⇔ ∃xt ∈ A such that xtqB,
(3) Aq̄B ⇔ A ⊆ Bc,
(4) xtq̄A ⇔ xt ∈ Ac,
(5) A ⊆ B ⇔ xt ∈ A implies xt ∈ B ⇔ xtqA implies xtqB,
(6) Aq̄Ac.
(7) A =

⋃{xt : xt ∈ A} =
⋃{xt : xtq̄A

c}.
Definition 2.6 ([15]). Let X be a nonempty set. Then, η ⊆ D(X) is called a double
topology on X if the following axioms are satisfied:

(i) φ, X ∈ η,
(ii) If A, B ∈ η, then A ∩B ∈ η, and
(iii) If {Aα : α ∈ Λ} ⊆ η, then ∪α∈ΛAα ∈ η.

Definition 2.7 ([13]). Let X be a nonempty set. A nonempty collection I ⊆ D(X)
is said to be a double ideal(D-ideal, for short) on X, if it satisfies the following two
conditions:

(i) A ∈ I and B ⊆ A ⇒ B ∈ I (hereditary),
(ii) A ∈ I and B ∈ I ⇒ A ∪B ∈ I (finite additivity).

The set of all D-ideals on X is denoted by DI(X).

One of the important D-ideals is IA(= {B : B ∈ D(X), B ⊆ A}).
Definition 2.8 ([14]). A mapping c : D(X) → D(X) is said to be a D-C̆ech closure
operator if it satisfies the following axioms:

(i) c(φ) = φ,
(ii) A ⊆ c(A) ∀ A ∈ D(X),
(iii) c(A ∪B) = c(A) ∪ c(B) ∀ A,B ∈ D(X).
If c satisfies the following additional axiom, then c is called a D-closure operator,

and sometimes called a D-Kuratowski’s closure operator.
(iv) c(c(A)) = c(A) ∀ A ∈ D(X).

Definition 2.9 ([11]). Let δ be a binary relation on the power set P (X) of a
nonempty set X. For all A ∈ P (X), we define

δ[A] = {B : B ∈ P (X), Bδ̄A}.
Definition 2.10 ([11]). A binary relation δ on the power set P (X) of a nonempty
set X is said to be a basic proximity on X if it satisfies the following conditions:
For any A,B,C ∈ P (X)

PI1 : A ∈ δ[B] ⇒ B ∈ δ[A],
PI2 : A ∈ δ[C] and B ∈ δ[C] ⇔ A ∪B ∈ δ[C],
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PI3 : φ ∈ δ[A], for all A ∈ P (X), and
PI4 : A ∈ δ[B] ⇒ A ∩B = φ.

δ is said to be an EF - proximity on X if it is a basic proximity on X and it satisfies
the following condition:

PI5 : A ∈ δ[B] ⇒ ∃H ∈ P (X) such that A ∈ δ[H] and Hc ∈ δ[B].
δ is said to be separated proximity on X if it is an EF - proximity on X and it
satisfies the following condition:

PI6 : x 6= y ⇒ {x} ∈ δ[{y})].
For all x ∈ X, x ∈ δ[A] stands for {x} ∈ δ[A] and δ[x] stands for δ[{x}].

Lemma 2.11 ([11]). For every subsets A and B of a basic proximity space (X, δ).
If A ∈ δ[B] and E ⊆ B, then A ∈ δ[E].

Proposition 2.12 ([11]). Let (X, δ) be a basic proximity space. Then
δ[A] is an ideal on X, ∀ A ∈ P (X).

Lemma 2.13 ([11]). Let (X, δ) be a basic proximity space. Then the two simplest
ideals on X which generated by δ are δ[φ] = P (X) and δ[X] = {φ}.
Theorem 2.14 ([11]). A binary relation δ on the power set P (X) of a nonempty
set X is a basic proximity on X if and only if it satisfies the following conditions:

I1 : A ∈ δ[B] ⇒ B ∈ δ[A],
I2 : δ[A] is an ideal on X ∀ A ∈ P (X), and
I3 : δ[A] ⊆ IAc , where IAc = {B : B ∈ P (X), B ⊆ Ac}.

Corollary 2.15 ([11]). Let δ ∈ m(X). Then δ is an EF - Proximity iff it is a g0 -
Proximity.

Corollary 2.16 ([11]). Let δ ∈ m(X). Then δ is an RH - Proximity iff it is an h0

- Proximity.

3. Some properties of a basic D-proximities and D-ideals

Definition 3.1. Let X be a nonempty set and let δ be a binary relation on D(X).
For any A ∈ D(X) we define

δ[A] = {B : B ∈ D(X), Aδ̄B} (here and henceforth also, δ̄ means non- δ).

Definition 3.2. Let X be a nonempty set and let δ be a binary relation on D(X).
For any A,B, C ∈ D(X), consider the following axioms:

DP1: A ∈ δ[B] ⇒ B ∈ δ[A],
DP2: A ∈ δ[C] and B ∈ δ[C] ⇔ A ∪B ∈ δ[C],
DṔ2: A ∈ δ[C], B ∈ δ[C] ⇔ A ∪ B ∈ δ[C], and C ∈ δ[A], C ∈ δ[B] ⇔ C ∈

δ[A ∪B],
DP3: φ ∈ δ[A] ∀ A ∈ D(X),
DP4: A ∈ δ[B] ⇒ Aq̄B, and
DP5: A ∈ δ[B] ⇒ ∃H ∈ D(X) such that A ∈ δ[H] and Hc ∈ δ[B] (here and

henceforth also, Ec = X\E),
DP6: xtq̄yr ⇒ xt ∈ δ[yr],
DP7: A 6∈ δ[B] and bt 6∈ δ[C] ∀ btqB ⇒ A 6∈ δ[C],
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DṔ7: xt 6∈ δ[B] and br 6∈ δ[C] ∀ brqB ⇒ xt 6∈ δ[C].
Then δ is said to be :

(a) A basic D-proximity on X, if it satisfies DP1, DP2, DP3 and DP4.
(b) An EF - D-proximity on X, if it is a basic D-proximity on X and satisfies

DP5.
(c) A separated D-proximity on X if it is an EF - D-proximity on X and it satisfies

DP6.
(d) An LE - D-proximity on X, if it satisfies DṔ2, DP3, DP4 and DP7.
(e) An LO - D-proximity on X, if it is an LE - D-proximity on X and satisfies

DP1.
(f) An S - D-proximity on X, if it is a basic D-proximity on X and satisfies DP6,

DṔ7.
If δ is a basic D-proximity (resp. EF - D-proximity, separated D-proximity, LE -
D-proximity, LO - D-proximity, S - double proximity ) on X, then the pair (X, δ)
is called a basic D-proximity (resp. EF - D-proximity, separated D-proximity, LE -
D-proximity, LO - D-proximity, S - D-proximity) space.
We denote m(X) for the set of all basic D-proximities on X and xt ∈ δ[A] for
xt ∈ δ[A].

Definition 3.3. A binary relation δ on the set D(X) is said to be RH-D-proximity
on X if it satisfies the following conditions:

DR1: A ∈ δ[B] ⇒ B ∈ δ[A],
DR2: A ∈ δ[C] and B ∈ δ[C] ⇔ A ∪B ∈ δ[C],
DR3: φ ∈ δ[X],
DR4: A ∈ δ[A] ⇒ A = φ, and
DR5: xt ∈ δ[B] ⇒ ∃H ∈ D(X) such that xt ∈ δ[H] and Hc ∈ δ[B].

Lemma 3.4. Let δ ∈ m(X) and let A,B ∈ D(X). Then
If AδB, A ⊆ C and B ⊆ D, then CδD.

Lemma 3.5. Let (X, δ) be a basic D-proximity space. For every A,B ∈ D(X).
Then,

(i) If AδB, A ⊆ C, implies BδC.
(ii) If AδB, B ⊆ C, implies AδC.

Theorem 3.6. Let δ ∈ m(X) and let A,B ∈ D(X). Then
(i) If A ∈ δ[B] and H ⊆ B, then A ∈ δ[H].
(ii) A ⊆ B ⇒ δ[B] ⊆ δ[A].
(iii) If A ∈ δ[B], then at ∈ δ[B] ∀ at ∈ A.

Proof. (i) Let A ∈ δ[B] and H ⊆ B. Assume that A 6∈ δ[H]. Then HδA, but A ⊆ A
and H ⊆ B then(by Lemma 3.4) AδB i.e. A 6∈ δ[B] a contradiction.

(ii) it obvious from (i).
(iii) Let A ∈ δ[B] and assume that ∃ at ∈ A such that at 6∈ δ[B]. Then atδB, but

at ⊆ A and B ⊆ B ⇒ AδB(by Lemma 3.4 ), which contradicts with A ∈ δ[B]. ¤
Theorem 3.7. Let δ ∈ m(X). Then, δ[A] is a D-ideal on X, ∀ A ∈ D(X).

Proof. Since φ ∈ δ[A](by PI3), then δ[A] is a nonempty collection. Let H ∈ δ[A]
and M ⊆ H. Then A ∈ δ[H] and M ⊆ H ⇒ M ∈ δ[A](by Theorem 3.6 (i), DP1).
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Now, let H ∈ δ[A] and M ∈ δ[A] then H ∪ M ∈ δ[A](by DP2). Hence δ[B] is a
D-ideal on X. ¤

Remark 3.8. Note that if δ ∈ m(X), then the two simplest D-ideals on X which
generated by δ are δ[φ] = D(X) and δ[X] = {φ}.
Theorem 3.9. A binary relation δ on D(X) is said to be a basic D-proximity on
X if and only if it satisfies the following conditions:

DI1 : A ∈ δ[B] ⇒ B ∈ δ[A],
DI2 : δ[A] is a D-ideal on X ∀ A ∈ D(X), and
DI3 : δ[A] ⊆ IAc , where IAc = {B : B ∈ D(X), B ⊆ Ac}.

Proof. Suppose that δ is a basic D-proximity on X. Then DP1 equivalent to DI1,
and DI2 holds (by Theorem 3.7). For DI3, let B ∈ δ[A] ⇒ Aq̄B(by DP4) which
implies B ⊆ Ac (by Theorem 2.5), so B ∈ IAc . Hence δ[A] ⊆ IAc .
Conversely, suppose that DI1, DI2 and DI3 are hold. Then DI1 equivalent to DP1.
Since δ[A] is a D-ideal for all A ∈ D(X) then DP2 and DP3 are hold. Now, let
B ∈ δ[A] ⇒ B ⊆ Ac (byDI3 )and so Aq̄B. Hence DP4 holds. Consequently, δ is a
basic D-proximity on X. ¤

Example 3.10. Let X be a nonempty set. If we define a binary relation δ on D(X)
such that AδB ⇔ AqB, then δ ∈ m(X).

Example 3.11. Let X be a nonempty set. If we define a binary relation δ on D(X)
such that AδB ⇔ A 6= φ and B 6= φ, then δ ∈ m(X).

Theorem 3.12. Let δ ∈ m(X). For any A, B ∈ D(X), then
(i) δ[A ∪B] = δ[A] ∩ δ[B] ⊆ δ[A ∩B], and
(ii) If H ∈ δ[A] and M ∈ δ[B] ⇒ H ∩M ∈ δ[A ∪B].

Proof. (i) Since A, B ⊆ A∪B,then δ[A∪B] ⊆ δ[A], δ[B] (by Theorem 3.6 (ii)), and
so δ[A ∪ B] ⊆ δ[A] ∩ δ[B]. Next, let H 6∈ δ[A ∪ B] ⇒ A ∪ B 6∈ δ[H] which implies
that A 6∈ δ[H] or B 6∈ δ[H] (byDP2). So H 6∈ δ[A] or H 6∈ δ[B] which implies that
H 6∈ δ[A] ∩ δ[B]. Therefore, δ[A ∪ B] = δ[A] ∩ δ[B]. Now, let H ∈ δ[A] ∩ δ[B].
Then A, B ∈ δ[H]. Since A ∩ B ⊆ A,B, hence A ∩ B ∈ δ[H] (by DI2) and so
H ∈ δ[A ∩B], therefore, δ[A] ∩ δ[B] ⊆ δ[A ∩B].

(ii) Let M ∈ δ[A] and H ∈ δ[B]. Since M ∩H ⊆ M,H then M ∩H ∈ δ[A] and
M ∩H ∈ δ[B] ⇒ M ∩H ∈ δ[A] ∩ δ[B] = δ[A ∪B]. ¤

Definition 3.13. A double set B of a basic D-proximity space (X, δ) is said to be
a δ- neighborhood(δ-nbd, in short) of a double set A iff Bcδ̄A. The set of all δ- nbd
of a double set A is denoted by N(δ,A), i.e. N(δ,A) = {B : B ∈ D(X), Bc ∈ δ[A]}.
When there is no ambiguity we will write Nδ(A) for N(δ,A).

Definition 3.14. Let δ1, δ2 be two basic D-proximities on a nonempty set X, we
define

δ1 < δ2 iff Aδ2B ⇒ Aδ1B.
The above expression refers to that δ2 is a finer than δ1, or δ1 is a coarser than δ2.

Proposition 3.15. Let δ1, δ2 ∈ m(X). then δ1 < δ2 ⇔ δ1[A] ⊆ δ2[A] ∀A ∈ D(X).
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Proof. Straightforward. ¤

Definition 3.16. Let δ1, δ2 ∈ m(X) and A,B ∈ D(X), we define
A(δ1 ∪ δ2)B ⇔ Aδ1B or Aδ2B.

Theorem 3.17. Let δ, δ1, δ2 ∈ m(X) and let A,B ∈ D(X). Then
1. Nδ(φ) = D(X),
2. A ⊆ B ⇒ Nδ(B) ⊆ Nδ(A),
3. X ∈ Nδ(A) ∀ A ∈ D(X),
4. B ∈ Nδ(A) ⇒ A ⊆ B,
5. A ∈ Nδ(B) ⇔ Bc ∈ Nδ(Ac),
6. Nδ(A ∪B) = Nδ(A) ∩Nδ(B),
7. A ∈ Nδ(H) and B ∈ Nδ(M) ⇒ A ∪B ∈ Nδ(H ∪M),
8. Nδ1∪δ2(A) = Nδ1(A) ∩Nδ2(A),
9. If δ1 < δ2, then Nδ1(A) ⊆ Nδ2(A) ∀ A ∈ D(X).

Proof. Straightforward. ¤

Theorem 3.18. Let (X, δ) be a basic D-proximity space. If AδB, then A ∩ H 6=
φ ∀ H ∈ Nδ(B).

Proof. Let AδB and assume that there exists H ∈ Nδ(A) such that B ∩ H = φ.
Then Bq̄H ⇒ B ⊆ Hc ⇒ A ∈ δ[B](by DP1, Theorem 3.6 (i)) a contradiction. ¤

Theorem 3.19. Let (X, δ) be a basic D-proximity space then the operator cδ :
D(X) → D(X) given by

cδ(A) = ∩{B : B ∈ Nδ(A)}, for all A ∈ D(X)

is a D-C̆ech closure operator.

Proof. Clearly cδ(φ) = φ . Let xt ∈ A and assume that xt 6∈ cδ(A), then there exists
M ∈ D(X) such that xt 6∈ M ∈ Nδ(A), since M ∈ Nδ(A), then A ⊆ M(by Theorem
3.17) a contradicts with xt ∈ A. Hence, A ⊆ cδ(A) for any A ∈ D(X). Now, let
A ⊆ B and let xt ∈ cδ(A), then xt ∈ H ∀ H ∈ Nδ(A) ⇒ xt ∈ H ∀ H ∈ Nδ(B) (as
Nδ(B) ⊆ Nδ(A)) ⇒ xt ∈ cδ(B). Hence cδ(A) ⊆ cδ(B). Since A,B ⊆ A ∪ B, then
cδ(A), cδ(B) ⊆ cδ(A∪B) ⇒ cδ(A)∪cδ(A) ⊆ cδ(A∪B). Next, let xt 6∈ cδ(A)∪cδ(B),
then there exists H,M ∈ D(X) such that xt 6∈ H ∈ Nδ(A) and xt 6∈ M ∈ Nδ(B) ⇒
xt 6∈ (H ∪ M) ∈ Nδ(A ∪ B) (by Theorem 3.17) and so xt 6∈ cδ(A ∪ B). Hence,
cδ(A ∪B) ⊆ cδ(A) ∪ cδ(B). Consequently, cδ is a D-C̆ech closure operator. ¤

Theorem 3.20. Let (X, δ) be an EF - D-proximity space then the operator cδ is a
D-closure operator and the collection ηδ = {A ∈ D(X) : cδ(Ac) = Ac} is a double
topology on X.

Proof. Straightforward. ¤

Lemma 3.21. Let δ1, δ2 ∈ m(X). If δ1 < δ2, then cδ2(A) ⊆ cδ1(A) ∀ A ∈ D(X).

Proof. Let xt ∈ cδ2(A), then xt ∈ B∀ B ∈ Nδ2(A) ⇒ xt ∈ B∀ B ∈ Nδ1(A)
(by Theorem 3.17) and so xt ∈ ∩{B : B ∈ Nδ1(A)} = cδ1(A). Hence, cδ2(A) ⊆
cδ1(A) ∀ A ∈ D(X). ¤
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Definition 3.22. Let δ ∈ m(X) and A ∈ D(X) we define
CNδ(A) = {B : B ∈ D(X), B 6∈ Nδ(A)}.

Lemma 3.23. Let δ ∈ m(X), A ∈ D(X) and let I ∈ DI(X). Then Nδ(A) ∩ I =
φ ⇔ I ⊆ CNδ(A).

Theorem 3.24. Let δ ∈ m(X), A ∈ D(X) and let I1, I2 ∈ DI(X). Then I1∩I2 ⊆
CNδ(A) ⇒ I1 ⊆ CNδ(A) or I2 ⊆ CNδ(A).

Proof. Assume that I1 * CNδ(A) and I2 * CNδ(A). Then there exists H1 ∈
I1 \ CNδ(A) and H2 ∈ I2 \ CNδ(A). Since H1 ∩ H2 ⊆ H1,H2 and I1, I2 are a
D-ideals on X, then H1 ∩ H2 ∈ I1 ∩ I2 ⊆ CNδ(A) ⇒ H1 ∩ H2 ∈ CNδ(A) which
implies that H1 ∩ H2 6∈ Nδ(A) ⇒ (Hc

1 ∪ Hc
2) 6∈ δ[A] ⇒ Hc

1 6∈ δ[A] or Hc
2 6∈ δ[A]

(byDP2), thus Hc
1 6∈ Nδ(A) or Hc

2 6∈ Nδ(A). Hence H1 ∈ CNδ(A) or H2 ∈ CNδ(A),
a contradiction. ¤

Theorem 3.25. Let I1, I2 and J are D-ideals on a nonempty set X. Then if
J ⊆ I1 ∪ I2, then J ⊆ I1 or J ⊆ I2.

Proof. Assume that J * I1 and J * I2. Then there exists A ∈ J \ I1 and
B ∈ J \ I2, so A ∪ B ∈ J ⊆ I1 ∪ I2. Therefore A ∪ B ∈ I1 or A ∪ B ∈ I2 which
implies A ∈ I1 or B ∈ I2, a contradiction. ¤

4. f - D-proximities

In this section we introduce the concept of g- double proximities(f - D-proximities,
for short) and we show that for different choice of ”f” one can obtain many of the
the known types of D-proximities. Also, characterizations of some types of these
D-proximities-(f0, l0)- have obtained.

Definition 4.1. A mapping f : m(X) × DI(X) → DI(X) is said to be a D-ideal
operator on X if ∀ δ ∈ m(X) and ∀ I1, I2 ∈ DI(X), we have

f(δ, I1) ⊆ f(δ, I2) whenever I1 ⊆ I2.

Definition 4.2. Let f be a D-ideal operator on X. Then a basic D-proximity δ on
X is said to be a f− D-proximity iff δ[A] ⊆ f(δ, δ[A]), ∀ A ∈ D(X). The family of
all f - D-proximities will denoted by Df .

Definition 4.3. A D-ideal operator f is said to be:
in class M1 if f(δ, I1 ∩ I2) = f(δ, I1)∩ f(δ, I2) ∀ δ ∈ m(X) and ∀ I1, I2 ∈ DI(X).
in class M2 if f(δ,

⋂
α∈Λ Iα) =

⋂
α∈Λ f(δ, Iα) ∀ δ ∈ m(X) and ∀ Iα ∈ DI(X).

in class C if f(δ1, I) = f(δ2, I) with cδ1 = cδ2 ∀ δ1, δ2 ∈ m(X) and ∀ I ∈ DI(X).
in class I if f(δ1, I) ⊆ f(δ2, I) whenever δ1 < δ2 ∀ I ∈ DI(X).
in class N if f(δ, I) ⊆ f(δ, f(δ, I)), ∀ δ ∈ Df , ∀ I ∈ DI(X).

Definition 4.4. For a set X, for all δ ∈ m(X) and for all I ∈ DI(X) we define
id(δ, I) = I,
f0(δ, I) = {A : A ∈ D(X), Nδ(A) ∩ I 6= φ},
f1(δ, I) = {A : A ∈ D(X), cδ(A) ∈ I},
f2(δ, I) = {A : A ∈ D(X), xt ∈ δ[A] ∪ I, ∀ xt ∈ Xp},
l0(δ, I) = {A : A ∈ D(X), Nδ(at) ∩ I 6= φ ∀ at ∈ A},
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l1(δ, I) = {A : A ∈ D(X), cδ(A) ∈ δ[xt] with I ⊆ δ[xt]}. When there is no
ambiguity we will write fi for fi(δ, I) and li for li(δ, I).

Theorem 4.5. Let δ ∈ m(X) and I be an arbitrary element in DI(X). Then f is
a D-ideal operator on X for all f ∈ {id, f0, f1, f2, l0, l1}.
Proof. We prove the cases f0 and f2, the other cases are similar. Suppose that
δ ∈ m(X) and I ∈ DI(X). Now, since Nδ(φ) ∩ I = I 6= φ, then φ ∈ f0. If A ∈ f0,
B ⊆ A then Nδ(A) ∩ I 6= φ ⇒ Nδ(B) ∩ I 6= φ (by Theorem 3.17), hence B ∈ f0.
If A, B ∈ f0, then Nδ(A) ∩ I 6= φ and Nδ(B) ∩ I 6= φ. So ∃H, M ∈ I such that
H ∈ Nδ(A) and M ∈ Nδ(B) which implies that H ∪M ∈ Nδ(A ∪ B) (by Theorem
3.17) and so H ∪ M ∈ Nδ(A ∪ B) ∩ I, consequently, Nδ(A ∪ B) ∩ I 6= φ. Hence
A ∪ B ∈ f0. Therefore, f0 ∈ DI(X). Now, let I1 ⊆ I2 and let H ∈ f0(δ, I1).
Then Nδ(H) ∩ I1 6= φ ⇒ Nδ(H) ∩ I2 6= φ. So H ∈ f0(δ, I2). Hence f0 is a D-ideal
operator on X.
Next, since δ[φ] = D(X), then xt ∈ δ[φ] ∪ I ∀ xt ∈ Xp ⇒ φ ∈ f2. If A ∈ f2, B ⊆ A
then xt ∈ δ[A] ∪ I ∀ xt ∈ Xp ⇒ xt ∈ δ[B] ∪ I ∀ xt ∈ Xp(by Theorem 3.6 (ii)),
and so B ∈ f2. If A, B ∈ f2, then xt ∈ (δ[A] ∪ I) ∩ (δ[B] ∪ I) ∀ xt ∈ Xp ⇒ xt ∈
(δ[A] ∩ δ[B]) ∪ I ∀ xt ∈ Xp ⇒ xt ∈ δ[A ∪ B] ∪ I ∀ xt ∈ Xp (by Theorem 3.12 (i)),
and so, A ∪ B ∈ f2. Hence f2 ∈ DI(X). Also, it is clear that if, I1 ⊆ I2, then
f2(δ, I1) ⊆ f2(δ, I2). Consequently, f2 is a D-ideal operator on X. ¤

Theorem 4.6. For all δ ∈ m(X) and for all I ∈ DI(X), we have id, f1, f2 ∈ M2 ⊆
M1 and f0, l0 ∈ M1.

Proof. Clearly M2 ⊆ M1. Also, trivially, id, f1, f2 ∈ M2. Now, let A ∈ f0(δ, I1∩I2).
Then, Nδ(A) ∩ (I1 ∩ I2) 6= φ ⇒ Nδ(A) ∩ I1 6= φ and Nδ(A) ∩ I2 6= φ ⇒ A ∈
f0(δ, I1) ∩ f0(δ, I2). Hence f0(δ, I1 ∩ I2) ⊆ f0(δ, I1) ∩ f0(δ, I2). Now, let A ∈
f0(δ, I1) ∩ f0(δ, I2). Then Nδ(A) ∩ I1 6= φ and Nδ(A) ∩ I2 6= φ which implies
Nδ(A)∩ (I1∩I2) 6= φ(by Lemma 3.23, Theorem 3.24). So A ∈ f0(δ, I1∩I2). Hence
f0(δ, I1) ∩ f0(δ, I2) ⊆ f0(δ, I1 ∩ I2). Therefore, f0 ∈ M1. Similarly l0 ∈ M1. ¤

Theorem 4.7. For all δ ∈ m(X) and for all I ∈ DI(X) we have f ∈ C ∀ f ∈
{id, f1, , l1}.
Proof. It follows from Definition 4.4. ¤

Theorem 4.8. For all δ ∈ m(X) and for all I ∈ DI(X), we have f ∈ I ∀ f ∈
{id, f0, f1, f2, l0, l1}.
Proof. It follows from Theorem 3.17 and Lemma 3.21. ¤

Theorem 4.9. Let δ ∈ m(X). Then the following statements are equivalent:
(1) δ is an EF - D-Proximity on X,
(2) A ∈ δ[B] ⇒ Nδ(A) ∩ δ[B] 6= φ,
(3) Nδ(A) ∩ δ[B] = φ ⇒ A 6∈ δ[B],
(4) δ is a g0 - D-Proximity,
(5) A ∈ Nδ(B) ⇒ ∃H ∈ Nδ(B) such that A ∈ Nδ(H).
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Proof. (1) ⇒ (2): let A ∈ δ[B]. Then ∃H ∈ D(X) such that A ∈ δ[H] and
Hc ∈ δ[B]. It follows that H ∈ δ[A] and Hc ∈ δ[B]. Hence Hc ∈ Nδ(A) ∩ δ[B], and
so Nδ(A) ∩ δ[B] 6= φ.

(2) ⇔ (3): it is obvious.
(2) ⇒ (4): let H ∈ δ[A]. Then, Nδ(H) ∩ δ[A] 6= φ ⇒ H ∈ f0(δ, δ[A]). Hence δ is

an f0 -D-Proximity.
(4)⇒ (2): let A ∈ δ[B]. Then, A ∈ f0(δ, δ[B]) ⇒ Nδ(A) ∩ δ[B] 6= φ.
(2) ⇒ (5): let A ∈ Nδ(B). Then Ac ∈ δ[B] ⇒ Nδ(Ac) ∩ δ[B] 6= φ ⇒ ∃M ∈ D(X)

such that M ∈ δ[B] and M ∈ Nδ(Ac). Hence M c ∈ Nδ(B) and A ∈ Nδ(M c),
putting H = M c. So (5) holds.

(5) ⇒ (1): let A ∈ δ[B]. Then Ac ∈ Nδ(B) ⇒ ∃H ∈ D(X) such that H ∈ Nδ(B)
and Ac ∈ Nδ(H) ⇒ Hc ∈ δ[B] and A ∈ δ[H]. Hence δ is an EF -D-Proximity. ¤
Corollary 4.10. Let δ ∈ m(X). Then, δ is an EF - D-Proximity ⇔ it is f0 -
D-Proximity.

Theorem 4.11. Let δ ∈ m(X). Then, δ ∈ Df1 ⇒ cδ is a D-closure operator.

Proof. Straightforward. ¤
Theorem 4.12. Let δ ∈ m(X). Then δ is a f1 - D-Proximity if and only if ∀ B ∈
δ[A] ⇒ cδ(B) ∈ δ[A].

Proof. Suppose that δ is a f1 - D-Proximity and let B ∈ δ[A]. Then, B ∈ f1(δ, δ[A])
⇒ cδ(B) ∈ δ[A].
Conversely, let B ∈ δ[A]. Then, cδ(B) ∈ δ[A] ⇒ B ∈ f1(δ, δ[A]). So, δ[A] ⊆
f1(δ, δ[A]), ∀ A ∈ D(X). Hence δ is a f1 - D-Proximity. ¤
Theorem 4.13. Let δ ∈ m(X). Then δ is an LO - D-Proximity ⇔ it is f1 -
D-Proximity.

Proof. Straightforward. ¤
Theorem 4.14. Let δ ∈ m(X), I ∈ DI(X). Then, f(δ, I) ⊆ I ∀ f ∈ {id, f0, f1}.
Proof. Straightforward. ¤
Theorem 4.15. Let δ ∈ m(X). Then
δ ∈ Df2 ⇔ A ∈ δ[B] ⇒ (A ∈ δ[xt] or B ∈ δ[xt]) ∀ xt ∈ Xp.

Proof. Suppose that δ is a f2 - D-Proximity and let A ∈ δ[B]. Then, A ∈ f2(δ, δ[B])
⇒ xt ∈ δ[A] ∪ δ[B] ∀ xt ∈ Xp and so, A ∈ δ[xt] or B ∈ δ[xt] ∀ xt ∈ Xp.
Conversely, let H ∈ δ[A]. Then, H ∈ δ[xt] or A ∈ δ[xt] ∀ xt ∈ Xp ⇒ xt ∈
δ[H]∪ δ[A] ∀ xt ∈ Xp. Hence H ∈ f2(δ, δ[A]) ∀ A ∈ D(X)), and consequently, δ is a
f2 - D-Proximity. ¤
Theorem 4.16. Let δ ∈ m(X). Then the following statements are equivalent:

(1) xt ∈ δ[A] ⇒ ∃H ∈ D(X) such that xt ∈ δ[H] and Hc ∈ δ[A],
(2) xt ∈ δ[A] ⇒ Nδ(xt) ∩ δ[A] 6= φ,
(3) Nδ(xt) ∩ δ[A] = φ ⇒ xt 6∈ δ[A],
(4) δ is an l0 - D-Proximity,
(5) A ∈ Nδ(xt) ⇒ ∃B ∈ Nδ(xt) such that A ∈ Nδ(B).
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Proof. (1) ⇒ (2): let xt ∈ δ[A]. Then, ∃H ∈ D(X) such that xt ∈ δ[H] and Hc ∈
δ[A](by (1)). It follows that Hc ∈ δ[A] and Hc ∈ Nδ(xt). Hence Nδ(t) ∩ δ[A] 6= φ.

(2) ⇔ (3) it is obvious.
(2) ⇒ (4): let B ∈ δ[A]. Then, bt ∈ δ[A] ∀ bt ∈ B(by Theorem 3.6 (iii)). By (2),

Nδ(bt) ∩ δ[A] 6= φ, ∀ bt ∈ B which implies that B ∈ l0(δ, δ[A]). Hence δ is an l0 -
D-Proximity.

(4) ⇒ (2): it is obvious.
(2) ⇒ (5): let A ∈ Nδ(xt). Then, xt ∈ δ[Ac], (by (2)) Nδ(xt) ∩ δ[Ac] 6= φ. It

follows that ∃B ∈ Nδ(xt), B ∈ δ[Ac]. So, Ac ∈ δ[B] and B ∈ Nδ(xt), this lead to
A ∈ Nδ(B).

(5) ⇒ (1): let xt ∈ δ[A]. Then, Ac ∈ Nδ(xt). By (5), ∃H ∈ Nδ(xt) such that
Ac ∈ Nδ(H). It follows that A ∈ δ[H] and Hc ∈ δ[xt]. So, xt ∈ δ[Hc], H ∈ δ[A]. ¤

Corollary 4.17. Let δ ∈ m(X). Then, δ is an RH - D-Proximity ⇔ it is l0 -
D-Proximity.

Theorem 4.18. Let δ ∈ m(X). Then
(1) If δ ∈ Dl1 , then xt ∈ δ[A] ⇒ xt ∈ δ[cδ(A)].
(2) ∀ δ ∈ Dl1 , cδ is a D-closure operator.

Proof. (1) Suppose that δ is an l1 -D-proximity and let xt ∈ δ[A]. Then A ∈ δ[xt] ⊆
l1(δ, δ[xt]) ⇒ A ∈ l1(δ, δ[xt]) ⇒ cδ(A) ∈ δ[yr] with δ[xt] ⊆ δ[yr]. But δ[xt] ⊆ δ[xt],
hence cδ(A) ∈ δ[xt] ⇒ xt ∈ δ[cδ(A)].

(2) It’s obvious. ¤

Lemma 4.19. Let δ be an S -D-Proximity. If A ∈ δ[xt], then cδ(A) ∈ δ[xt].

Theorem 4.20. Let δ ∈ m(X). Then δ is an S - D-Proximity ⇔ it is an l1 -
D-Proximity.

Proof. Straightforward. ¤

Theorem 4.21. For all δ ∈ m(X) and for all I ∈ DI(X), we have f ∈ N ∀ f ∈
{id, f0, f2, l0}.
Proof. Clearly, id ∈ N . Suppose that δ ∈ Df0 , A ∈ f0(δ, I). Then, Nδ(A) ∩ I 6= φ,
so there exists M ∈ Nδ(A), M ∈ I. Since δ ∈ Df0 , then (by Theorem 4.9) there
exists H ∈ Nδ(A) such that M ∈ Nδ(H) ⇒ Nδ(H) ∩ I 6= φ. So, H ∈ f0(δ, I). But,
H ∈ Nδ(A), then Nδ(A) ∩ f0(δ, I) 6= φ. Hence A ∈ f0(δ, f0(δ, I)). Consequently,
f0(δ, I) ⊆ f0(δ, f0(δ, I)). So, f0 ∈ N . Similarly with f2, l0. ¤

Theorem 4.22. For all δ ∈ m(X) and for all I ∈ DI(X), then f0(δ, I) =
⋃

Ac∈I δ[A].

Proof. Straightforward. ¤

Theorem 4.23. For all δ ∈ m(X) and for all I ∈ DI(X), then
Df2 ⊆ Df1 , Dl1 ⊆ Df1 and Dl0 ⊆ Df0 .

Proof. Straightforward. ¤
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5. The relation between basic proximity and basic D-proximity

In this section, we investigate the relationship among basic proximity and basic
double proximity.

Definition 5.1. Let δ be any arbitrary relation on the power set of a nonempty set
X. We define

ξδ[A] = {B ∈ D(X) : B2 ∈ δ[A2]}, A ∈ D(X).

Theorem 5.2. Let (X, δ) be a basic proximity space. Then ξδ is a basic D-proximity
on X which is called the basic D-proximity induced by the basic proximity δ on X.

Proof. Let A ∈ D(X).
DI1: Let B ∈ ξδ[A]. Then B2 ∈ δ[A2] ⇒ A2 ∈ δ[B2] [ by Theorem 2.14 (I1)]

⇒ A ∈ ξδ[B]. Hence DI1 holds.
DI2: We shall show that ξδ[A] is a D-ideal on X. Since A ∈ D(X). Then

A2 ∈ P (X) ⇒ φ ∈ δ[A2] [by Theorem 2.14 (I2) ], and so φ ∈ ξδ[A], i.e. ξδ[A] is a
nonempty. Let B ∈ ξδ[A] and H ⊆ B. Then B2 ∈ δ[A2] and H2 ⊆ B2 ⇒ H2 ∈ δ[A2]
and so H ∈ ξδ[A]. Now, let B, H ∈ ξδ[A]. Then B2,H2 ∈ δ[A2] ⇒ B2 ∪H2 ∈ δ[A2]
and so B ∪ A ∈ ξδ[A]. Hence ξδ[A] is a D-ideal on X for all A ∈ D(X), i.e. DI2

holds.
For the condition DI3, let B ∈ ξδ[A]. Then, B2 ∈ δ[A2] ⇒ B2 ∈ IAc

2
, which implies

that B2 ∩ A2 = φ ⇒ A1 ∩ B2 = φ and A2 ∩ B1 = φ ⇒ AqB ⇔ B ⊆ Ac and so
B ∈ IAc . Hence ξδ[A] ⊆ IAc i.e. DI3 holds. Consequently, By Theorem 3.9, ξδ is a
basic D- proximity on X. ¤

Example 5.3. Let X be a nonempty set and let AδB ⇔ A ∩ B 6= φ. Then δ is
a basic proximity on X. The basic D-proximity which induced by δ is ξδ such that
AξδB ⇔ A2 ∩B2 6= φ.

Theorem 5.4. Let (X, δ) be a basic proximity space. Then δ is an EF -proximity
iff ξδ is an EF -D-proximity.

Proof. Let δ be an EF -proximity and let A ∈ ξδ[B]. Then A2 ∈ δ[B2] ⇒ Nδ(A2) ∩
δ[B2] 6= φ. Then there exists H ∈ P (X) such that H ∈ Nδ(A2) and H ∈ δ[B2] ⇒
Hc ∈ δ[A2],H ∈ δ[B2] ⇒ Hc = (Hc,Hc) ∈ ξδ[A] and H = (H, H) ∈ ξδ[B] ⇒
H ∈ Nξδ

(A),H ∈ ξδ[B] ⇒ Nξδ
(A) ∩ ξδ[B] 6= φ. Hence, by Theorem 4.9, ξδ is an

EF -D-proximity.
Conversely, Let ξδ is an EF -D-proximity and let A ∈ δ[B]. Then there exists
A1, B1 ∈ P (X) such that (A1, A) ∈ ξδ[(B1, B)]. So, by hypothesis, ∃(H1, H2) ∈
D(X) such that (H1,H2) ∈ ξδ[(A1, A)] and (Hc

2 ,Hc
1) ∈ ξδ[(B1, B)] ⇒ H2 ∈ δ[A] and

Hc
1 ∈ δ[B]. Since δ[B] is an ideal and Hc

2 ⊆ Hc
1 , then Hc

2 ∈ δ[B]. Hence δ is an
EF -proximity. ¤

Corollary 5.5. Let (X, δ) be a basic proximity space. Then δ is an g0-proximity iff
ξδ is an f0-D-proximity.

Theorem 5.6. Let δ be any relation on the power set of a nonempty set X. Then
δ is an RH- proximity iff ξδ is an RH-D-proximity.
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Proof. Let δ be an RH-proximity. Let A ∈ ξδ[B], then A2 ∈ δ[B2] ⇔ B2 ∈ δ[A2] ⇔
B ∈ ξδ[A]. Hence DR1 holds. Similarly, DR2, DR3 and DR4 are hold. Now, let
xt ∈ ξδ[A]. Then {x} ∈ δ[A2] ⇒ ∃H ∈ P (X) such that H ∈ δ[{x}] and Hc ∈
δ[A2] ⇒ (H, H) ∈ ξδ[xt] and (Hc,Hc) ∈ ξδ[A],i.e. there exists H = (H, H) ∈ D(X)
such that H ∈ ξδ[xt] and Hc ∈ ξδ[A]. Hence DR5 holds. Consequently, ξδ is an
RH-D-proximity.
The sufficiency of the Theorem is similar. ¤
Corollary 5.7. Let (X, δ) be a basic proximity space. Then δ is an h0-proximity iff
ξδ is an l0-D-proximity.

Theorem 5.8. Let (X, δ) be a basic proximity space. Then ξδ is a separated-D-
proximity ⇒ δ is a separated proximity.

Proof. Straightforward. ¤
Definition 5.9. Let ξ be any arbitrary relation on D(X). We define

δξ[A] = {B ∈ P (X) : (B,B) ∈ ξ[(A,A)]}, A ∈ P (X).

Theorem 5.10. Let (X, ξ) be a basic D-proximity space. Then δξ is a basic prox-
imity on X which is called the basic proximity induced by the basic D-proximity ξ
on X.

Proof. Let A ∈ P (X).
I1: Let B ∈ δξ[A]. Then (B, B) ∈ ξ[(A,A)] ⇒ (A,A) ∈ ξ[(B, B)] and so B ∈

δξ[B]. Hence I1 holds.
I2: We shall show that δξ[A] is an ideal on X. Since φ ∈ ξ[(A,A)] ∀A ∈ P (X),

then φ ∈ δξ[A] i.e. δξ[A] is a nonempty. Let B ∈ δξ[A] and C ⊆ B. Then (B, B) ∈
ξ[(A,A)] and (C,C) ⊆ (B,B) ⇒ (C,C) ∈ ξ[(A, A)] ⇒ C ∈ δξ[A]. Now, let B, H ∈
δξ[A]. Then (B, B), (H, H) ∈ ξ[(A,A)] ⇒ (B ∪H, B ∪ H) ∈ ξ[(A,A)] ⇒ B ∪H ∈
δξ[A]. Hence δξ[A] is an ideal on X i.e. I2 holds.

I3: Let B ∈ δξ[A]. Then (B, B) ∈ ξ[(A,A)] ⇒ B ⊆ Ac ⇒ B ∈ IAc . Hence
δξ[A] ⊆ IAc i.e. I3 holds. Consequently, δξ is a basic proximity on X. ¤
Example 5.11. Let X be a nonempty set and let AξB ⇔ AqB. Then the basic
proximity which induced by ξ is δξ such that AδξB ⇔ A ∩B 6= φ.

Theorem 5.12. Let (X, δ) be a basic proximity space and A = (A1, A2), B =
(B1, B2) ∈ D(X). Then

B1 ∈ Nδ(A2) ⇔ B ∈ Nξδ
(A).

Proof. Straightforward. ¤

6. Continuity in basic D-proximity spaces

In this section, we introduced the concept of continuity in basic double proximity
spaces.

Definition 6.1. Let (X, ξ1) and (Y, ξ2) be two basic D-proximity spaces and f :
(X, ξ1) → (Y, ξ2) be a map. Then f is called a basic D- proximally continuous
(BDP-continuous, for short) map if Aξ1B implies f(A)ξ2f(B).
Equivalently, if f(A) ∈ ξ2[f(B)] implies A ∈ ξ1[B], ∀A,B ∈ D(X).
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If (X, ξ1) and (Y, ξ2) be two EF-D-proximity spaces, then f is called double proxi-
mally continuous (DP-continuous, for short).

Theorem 6.2. Let (X, ξ1) and (Y, ξ2) be two basic D-proximity spaces and f :
(X, ξ1) → (Y, ξ2) be a map. Then
f is a BDP-continuous if and only if C ∈ ξ2[D] ⇒ f−1(C) ∈ ξ1[f−1(D)] ∀C, D ∈
D(Y ).

Proof. Let C,D ∈ D(Y ) such that C ∈ ξ2[D]. Since ff−1(D) ⊆ D, then, by Theo-
rem 3.6 (i), C ∈ ξ2[ff−1(D)]. Since ξ2[ff−1(D)] is a D-ideal on Y and ff−1(C) ⊆
C, then ff−1(C) ∈ ξ2[ff−1(D)]. We claim that f−1(C) ∈ ξ1[f−1(D)]. In fact, if
f−1(C) 6∈ ξ1[f−1(D)], then f−1(C)ξ1f

−1(D) ⇒ ff−1(C)ξ2ff−1(D) (by continuity
of f) ⇒ ff−1(C) 6∈ ξ2[ff−1(D)], a contradiction. Hence f−1(C) ∈ ξ1[f−1(D)].
Conversely, let A,B ∈ D(X) such that f(A) ∈ ξ2[f(B)]. Then , by hypothe-
sis, f−1(f(A)) ∈ ξ1[f−1(f(B))]. Since ξ1[f−1(f(B))] is a D-ideal on X and A ⊆
f−1f(A), then A ∈ ξ1[f−1(f(B))] ⇒ f−1(f(B)) ∈ ξ1[A], but B ⊆ f−1(f(B)), then
B ∈ ξ1[A]. Hence f is a BDP-continuous. ¤

Theorem 6.3. Let (X, ξ1) and (Y, ξ2) and (Z, ξ3) be a basic D-proximity spaces and
f : (X, ξ1) → (Y, ξ2), g : (Y, ξ2) → (Z, ξ3) be two maps. Then
If f and g are BDP-continuous maps, then gof is BDP-continuous map.

Proof. Straightforward. ¤

Theorem 6.4. Let (X, ξ1) and (Y, ξ2) be two a basic D-proximity spaces and f :
(X, ξ1) → (Y, ξ2) be a map. Then
If f is BDP-continuous, then f : (X, δξ1) → (Y, δξ2) is BP-continuous.

Proof. Let A, B ∈ P (X) and Aδξ1B. Then, (A,A)ξ1(B, B) ⇒ f(A,A)ξ2f(B, B)(by
continuity of f) ⇒ (f(A), f(A))ξ2(f(B), f(B)) ⇒ f(A)δξ2f(B). Hence f is a BP-
continuous. ¤

Theorem 6.5. Let (X, δ1) and (Y, δ2) be two a basic proximity spaces and f :
(X, δ1) → (Y, δ2) be a map. Then
f : (X, δ1) → (Y, δ2) is BP-continuous ⇔ f : (X, ξδ1) → (Y, ξδ2) is BDP-continuous.

Proof. Let f : (X, δ1) → (Y, δ2) be a BP-continuous, C,D ∈ D(Y ) and let C ∈
ξδ2 [D]. Then C2 ∈ δ2[D2]
⇒ f−1(C2) ∈ δ1[f−1(D2)]
⇒ (f−1(C1), f−1(C2)) ∈ ξδ1 [(f

−1(D1), f−1(D2))]
⇒ f−1(C) ∈ ξδ1 [f

−1(D)]
Hence f : (X, ξδ1) → (Y, ξδ2) is BDP-continuous.
Conversely, Let f : (X, ξδ1) → (Y, ξδ2) be a BDP-continuous, A,B ∈ P (Y ) and A ∈
δ2[B]. Then (A1, A) ∈ ξδ2 [(B1, B)], for some A1, B1 ∈ P (Y ) ⇒ (f−1(A1), f−1(A)) ∈
ξδ1 [(f

−1(B1), f−1(B))] ⇒ f−1(A) ∈ δ1[f−1(B)]. Hence f : (X, δ1) → (Y, δ2) is BP-
continuous. ¤

Lemma 6.6. Let (X, ξ1) and (Y, ξ2) be two EF-D-proximity spaces and f : (X, ξ1) →
(Y, ξ2) be a DP-continuous. Then

V ∈ Nξ2(H) ⇒ cξ1(f
−1(V c)) ⊆ f−1(Hc) ∀V ,H ∈ D(Y ).
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Proof. Let V ,H ∈ D(Y ) such that V ∈ Nξ2(H). Then V c ∈ ξ2[H]. It follows
that, by Theorem 6.2, f−1(V c) ∈ ξ1[f−1(H)] ⇒ [f−1(V c)]c ∈ Nξ1(f

−1(H)). But,
[f−1(V c)]c = f−1(V ), then f−1(V ) ∈ Nξ1(f

−1(H)) ⇒ [f−1(H)]c ∈ Nξ1([f
−1(V )]c)

(by Theorem 3.17 (5)) ⇒ f−1(Hc) ∈ Nξ1(f
−1(V c)). Since, cξ1(f

−1(V c)) = ∩{M ∈
D(X) : M ∈ Nξ1(f

−1(V c))}, then cξ1(f
−1(V c)) ⊆ f−1(Hc). ¤

Theorem 6.7. Let (X, ξ1) and (Y, ξ2) be two EF-D-proximity spaces and f : (X, ξ1)
→ (Y, ξ2) be a map. Then f is a DP-continuous ⇒ f : (X, ηξ1) → (X, ηξ2) is a
D-continuous with respect to the double topologies ηξ1 and ηξ2 .

Proof. Let V ∈ ηξ2 . Then cξ2(V
c) = V c, we shall show that f−1(V ) ∈ ηξ1 ⇔

cξ1(f
−1(V c)) = f−1(V c). Clear that, f−1(V c) ⊆ cξ1(f

−1(V c)). Now, by Lemma
6.6, we have
cξ1(f

−1(V c)) ⊆ ∩{f−1(Hc) : V ∈ Nξ2(H)}
= ∩{f−1(Hc) : Hc ∈ Nξ2(V

c)}
= f−1[∩{Hc ∈ D(Y ) : Hc ∈ Nξ2(V

c)}]
= f−1(cξ2(V

c))
= f−1(V c).
Hence cξ1(f

−1(V c)) ⊆ f−1(V c). Consequently, cξ1(f
−1(V c)) = f−1(V c) and f−1(V )

∈ ηξ1 . Therefore, f is a D-continuous. ¤

7. Categorical point of view

In this section, we are going to find a categorical relationship between basic prox-
imity spaces and basic D-proximity spaces.
Let CBP be the category of all basic proximity spaces and BP-continuous maps.
Also, let CBDP be the category of all basic D-proximity spaces and BDP-continuous
maps.

Definition 7.1 ([7]). A category C consists of a collection {Cα : α ∈ Λ} of elements
called objects and a collection {fi : i ∈ I} of elements called mappings.

Definition 7.2 ([7]). Let C and F be a categories and let F be a function which
maps the objects of C into the objects of F and, in addition, assigns to each map
f ∈ C a map F (f) ∈ F . The map F is called a functor from C to F if it satisfies the
following conditions:
For any C,C1, C2, f, f1, f2 ∈ C

(1) f : C1 → C2 ⇒ F (f) : F (C1) → F (C2).
(2) F (iC) = iF (C).
(3) If f2.f1 is defined, then F (f2.f1) = F (f2).F (f1).

Theorem 7.3. Let F : CBP → CBDP defined by
F (X, δ) = (X, ξδ) and F (f) = f ,

where, AξδB ⇔ A2δB2 ∀A, B ∈ D(X). Then F is a functor.

Proof. Clearly, by Theorem 5.2, F (X, δ) is a basic D-proximity space. Now, we
shall show that if f : (X, δ1) → (Y, δ2) is a BP-continuous, then f : (X, ξδ1) →
(Y, ξδ2) is a BDP-continuous. Let A,B ∈ D(Y ) such that A ∈ ξδ2 [B]. Then
A2 ∈ δ2[B2] ⇒ f−1(A2) ∈ δ1[f−1(B2)]. Since f−1(A) = (f−1(A1), f−1(A2)) and
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f−1(B) = (f−1(B1), f−1(B2)), then f−1(A) ∈ ξδ1 [f
−1(B)]. Hence f : (X, ξδ1) →

(Y, ξδ2) is a BDP-continuous. Therefore, F is a functor. ¤
Theorem 7.4. Let G : CBDP → CBP defined by

G(X, ξ) = (X, δξ) and G(f) = f ,
where, AδξB ⇔ (A, A)ξ(B, B) ∀A,B ∈ P (X). Then G is a functor.

Proof. Clearly, by Theorem 5.10, G(X, ξ) is a basic proximity space. Now, we
shall show that if f : (X, ξ1) → (Y, ξ2) is a BDP-continuous, then f : (X, δξ1) →
(Y, δξ2) is a BP-continuous. Let A, B ∈ P (Y ) such that A ∈ δξ2 [B]. Then (A,A) ∈
ξ2[(B, B)] ⇒ ( by Theorem 6.2) f−1(A,A) ∈ ξ1[f−1(B, B)]. Since f−1(A,A) =
(f−1(A), f−1(A)) and f−1(B,B) = (f−1(B), f−1(B)), then f−1(A) ∈ δξ1 [f

−1(B)].
Hence f : (X, δξ1) → (Y, δξ2) is a BP-continuous. Therefore, G is a functor. ¤
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